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Abstract

This paper uses agent-based simulation to analyze how financial
markets are affected by market participants with convex incentives,
e.g. option-like compensation. We document that convex incentives
are associated with (i) higher prices, (ii) larger variations of prices, and
(iii) larger bid-ask spreads. We conclude that convex incentives may
lead to decreased stability of financial markets. Our analysis suggests
that the decreased stability is driven by the fact that convex incentives
pushes agents towards more extreme decisions. Furthermore, while
risk preferences affect agent behavior if they have linear incentives,
the effect of risk preferences vanishes with convex incentives.
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1 Introduction

After the unfolding of the financial crisis in 2007-2008, the role of specific
compensation structures of financial market participants became a highly
discussed issue (see e.g. Bebchuk et al., 2010, Dewatripont et al., 2010,
French et al., 2010, Gennaioli et al., 2010). Rajan (2006) argues that one of
the main origins of instability in highly developed financial markets is con-
vex incentives structures. Convex incentive structures are typically used to
reduce moral hazard concerns to align the interests of the portfolio manager
(agent) and the investor (principal) (see e.g. Allen, 2001; Kritzman, 1987;
Goetzmann et al., 2003; Cuoco and Kaniel, 2011).)

In Allen and Gorton’s (1993) model of the agency problem, the portfolio
manager does not share the losses with the investor but receives a proportion
of the profits. They report rational bubbles, as the portfolio manager’s con-
vex incentives and limited downside risk make it rational for her to trade at
prices above fundamental value. This is similar to the risk-shifting problem
between shareholders and bondholders (Jensen and Meckling, 1976). In a
similar vein Malamud and Petrov (2014) and Sotes-Paladino and Zapatero
(2014) model how convex incentives may lead to mispricing and bubbles.

Holmen et al (2014) (henceforth HKK) and Kleinlercher et al (2014) in-
vestigate price formation in experimental markets under convex incentives
documenting that convex incentives induce significantly higher market prices
than linear incentives. Other market variables such as volatility and volume
are not different in the convex treatment compared to the linear treatment.
Linear treatment resembles the incentive structure if the trader invest her
own money.

This paper uses agent-based simulations of asset markets to explore how
convex incentive structures affect prices, volatility, turnover, and bid-ask
spreads.1 It allows us to investigate the market consequences of convex in-
centives observed by HKK for a known type of market regime (continuous
double-auction markets), varying the number of traders and making different
assumptions about their utility functions (risk preference). In this way we
hope to be able to generalize the experimental results of HKK to actual asset
markets. Accordingly, we first attempt to replicate the experimental results
under as identical conditions as possible, then we expand these conditions to

1Agent-based modeling has been used to investigate asset market behavior (see
Samanidou et al., (2007) and Hommes (2006) for reviews)
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become more similar to actual asset markets. The model developed would
be possible to use for simulations of the influence of still other factors than
those we investigate.

We start with developing a theoretical model that is applied to the exper-
imental set-up in HKK. The model implies that the traders’ demand func-
tions may be dis-continuous, i.e., at a certain price the agents switch from
a positive demand for the asset to a negative demand (supply). Such a dis-
continuity is more likely and stronger in the presence of convex incentives.
In contrast, with risk-aversion and linear incentives, the demand functions
result to be continuous.

We then run agent-based simulations based on the set-up in the HKK
experiments varying the number of agents with convex incentives. Our results
show that convex incentives are associated with higher market prices but
also with higher volatility and larger spreads than linear incentives. When
we control for aspects that cannot be controlled for in experiments with
humans, such as the agents’ risk preferences and decision criteria, we find
that convex incentives are associated with both higher market prices and
less stable markets.

Finally, we rerun the simulations increasing the number of agents and ran-
domly varying the fraction of agents with convex incentives and the degree
of risk aversion. The main results remain the same. Independently of the de-
gree of risk-aversion, increasing the fraction of agents with convex incentives
leads to higher prices and volatility as well as larger spreads. Varying the
degree of risk-aversion conditional on convex incentives, on the other hand,
does not affect market behavior.

