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Abstract

We prove suboptimality of probability matching in prediction tasks with an arbitrary (finite)

number of outcomes and repetitions. For the popular case of binary prediction tasks, we also

provide a graphical representation of the result. Finally, we relate probability matching to

impulse balance equilibrium theory and show when probability matching is consistent with its

predictions.
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1 Introduction

Probability matching is “the tendency to match choice proportions to outcome proportions in binary

prediction tasks” (Koehler and James, 2014, page 104). This phenomenon was observed in early

experiments based on variations of a common design in which subjects had to repeatedly predict

the outcome of a random event (see, e.g., Grant et al., 1951, Hake and Hyman, 1953, and Siegel

and Goldstein, 1959).1 After the initial findings, evidence of probability matching has been reported

by experimental psychologists and economists. The debate on probability matching is still lively

(for selective reviews of the literature, see Vulkan, 2000 and Koehler and James, 2014) and also

∗Corresponding author. School of European Political Economy, LUISS University, Via di Villa Emiliani, 14, 00197
Roma – Italia. Email: vlarocca@luiss.it.

†Department of Economics and Finance, Tor Vergata University of Rome, Rome – Italy. Email: luca.panaccione@

uniroma2.it.
1Classical tasks include guessing the color of a randomly selected ball or of randomly flashing light bulbs.
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considers factors like incentivized choices, feedback and training, which are effective in limiting this

phenomenon (see, e.g., Shanks et al., 2002).

This evidence is relevant since probability matching is inconsistent with rational decision making.2

In fact, when correct guesses are monetarily rewarded, subjects who prefer more money to less3

and maximize expected payoff being aware of outcome probabilities4 should always choose the

outcome with the greatest likelihood. This rather straightforward conclusion is usually supported by

numerical examples in which the expected payoff from probability matching is directly compared to

the maximal payoff5 or by a detailed verbal reasoning which leads to identifying the optimal choice.

However, to the best of our knowledge, a formal proof of the suboptimality of probability

matching in prediction tasks with an arbitrary number of outcomes and repetitions is not available

in the literature. With this note we aim at filling this gap. To this end, we provided a complete

characterization of suboptimality of probability matching in both, ex-ante and sequential prediction

tasks. As an additional original contribution, we propose a graphical analysis of this result for the

popular case of binary prediction tasks. Finally, we show that, in some instances of the prediction

task, probability matching is the guessing strategy which minimize the maximal expected foregone

payoff and we relate this result to learning direction and impulse balance theory.

2 The Ex-Ante Prediction Task

The prediction task is formulated as follows: a lottery over a finite number n > 2 of outcomes with

probability distribution p = (p1, ..., pn) is to be repeated τ > 1 times. Each lottery play constitute a

trial. Being aware of p, the decision maker chooses a possibly different outcome i ∈ {1, ..., n} for

each trial. If the chosen outcome is realized the decision maker obtains a positive prize δ, otherwise

she gets nothing. Trials begin only after the decision maker has made her choices. In this prediction

task, an array of outcome choices constitute a strategy, denoted by γ = (γ1, . . . γt, . . . γτ ) with

γt ∈ {1, . . . , n} for t = 1, . . . , τ . Given a strategy γ, the probability of the outcome chosen in the

t-th trial is pγt
, hence the expected payoff of γ is

∑τ
t=1 pγt

δ.

Given a strategy γ, let γi
t be defined as γi

t = 1 if γt = i and γi
t = 0 if γt Ó= i. The expected payoff

2See, for instance, the discussion by Hirshleifer and Riley (1992, pages 33–36).
3More generally, if the subjective evaluation of a correct guess is larger than the evaluation of an incorrect one.
4Awarness of probabilities can be the result of a learning process through repeated trials or be based on direct

information provided by the experimenters, as in Koehler and James (2010).
5See, for instance, Koehler and James (2014, page 104)
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of γ can be written as
n

∑

i=1

τ
∑

t=1

γi
tpiδ.