Our paper has three main contributions. The first one is to show that con-
vex incentives lead to non-continuous demand functions that result in larger
variations of prices. This result is consistent with Rajan’s (2006) argument
that convex incentives are one of the main reasons for instability in financial
markets. The second one is the comparison of the effect of risk preferences
and incentives on the decision of the agents. We document that incentives
dominate risk preferences in the sense that while there are clear effects of
risk preferences with linear incentives, the effect of risk preferences vanishes
with convex incentives. Thus, agents with very different risk-preferences
make similar decisions when they have convex incentives. The third one is
the comparison of market experiments with humans and agent-based simu-
lation of asset markets. We expect to learn from one approach that cannot
be learned from the other (Duffy, 2006). Convex incentives lead to higher
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market prices in both experiments with humans and agent-based simula-
tions. The average market prices in our simulations are also quite similar to
the market prices in the experiments with humans. However, other market
characteristics vary between the experiments with humans and agent-based
simulations. In the convex treatments in HKK, standard deviation of prices
as well as spreads are roughly the same as in the linear treatments. In con-
trast, convex incentives in our agent-based simulations are associated with
higher standard deviations and spreads compared to the simulations where
the agents have linear incentives. The explanation appears to be related to
the non-continuous demand functions among the rational simulated agents.

The question is also raised why price volatility is higher in the simulation
with convex contracts than in the simulations with linear contracts. In the
HKK experiments there is no significant difference. In a recent experiment
similar to HKK (Baghestanian and Walker, 2014), it is shown that an initial
price may work as an anchor such that subsequent price volatility is reduced.
A possibility is that in the HKK experiments with convex contracts, anchor-
ing on the initial price reduces the volatility associated with discontinuous
demand functions. Since no anchor effect is modeled in our agent-based
simulation price volatility is higher in the simulations with convex contracts
compared to the simulations with linear contracts.

Section 2 presents the experimental set-up and develops the theoretical
framework. In section 3 we analyze the demand functions and the equilibrium
prices. The comparison of the simulations and the human experiments are
done in the first part of section 4. In section 4 we also analyze the effect
of varying the fraction of agents with convex incentives and the degree of
risk-aversion. Section 5 summarizes and concludes.

2 Definitions and model settings

What follows is a description of the experimental asset market in HKK which
will be the base for our simulations.

There is a single risky asset paying a dividend X at time T . We assume
that X is a binomial random variable defined as

X =

{

X1 with probability p
X2 with probability 1− p

where X1 and X2 are greater than or equal to zero. There are N agents
trading the asset, each of them is provided with an initial wealth W0 and a
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number of asset ω. Shorting assets and borrowing money are not allowed.
Trading is made in a continuous double auction market with open order
books.

Each agent i is endowed with a contract function representing the payoff
to be received at the end of the contract at time T . The contract is a function
of Wi, the final value of the holding of agent i. In particular we consider the
following specifications of the contract function

fi(Wi) =

{

Wi linear
φ+ δmax(Wi −K, 0) convex

(1)

where φ, δ and K are constants.
In the experiments with human subjects performed by HKK the number

of individuals for each test were N = 10, endowed with 40 assets and 2000
units of the experimental currency Taler. The terminal dividends of the
risky asset are either 15 Taler or 65 Taler with probabilities of 0.8 and 0.2,
respectively. Thus, the expected cash-flow of each risky asset is 25 Taler.
Each experiment terminates after 12 rounds of trading.

To achieve comparability between the treatments with linear incentives
and convex incentives, the constants in the contract functions have been set
so that the expected earnings for the hold strategy are the same for both
treatments, see HKK for details. The specific values, which will be also used
throughout the present paper are given in Table 1.

[insert TABLE (1) about here]

The final value of agent’s portfolio depends on θi, the shares of asset
exchanged, and on the price P for each share

Wi(θi, P ) = W0 + (ω + θi)X − θiP.

A market session is divided into twelve rounds, the traders access to the
market one by one in a random order. Agent’s strategy is determined by
maximizing the expected utility. The utility function ui is an increasing
function of the payoff of the contract function and it may be concave or
convex depending on the risk-aversion of the agent. At round t, the trader i
with a current position consisting of mi(t) amount of cash and wi(t) shares
of the asset, determines the optimal amount of units θ∗i to be exchanged at
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a price P by maximizing expected utility subject to budget constraints (no
short-selling and no money-borrowing),

max
θ

E[ui (fi (Wi)))] (2)

mi(t)− θP ≥ 0

wi(t) + θ ≥ 0

The agents follow a strategy starting from the best quotes available in
the market to see if they are interested in placing a buy order or a sell
order. Afterwards, they place a competitive limit order, that is an offer that
improves the current trading book with a lower bid or a higher ask price.

The implementation of the simulated market experiment proceeds by fol-
lowing these steps:

1. A trader i is randomly selected among those who have not traded in
the present round.

2. Any previous limit order by trader i, if still present in the book, is
canceled.

3. (Submission of a sell order). Let P b(t) be the current best bid price.
Trader i solves Problem (2) with P = P b(t). If the optimal solution
θ∗i is a negative value, then the agent places a market order (otherwise
the agents proceeds to the next step) . If the corresponding quantity
posted in the book is greater (in absolute value) than θ∗i , the quantity
θ∗i is exchanged, otherwise the agent’s demand is only partially satisfied
and the next bid in the order book is analyzed.

4. (Submission of buy order) The analogous procedure is repeated with
respect to the current best ask price.

5. (Submission of a book order) A random value P̃ is chosen between
the current best bid and ask price. The agent solves problem (2) with
P = P̃ and post a limit order.

6. If there are still agents who have not traded in this round, go to step
1., otherwise go to the next round

We remark that all agents are rational, and that they have access to the
same set of information about the asset. Agents differ from each other with
respect to their utility functions and contracts.
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3 Agent’s demands and market clearing

In this section we analyze the optimal demand function of each agent and
how it is related to the price that clears the market.

We begin our analysis from Figure (1) which represents the expected
utility as a function of θ of a risk-averse agent for the two types of contract
at a given price P . We see that when the agent is endowed with a convex
contract, the resulting expected utility is piece-wise concave, while when the
contract is linear the expected utility is concave.

[insert FIGURE (1) about here]

To study the solution to problem (2) we consider separately linear and
non-linear contract functions, starting from the linear case.

Let ν(θ, P ) be the first derivative with respect to θ of the expected utility,
that is

ν(θ, P ) =
∂

∂θ
E[u(f(W (θ, P )))].

For any given price P , the function ν(θ, P ) is increasing with respect to θ
when the utility function is concave (risk-averse agent) and decreasing for a
convex utility. In the risk-averse case, the optimal demand θ∗, that is the
solution to problem (2), either satisfies the First Order Condition (FOC)

ν(θ, P ) = 0,

when it belongs to the feasibility interval [−ω, W0

P
] or it coincides with one

of the extremes of the interval. More precisely, it is equal to the left extreme
−ω when the marginal expected utility ν(−ω, P ) is negative, it is equal to
the right extreme W0

P
when ν(W0

P
, P ) is positive, it belongs to the interior of

the feasibility interval for all the other cases.
Summarizing, in the case of a concave utility and a linear contract, the

optimal demand is the continuous function

θ∗(P ) =







W0

P
if P ≤ P d

θz(P ) if P ∈ (P d, P u)
−ω if P ≥ P u

(3)

where θz(P ) is the solution to the FOC

ν(θz(P ), P ) = 0,
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P d is the solution to

ν(
W0

P
, P ) = 0

and P u solves
ν(−ω, P ) = 0.

When the agent is not risk averse, that is when the utility function is
convex, the optimal demand function is equal to

θ∗(P ) =

{

W0

P
if P ≤ P̄

−ω if P ≥ P̄
(4)

where, by continuity of the expected utility, the switching price P̄ can be
identified by solving

E

[

u(
W0

P
, P )

]

= E [u(−ω, P )]

that is
Eu [(ω +W0/P )X]− u((W0 + ωP ) = 0. (5)

As an example, let us consider the case of a linear contract and a Constant
Relative Risk Aversion (CRRA) utility, u(x) = x1−γ

1−γ
. We have

ν(θ, P ) = E(W0 + (ω + θ)X − θP )−γ(X − P ).