that is, as the sum over all outcomes i ∈ {1, ..., n} of the absolute frequency of trials in which the

decision maker chooses outcome i (i.e.,
∑τ

t=1 γi
t) times the probability of outcome i in the lottery

(i.e., pi). The relative frequency of outcome i in strategy γ is ĝi(γ) =
(
∑τ

i=1 γi
t

)

/τ . Hence the

expected payoff of γ can be rewritten as

τ
n

∑

i=1

ĝi(γ)piδ,

so that it is apparent that if two strategies, γ and γ′, are such that ĝi(γ) = ĝi(γ
′) for every

i ∈ {1, ..., n}, that is if they result in the same distribution of relative frequencies of outcome choices

across trials, then they have the same expected payoff.6 Therefore, the prediction task can be

analyzed directly via payoff-equivalent strategies.

To this end we reformulate it in terms of arrays of relative frequencies of outcome choices across

trials (g1, ..., gn). With some abuse of notation and terminology, these will be denoted by g and

referred to as a guessing strategies. The set of feasible guessing strategies is G = {(g1, ..., gn) ∈ Qn :

gi > 0 for i = 1, ..., n,
∑n

i=1 gi = 1}.7 The decision maker chooses a feasible guessing strategy g

so as to maximize τ
∑n

i=1 gipiδ. Since τ > 0, this is equivalent to maximize the expected payoff

e(g) =
∑n

i=1 gipiδ. Hence the decision maker solves

max
g∈G

e(g), (1)

whose set of solution(s), given δ, is g(p).

In this formulation of the prediction task, probability matching is denoted by gp = (gp
1 , ..., gp

n)

and it is the feasible guessing strategy such that gp
i = pi for every i ∈ {1, ..., n}. Since gp

i is by

definition a rational number, for this strategy to be well defined we assume that the probability of

each outcome is a rational number, i.e. p ∈ ∆n−1
Q = {p̂ ∈ Qn : p̂i > 0 for i = 1, ..., n,

∑n
i=1 p̂i = 1},

and that τ is a common multiple of the denominators of probabilities expressed as irreducible

fractions.8

6We are implicitly assuming that the order of guesses does not matter for the decision maker, even though
behaviorally this may not be the case.

7Qn is the set of n-tuples of rational numbers.
8From the latter assumption it follows that τ > n.
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Let M(p) be the set of maximally likely outcomes in the lottery, defined as M(p) = {j ∈

{1, ..., n} : pj = max{p1, ..., pn}} for any given p ∈ ∆n−1
Q . Observe that M(p) is non empty for

every p and 1 6 #M(p) 6 n, i.e. there is at least one (since n is finite) and at most n (when

pi = 1/n for every i ∈ {1, ..., n}) maximally likely outcomes. The following proposition provides a

complete characterization of suboptimality of probability matching:

Proposition 1. For any positive prize δ and any outcome probability distribution p ∈ ∆n−1
Q , if

g∗ ∈ g(p) then e(g∗) > e(gp) and equality holds if and only if

j /∈ M(p) implies pj = 0 (NS)

Proof. The weak suboptimality of the probability matching strategy, i.e. the fact that e(g∗) > e(gp)

whenever g∗ ∈ g(p), follows directly from gp ∈ G, i.e. from the fact that gp is a feasible guessing

strategy and therefore cannot yield an expected payoff greater than g∗. To prove that (NS) is a

necessary and sufficient condition for e(g∗) = e(gp) to hold whenever g∗ ∈ g(p), first of all observe

that g(p) = {g ∈ G : i /∈ M(p) implies gi = 0}, since no strategy can be optimal if it includes

guesses on outcomes whose probability is not maximal. Furthermore, observe that (NS) implies

that, for all i ∈ M(p), it must be true that pi = p̄, with p̄ = 1/#M(p).

To prove sufficiency, assume (NS) holds and pick g∗ ∈ g(p). In this case,

e(g∗) =
n

∑

i=1

g∗
i piδ =





∑

i∈M(p)

g∗
i piδ +

∑

i/∈M(p)

g∗
i piδ



 =
∑

i∈M(p)

g∗
i p̄δ = p̄δ,

since g∗
i = 0 for every i /∈ M(p) and

∑

i∈M(p) g∗
i = 1. Similarly,

e(gp) =
n

∑

i=1

gp
i piδ =





∑

i∈M(p)

gp
i piδ +

∑

i/∈M(p)

gp
i piδ



 =
∑

i∈M(p)

p2
i δ = p̄δ,

since pi = 0, hence gp
i = 0, for every i /∈ M(p) and

∑

i∈M(p) p2
i = #M(p)p̄2 = p̄.

To prove necessity, suppose that e(g∗) = e(gp) whenever g∗ ∈ g(p). Since gp ∈ G, it follows that

gp ∈ g(p). Therefore j /∈ M(p) implies gp
j = 0, hence pj = 0. �

Proposition 1 provides a complete characterization of the suboptimality of probability matching

in a prediction task with an arbitrary (finite) number of outcomes and trials.

When n = 2, this characterization can be illustrated by solving problem (1) graphically. To
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this end, in Figure 1 and 2 we measure g1 on the horizontal axis and g2 on the vertical one. The

downward sloping solid line represents, therefore, the set G of feasible guessing strategies. The point

(gp
1 , gp

2) lies below the 45◦ degree line in Figure 1 since gp
1 = p1 > p2 = gp

2 , and above it in Figure 2

since p1 < p2. The dashed lines represent iso-expected payoff curves, i.e. combinations of guessing

strategies such that e(g) is constant (their slopes differ across figures because of the difference in

probability ratios). Since e(g) increases as we move north-east on the diagram, the expected payoff

is maximized when g∗
1 = 1 and g∗

2 = 0 in Figure 1 and when g∗
1 = 0 and g∗

2 = 1 in Figure 2. In both

figures it is apparent that probability matching is suboptimal since the iso-expected curve through

(gp
1 , gp

2) is lower than that through (g∗
1, g∗

2).

If p1 = p2, then the slope of the indifference curves is equal to the slope of the line representing

the feasible set. In this case (not displayed in the figures), condition (NS) holds and indeed the

probability matching strategy is optimal, since every feasible guessing strategy results in the same

maximal expected payoff.

Figure 1: Outcome 1 more likely

g2

g1

45◦

1

g∗
1 = 1gp

1

gp
2

−
p1

p2

Figure 2: Outcome 2 more likely

g2

g1

45◦

g∗
2 = 1

1

gp
2

gp
1

−p1/p2

3 Randomized and Sequential Guessing

In the prediction task analyzed above the decision maker chooses a single outcome for each trial,

hence randomization within trials it not allowed. Furthermore, since the decision maker chooses all

outcomes before trials begin, (s)he cannot condition the choice to outcome realizations in previous

trials. In this section, we expand our analysis and consider two reformulations of the prediction

task which encompass these cases. By adapting the definition of guessing strategy and probability

matching strategy, we show that Proposition 1 extends to these reformulations as well.

In the first reformulation of the prediction task, the decision maker still chooses outcomes before
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any trial. However, she can randomize her choice in every trial. To illustrate one (of the many)

protocol to implement this task, suppose the experimenter fills an urn with b > 2 balls of n > 2

different colors. The decision maker, who is aware of the composition of the experimenter’s urn, is

assigned an empty urn as well as with b balls of each of the n colors. In each trial, the decision

maker has to fill the own urn with colored balls. Trials consists in randomly selecting one ball from

each of the two urns and, if the drawn balls have the same color, the decision maker wins the prize,

otherwise (s)he gets nothing.

In this task, a strategy is γ = (γ1, ..., γt..., γτ ) with γt = (γ1
t , . . . , γn

t ) ∈ ∆n−1 being the probability

distribution over outcomes that the decision maker chooses in trial t.9 The expected payoff of γ is

τ
∑

t=1

n
∑

i=1

γi
tpiδ

The average probability of choosing outcome i across all trials is (
∑τ

t=1 γi
t)/τ . Strategies

resulting in the same array of average probabilities have the same expected payoff. Therefore also

this reformulation can be analyzed via payoff-equivalent strategies, hence via a guessing strategy

g = (g1, ...gn), with gi =
∑τ

t=1 γi
t for every i = 1, ..., n. The set G of feasible guessing strategies, the

expected payoff e(g) of a guessing strategy and the probability matching strategy gp are defined as

in the previous section. In this reformulation of the prediction task, probability matching implies

that the decision maker matches average probability of outcome to actual probability.