In the risk-averse case, that is for γ positive, it is easy to obtain P u = E[X]
and

P d =
E[X1−γ]

E[X−γ]
.

The demand function is

θ∗(P ) =











W0

P
if P ≤ E[X1−γ ]

E[X−γ ]

θz(P ) if P ∈ (E[X1−γ ]
E[X−γ ]

, E[X])

−ω if P ≥ E[X]

When the agent is risk-neutral, i.e. when γ = 0, we get

P u = P d = E[X]
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and the optimal demand function becomes

θ∗ =

{

W0

P
if P < E[X]

−ω if P > E[X]

Note that in the case P = E[X], the agent would be indifferent between
buying or selling any amount of the asset, that is Problem (2) is solved by
any θ within the feasible set.

When the contract function (1) is convex and the agent is risk-averse, for
any given P the expected utility in Problem (2) is only piecewise concave
in θ, as shown by Figure (1). Since the asset X assumes only two values,
the expected utilities has two nodes, corresponding to the two values of θ
satisfying the equation

W0 + (ω + θ)X − θP = K.

for X = X1 and X = X2. In this case the optimal demand θ∗(P ) may be on
the edges of the feasibility interval. This is what happens in Figure (1), where
θ∗(P ) coincides with the left extreme of the feasibility interval and also for
all the instances examined in the paper, although it may not be necessarily
so in general. We also note that in the case of Figure (1), the expected utility
is first decreasing and then increasing when moving from the value θ = 0 to
the optimal point. This means that partially executed orders may lead to a
decrease of agent’s expected utility.

The two plots in Figure 2 provide a graphical representation of the optimal
demands θ∗.

[insert FIGURE (2) about here]

Figure (2-a) represents the optimal demand functions in the case of a linear
contract. The demand functions is continuous for a risk-averse agent, dis-
continuous for risk-neutral and risk-seeking agents. The discontinuity point
is the maximum price P̄ for which the agent is willing to invest all of his
wealth in the risky asset. It can be identified by solving Equation (5). The
value of P̄ depends on the attitude towards risk of the agent; it decreases
with the level of risk aversion, which, in this case, is measured by γ.

When the incentive is convex, the optimal demand function is always
discontinuous, independently of the risk-aversion of the agent, see Figure (2-
b). By comparing the two plots in Figure (2) we see that the effect of the
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convex incentive is to increase the demand function θ∗(P ) for all values of P
and for all the attitudes towards the risk.

The equilibrium price is the price which clears the market, that is the
value P that solves the equation

N
∑

i=1

θ∗i (P ) = 0, (6)

where θ∗i (P ) represents the optimal demand of agent i. The aggregate de-
mand function is a decreasing function of P , with a number of points of
discontinuity that is less than or equal than the number of agents. Since the
aggregate demand is not continuous, Equation (6) may not have a zero and
hence an equilibrium price may not exist. However, we can still identify a
unique value P̃ where the aggregated demand changes its sign. The price P̃
represents the value where there would be the highest volume of exchanges
between the agents. We call it the ”quasi-equilibrium” price.

For the existence of an equilibrium price there must be a sufficient degree
of heterogeneity among agents. We assume that agents have the same initial
endowment (W0 units of cash and ω units of asset), therefore, if they also
have the same level of risk aversion and the same contract function, they will
make the same choices and obviously no price can clear the market (however,
also in this case, there would exist a quasi-equilibrium price). When agents’
preferences or contracts exhibit enough variation among agents, the market
clearing condition (6) may be satisfied. To clarify this point, let us consider
a simple example with only two agents whose demand functions are

θ∗i (P ) =

{

W0

P
if P ≤ P̄i

−ω if P > P̄i

with P̄1 ≤ P̄2. By aggregating the demands we get

2
∑

i=1

θ∗i (P ) =







2W0

P
if P ≤ P̄1

W0

P
− ω if P̄1 < P ≤ P̄2

−2ω if P > P̄2

The aggregate demand is equal to zero only if P̄1 6= P̄2, that is when the two
agents have different preferences. In such a case, the equilibrium price P ∗

exists and is equal to W0

ω
if and only if P̄1 < P ∗ < P̄2, therefore it depends
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on the utility functions and on the type of the contract through the values
P̄i.