The second formulation of the prediction task that we investigate is sequential guessing. In this

case, the decision maker can condition her guesses on the realizations of the lottery in previous

trial(s), since the information on outcome realizations is available at the beginning of every trial. In

this reformulation, a strategy consists in a probability distribution over outcomes for each possible

history of realizations across trials. Formally, rt ∈ {1, ..., n} is the outcome realized in trial t ≥ 1,

so that (r1, r2 . . . , rt) is the history of realizations up to trial t. The set of possible histories up to

trial t is Ht and its generic element is denoted by h. The set of all histories in the prediction task

is H = ∪τ−1
t=0 Ht.10 A strategy γ : H → ∆n−1 is a mapping from the set of histories into the set

probability distributions over outcomes. Given h ∈ Ht−1, γ(h) = (γ1(h), . . . , γn(h)) ∈ ∆n−1 is the

probability distribution over outcomes that the decision maker chooses in trial t.11 The expected

9∆n−1 is the ordinary n−dimensional simplex. If we impose that, in every trial, γi
t = 1 for some outcome i and

γ
j
t = 0 for all outcomes j Ó= i, then this reformulation is equivalent to the one in the previous section.

10The (empty) history at the beginning of the prediction task is denoted by h0 and we let H0 = {h0}.
11This reformulation encompasses both, unconditional strategies (γ(h) = γ(h′) for h, h′ ∈ Ht−1) and deterministic
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payoff of γ is
τ

∑

t=1

∑

h∈Ht−1

n
∑

i=1

φ(h)γi(h)piδ

in which φ(h) denotes the probability of history h ∈ Ht−1 (as observed at the beginning of trial t).

Once again, strategies resulting in the same distribution of average outcome probabilities
(
∑τ

t=1

∑

h∈Ht−1 γi(h)
)

/τ across all trials are payoff equivalent. Therefore, to analyze the problem of

the decision maker we can refer to guessing strategies that consist of average probability over outcomes:

g = (g1, . . . , gn) with gi =
∑τ

t=1

∑

h∈Ht−1 γi(h). We define the set G of feasible guessing strategies,

the expected payoff e(g) of a guessing strategy and the probability matching guessing strategy gp as

in the previous section. In this reformulation of the prediction task probability matching implies

that the decision maker matches average probability of outcome to actual probability.

It is straightforward to check that the proof of Proposition 1 extends to these reformulations of

the prediction task, hence its conclusions holds for them as well.

4 Probability matching as impulse balance guessing strategy

In the previous sections we have shown that probability matching is a (weakly) sub-optimal guessing

strategy if the decision maker aims at maximizing the expected payoff of her choices. In this section,

we show that, in some instances of the prediction task, it is an optimal strategy when a different

criterion is used to evaluate her choices.12 In particular, we show that in binary prediction tasks

and also in prediction tasks with an arbitrary (finite) number of outcomes, provided that they are

equally likely, probability matching is the guessing strategy which minimizes the maximal foregone

expected payoff.

To justify this criterion, we relate it to the impulse balance equilibrium theory. This is a

behavioral theory derived from learning direction theory and used to interpret experimental data

in repeated choice tasks.13 It is based on the ex-post rational evaluation of counter-factual, i.e.

foregone, payoffs from choices not made in the previous trial: feedback information causes upward

(due to foregone gains) and downward (due to foregone losses) impulses and equilibrium choices

balance them.

outcome choices (γi(h) = 1 and γj(h) = 0 for some i ∈ {1, ..., n}, j Ó= i and h ∈ Ht−1).
12We are grateful to Werner Güth for his suggestion to relate probability matching to impulse balance equilibrium

theory and for the discussions on its implementation.
13Both theories have been proposed by Selten and several (co-)authors. See, e.g., Selten and Stoecker (1986), Selten

and Butcha (1999), Selten et al. (2005), Ockenfels and Selten (2014) and the summary list in Selten (2004).
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This property of the equilibrium choices is embedded in the minimization of the maximal

expected foregone payoffs since the solution to this problem, in some instances of the prediction

task we consider, implies equal, hence balanced, foregone expected payoffs. Furthermore, since

probability matching is the guessing strategy which corresponds to this solution, in these cases it is

possible to interpret probability matching as an impulse balance guessing strategy.

Given an outcome probability distribution with pi > 0 for every i ∈ {1, ..., n} and a strategy

γ ∈ ∆n−1, the foregone expected payoff associated to outcome i is pi(1 − γi), since by ex-post

rationality, the optimal strategy in case outcome i occurred should have assigned probability 1 to

this outcome. Therefore, in this case the foregone payoff is 1 − γi weighted by the probability pi.
14

When the decision maker aims at the lowest maximal foregone expected payoff, (s)he chooses γ

so as to solve

min
γ∈∆n−1

max
i

{pi(1 − γi)} (2)

The main result of this section is summarized in the following:

Proposition 2. Probability matching is a solution to problem (2) when either n = 2 or n > 2 and

pi = pj for every i, j ∈ {1, ..., n}.

Proof. Assume provisionally that the constraints 0 6 γi 6 1 are not binding at the solution of

problem (2), so that it is rewritten as

min
γi

max
i

{pi(1 − γi)} s.t.
n

∑

i=1

γi = 1 (3)

Let Fi = pi(1 − γi), so that γi = 1 − (Fi/pi) and the constraint is rewritten as
∑

i Fi/pi = (n − 1).15

Let H denote the harmonic mean of the outcome probabilities: H = n
(

∑

i p−1
i

)−1
. Observe that

∑

i (H/npi) = 1. Therefore (H/np1, ..., H/npn) is a tuple of non-negative weights which adds up to

one. Using these weights, problem (3) is rewritten in terms of Fi as follows

min
Fi

max
i

{Fi} s.t.
n

∑

i=1

(

H

npi

)

Fi = H

(

n − 1

n

)

(4)

By a standard result on weighted means,16 maxi {Fi} >
∑

i (H/npi) Fi with equality when F1 =

F2 = ... = Fn. Therefore the solution to problem (4) is F ∗
i = H(n − 1)/n for every i ∈ {1, .., n}.

14We disregard the prize δ, since it does not affect problem (2).
15

∑

i
stands for

∑n

i=1
.

16See e.g. Steele (2004, chapter 8)
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Since F ∗
i = pi(1 − γ∗

i ), the solution to problem (3) is

γ∗
i = 1 −

(

H

pi

) (

n − 1

n

)

∀i ∈ {1, ..., n} (5)

and this is also the (unique) solution to problem (2) provided that 0 6 γ∗
i 6 1 for every i ∈ {1, ..., n}.

To check whether this is true or not, we consider three cases. Firstly, when n = 2 equation (5)

implies γ∗
i = pi ∈ (0, 1). Secondly, when n > 2 and pi = 1/n for every i it implies γ∗

i = 1/n = pi

for every i. Therefore, probability matching is the unique guessing strategy which minimizes the

maximum expected foregone payoff both, in the binary prediction task for any outcome probability

distribution or in the prediction task with an arbitrary number of outcomes if they are equally likely.

It remains to show that when n > 2 and outcomes are not all equally likely, probability matching

cannot be a solution to problem (3). If this is not the case, equation (5) implies

pi = 1 −

(

H

pi

) (

n − 1

n

)

∀i ∈ {1, ..., n} (6)

hence pi(1 − pi) = pk(1 − pk) for all i, k ∈ {1, ..., n} and therefore

pi



pk +
∑

j Ó=i,k

pj



 = pk



pi +
∑

j Ó=i,k

pj



 ∀i, k (7)

However, (7) holds only if all outcomes are equally likely, which is a contradiction. To conclude

the proof, we have to consider the case in which at least one of the constraints 0 ≤ γ∗
i ≤ 1 for

an outcome i is binding. In this case the result is straightforward since γ∗
i ∈ {0, 1} and therefore

γ∗
i Ó= pi ∈ (0, 1). �
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