It is possible to generalize the previous argument to a set of N agents
with discontinuous demand functions given by

θ∗i (P ) =
W0

P
1P<P̄i

− ω1P>P̄i
, i = 1, . . . , N

where 1A is the indicator function of the set A. Assuming, without loss of
generality, that the sequence of nodes P̄i is increasing, the equilibrium price
exists and is given by

P ∗ =
N − κ

κ

W0

ω
,

for an integer κ between 1 and N − 1, if and only if

P̄κ < P ∗ < P̄κ+1.

In general, the equilibrium, or the quasi-equilibrium price, must be de-
termined through a numerical procedure.

4 Simulations

4.1 A replication of the experiment with human sub-

jects

We begin by comparing the results obtained via simulation of the artificial
market to the outcomes of the laboratory experiments by HKK, who report
the following main results: (i) significantly higher market prices with convex
incentives than linear incentives and (ii) convex incentives do not lead to
higher volatility, spreads and volumes than linear incentives.

We want to investigate if similar results can be obtained in an artificial
market where the ten agents involved in each market obey to the trading
rules stated in Section 2 and have the utility function

ui(x) =
x1−γi

1− γi
, (7)

where the coefficients γi, i = 1, . . . , 10 were estimated from data obtained
from the elicitation of the risk-preferences of the participants in the HKK
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experiments.2We identified participants whose answers in the elicitation of
risk-preferences indicated risk-aversion, risk-neutrality, and risk-seeking be-
havior, respectively, in order to analyze how risk-preferences affect the simu-
lated markets. Probably due to the relatively small amounts at stake, some
participants’ answers indicated risk-seeking behavior (Holt and Laury, 2002).
The coefficients of risk-aversion are reported in Table 2 and used throughout
the simulations in this sub-section (while in the next sub-section all agents
are risk-averse). The choices of the γi make agents 1, 3, 5, 8, 9 risk neutral,
agents 4, 6, 10 risk-seekers and agents 2, 7 risk-averse.

[insert TABLE (2) about here]

Each test involved the same ten agents and twelve trading periods and
it was repeated five hundred times. Following HKK we consider three cases,
the first one, called Linear involving only linear contracts, the second one,
called Hybrid involving five linear contracts assigned to agents 1 to 5 and five
convex contracts assigned to agents 6 to 10, and the last one involving only
convex contracts, called Convex. We remark that the only factor that varies
among simulations is the order in which the agents enter into the market.

For each simulation is = 1, . . . , 500 and each time period t = 1, . . . , 12 we
analyzed the mean over is of the following quantities:

1. the average price P (is, t), that is the mean of the prices of all the trades
executed in period t;

2. the volume V (is, t) that is the sum of all assets exchanged in period t;

3. the volatility v(is, t) that is the standard deviation of the prices for all
the trades executed in period t;

4. the relative spread s(is, t), defined as the mean of the bid-ask spreads
divided by the mid prices recorded after each agent completes his trad-
ing session.

Table 3 presents some comparative statistics for the mean over is of

• the Average Price P̄ (is) defined as the mean of P (is, t) over t.

2Using the subjects’ answers to the lottery, that HKK implemented according to
Dohmen et al (2011), we obtained agent’s i certainty equivalent and the relative risk
attitude parameter γi.
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• the Final Price P (is, 12).

• the Average Spread and the Average Volatility, defined analogously to
the Average Price;

• the Percentage Volume, that is the Average Volume divided by the
total number of assets (e.g. 400) and multiplied by 100.

The three columns in Table 3 refer to the Linear, Hybrid, and Convex,
respectively. For each of the quantities we report the mean, the standard
deviation, the 2.5 and the 97.5 percentile across the five hundred simulations.

[insert TABLE (3) about here]

We note that the mean values of both the Average Prices and the Final
Prices increase when convex incentives are introduced into the market. This
is as predicted by our analysis in the previous Section, which showed that
the introduction of convex incentives increases the demands of the risky asset
and it is also in line with what observed in the experiment with human
subjects by HKK, who reported significantly higher market prices with convex

incentives than linear incentives. Also note that the average final prices are
close to the Equilibrium prices reported in the last row. The average final
prices in Convex (37.88) are remarkably close to the average prices in the
HKK experiments with humans (37.73). Percentage Volumes do not appear
to be substantially affected by the change of treatments, also confirming
what observed by HKK. Differently from HKK, we report higher Average
Volatilities for Hybrid and Convex and higher standard deviations of both the
Average and the Final Prices for Hybrid and Convex. These last observations
suggest that the introduction of convex contracts increases the variability and
the instability of the market. Thus, with convex incentives, a small change
in inputs, such as the order in which agents accede to the market, produces
a great variability of the outputs.

Figure (3) reports the means over the 500 simulations of P (is, t), V (is, t)
and s(is, t) for the three treatments considered. We note that the mean prices
for the Linear are much lower and regular. Prices tend to be higher at the first
trading periods and then tend to settle towards the equilibrium level. This
is more evident for the Convex, where the much higher initial prices are the
cause of the difference between the Average Price and the Equilibrium Price
reported in Table 3. Volumes do not differ significantly among treatments:
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they are decreasing with respect to time, as agents tend to trade less when
prices approach the equilibrium level. In particular, the Average Volumes
for Linear, where the equilibrium is reached earlier, is almost zero towards
the last trading sessions. Relative spreads appear almost constant for each
treatment, but the linear one is much smaller than the other two, suggesting
that the introduction of convex incentives may also have negative effects on
the liquidity of the market.

[insert FIGURE (3) about here]

Figure 4 reports the average holdings of the risky assets for each of the
agents. In Linear, we see that the shares are concentrated in the hands of the
risk-seeking agents (agent 4, 6, and 10), that the risk-averse agents end up
without any asset, and that the risk-neutral agents tend to remain with an
average of ten assets each. In Linear we observe a very clear division across
agents according to their attitudes towards risk. In Convex the risk-neutral
and risk-averse agents tend to increase the quantities hold and, consequently,
the risk-seekers must decrease their holdings, with a result of a rather con-
stant mean value among the agents. Hybrid shows that all shares tend to be
hold by the agents with convex incentives (agents 1 to 5), while the agents
with linear incentives finish with almost zero shares. HKK report similar
results in their hybrid treatment.

Summarizing the result of this Section, we conclude that the introduction
of convex incentives increases prices and market instability, both in terms
of price volatility and chaotic behavior of market prices. A small change
in input, that is the order in which agents trade, generate very different
outcomes in terms of market prices. Convex incentives do not have an effect
on volumes exchanged, while they have a negative effect on market liquidity,
measured as the bid-ask spread. In terms of portfolio holdings, we see that
convex incentives have such a strong effect on the decisions by the agents
to make almost indistinguishable the average holdings of agents with very
different attitudes towards risk.

4.2 Extending the simulation

A clear advantage of computer simulations over experiment with human sub-
jects is that the number of trials and of subjects per trials can be increased
at almost no cost. A second advantage is the possibility of controlling for
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quantities, such as the level of risk aversion, which are generally hard to
measure.

In this sub-section we present two series of tests in which we changed
the number of agents, the distribution of risk aversion, the percentage of
convex contracts, and the initial endowments. In the first series, we changed
randomly only the number of convex contracts and the agents’ risk attitudes,
while in the second one we randomized all the quantities involved. Overall,
the two series of tests confirm the robustness of our findings and also quantify
the impact of introducing new convex contract in the market on variables
such as the prices and their volatility, the volume of the exchanges, and the
relative bid-ask spread.

The first series of tests consist of 100 simulations of a market where 100
agents trade for 12 rounds. All our random draws are extractions from a
uniform distribution. For each simulation i, we set randomly the percentage
Ci of convex contracts. The risk aversions of the agents are also assigned
randomly as follows: we define an agent as Lowly Risk Averse (LRA) if his
parameter of risk aversion is around the reference value of 2, while he is
Highly Risk Averse (HRA) when it is around 10. We assume that an agent
can be either LRA or HRA and we randomly select the percentage Ri of
HRA agents. The exact value of risk aversion assigned to each agent is then
set by a random perturbation of plus or minus 10% around the two reference
values. We impose that the same percentage Ri of HRA agents are assigned
to the linear and to the convex incentivized groups. We estimate the linear
models

yi = α + β1Ci + β2Ri + ǫi, i = 1, . . . , 100

where yi is a place holder for the following quantities

1. the Relative Final Price, that is the ratio of the average of the prices
recorded at the last round of the market over the expected value of the
asset (that is 25);

2. the Percentage Volume, that is the ratio (multiplied by 100) of the
total number of shares exchanged during the 12 rounds over the total
number of assets;

3. the Relative Spread, that is the average of the ratios of the bid-ask
spread over the mid price;
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4. the Volatility, that is the average over the 12 rounds of the standard de-
viations, computed at each round, of the prices divided by the expected
value of the asset.

The results of the regressions are represented in Table 4. We observe that
β1, that is the coefficient of the percentage of convex contracts, is positive and
significant (at a 95% level) for all the cases. On the contrary, the coefficient
β2 of the percentage of HRA agents is never significant. We also see a high
level of R2 for all the cases but the Volume, implying that the linear models
are good at explaining the data. We are also able to quantify the impact of
changing the number of convex contracts: for example, by increasing by one
percent the number of convex contract, the Relative Price will increase by
an amount of 0.82. Taken together the results shown in Table 4 support the
statement that the impact of convex contracts prevails on the risk aversions
of the agents.

[insert TABLE 4 about here]

In the second set of tests all the quantities, including the initial endow-
ments, are set randomly. We perform 100 simulations with 100 agents, se-
lecting the percentage Ci of the convex contracts as before. The difference
from the first round is that we assigned the risk aversion coefficients of the
agents randomly between 0 and 10, their cash and shares endowments also
randomly, but imposing that the total number of outstanding shares is con-
stant among all simulations and equal to 4000 (as in the first round of tests),
and that the total cash available is also constant and equal to 2000 · 100. We
then estimated the model

yi = α + β1Ci + ǫi, i = 1, . . . , 100

obtaining the results shown in Table 5, which are remarkably close to those
of Table 4, providing further evidence that the number of convex contracts
is the key driver of the behavior of the simulated markets.

[insert TABLE 5 about here]

5 Summary and Conclusion

In this paper we used agent-based simulations to investigate how convex in-
centives to investment managers affect the behavior of asset markets. We
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report that, as argued by Rajan (2006), convex incentives may lead to mis-
pricing and decreased stability of financial markets. Thus, the simulations
show that convex incentives are associated with higher prices and standard
deviations of prices as well as higher spreads. In the presence of convex con-
tracts small changes in input, i.e. the order in which agents trade, generate
very different outcomes in terms of market prices.

We found that the degree of risk-aversion affects the behavior of agents
with linear contracts. However, with convex contracts, the degree of risk-
aversion does not affect agent and market behavior. Therefore convex in-
centive structures eliminate the influence of differences in risk preferences on
agent behavior.

Our conclusion that convex incentive schemes may induce mispricing and
decrease the stability of financial markets have implications for the debate
about policy regulations of investment managers’ incentive schemes (see e.g.
Turner, 2009; Walker, 2009). Yet, additional research is needed before any
firm policy recommendations can be made. It is noteworthy that in the
HKK experiment with humans, convex incentives did not result in less stable
markets. In HKK some factor or set of factors may have acted to decrease the
variability among actors. A possibility is that anchoring on the initial price
is such a factor. With convex contracts and discontinuous demand functions,
the value of the traded asset is more difficult to estimate compared to with
a linear contract and anchoring is therefore stronger, reducing volatility. In
the anchoring conditions of the experiment by Bagestian and Walker (2014)
volatility is lower compared to the condition with no anchor. They were also
able to use the Duffy and Unver (2006) agent-based model to closely simulate
the anchoring effect. Since no anchoring effect is modeled in our agent-based
simulation, price volatility is higher with convex contracts compared to linear
contracts.
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Initial endowment random variable X convex contract

W0 = 2000 X1 = 15 φ = 8
ω = 40 X2 = 65 δ = 0.021875

p = 0.8 K = 3000

Table 1: The parameter set chosen for the numerical experiment
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agent 1 2 3 4 5 6 7 8 9 10

γi 0 0.208 0 -1.409 0 -0.286 0.208 0 0 -0.286

Table 2: The estimated parameters of risk-aversion (factor gamma) for the
ten agents of the simulations
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linear hybrid convex

Average Price 26.29 40.63 50.21
(0.70) (4.69) (3.99)
(25.28, 27.99) (33.51, 51.01) (43.67, 58.96)

Final Price 25.24 40.25 37.88
(0.64) (13.90) (11.06)
(24.87, 27.06) (24.47, 62.43) (25.33, 62.60)

Pct. Volume 0.06 0.06 0.05
(0.016) (0.018) (0.013)
(0.03, 0.09) (0.032, 0.105) (0.025, 0.088)

Average Spread 0.20 0.63 0.57
(0.07) (0.10) (0.08)
(0.07, 0.36) (0.44, 0.83) (0.41, 0.73)

Average Volatility 2.07 11.57 9.93
(1.31) (2.66) (3.18)
(0.45, 5.30) (6.17, 16.39) (3.60, 14.91)

Equilibrium Price 25 37.49 39.47

Table 3: Statistics for the Average Price, Final Price, Volume, Bid-Ask
Spread and Volatility for 500 simulations. For each quantity we report the
mean, the standard deviation, the 2.5 and the 97.5 percentile. The first col-
umn refers to the case of all linear contract, the second to the case of 50%
of linear contracts and 50% of convex contracts, the last one to only convex
contracts. The last line reports the corresponding equilibrium prices.
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α β1 β2 R2

Relative Final Price 0.6432∗ 0.8182∗ -0.0967 0.7592
Percentage Volume 0.1045∗ 0.0699∗ -0.0128 0.3403
Relative Spread 0.0069 0.4910∗ 0.0202 0.7175
Volatility -0.0151 0.2880∗ 0.0477 0.6193

Table 4: Regressions with i) Relative Final Price, ii) Percentage Volume, iii)
Relative Spread, and iv) Volatility, respectively, as dependent variable. β1 is
the coefficient of the percentage of convex contracts. β2 is the coefficient of
the percentage of Highly Risk Averse agents (HRA). The results are based
on 100 simulations where 100 agents trade for 12 rounds. A star denotes
significance at the 95% level

24



α β1 R2

Relative Final Price 0.6154∗ 0.8813∗ 0.7469
Percentage Volume 0.1120∗ 0.0823∗ 0.3321
Relative Spread 0.0429∗ 0.4910∗ 0.6789
Volatility 0.0258∗ 0.2407∗ 0.6951

Table 5: Fully randomized test: Regressions with i) Relative Final Price,
ii) Percentage Volume, iii) Relative Spread, and iv) Volatility, respectively,
as dependent variable. β1 is the coefficient of the percentage of convex con-
tracts. The results are based on 100 simulations where 100 agents trade for
12 rounds. A star denotes significance at the 95% level
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Figure 1: The expected utility for a risk-averse agent (CRRA utility function
with γ = 2) with a linear and a convex contract as a function of the traded
quantity θ when the price is P = 50 and the other parameters are given in
Table (1).
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(a) Linear Contract

(b) Convex Contract

Figure 2: The optimal demand function θ∗(P ) for a linear (top) and a convex
(bottom) contract function and risk-averse (γ = 2 ), risk-neutral (γ = 0 ),
and risk-seeking (γ = −2 ), CRRA utility agents. The parameters used are
those of Table (1). For a clearer picture, the risk-averse demand has been
shifted down by 10 units and the risk-seeking one up by 10 units.
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(a) Prices

(b) Volumes

(c) Spreads

Figure 3: Mean values in the 12 rounds of prices P (is, t) (top), volumes
V (is, t) (middle) and spreads s(is, t) (bottom) for the three treatments over
500 simulations.

28



Figure 4: Average share holdings of the ten agents in the three treatments.
The means are computed across 500 simulations per treatment. The agents
have a CRRA utility function with exponents given by Table 2. In the hybrid
treatment the convex contracts are assigned to agents 1 to 5.
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