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Abstract

Network and spatial econometric models commonly embody a so-called W matrix which de�nes
the connectivity between nodes of a network. The reason for the existence of W is that it facilitates
parsimonious parametrization of inter-nodal interaction which would otherwise be very di¢cult to
achieve from a practical modelling perspective. The problem considered in this paper is the e¤ect
of misspecifying W. The paper demonstrates the e¤ect in the context of two types of model, the
dynamic spatial autoregressive panel model and the multilevel spatial autoregressive panel model,
both of which include W as part of the model speci�cation and use W in estimation. Monte Carlo
results are presented showing the impact on bias and RMSE of misspeci�cation of W. The paper
highlights the need for careful attention to the correct structure of W in spatial econometric and
network modelling.
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1 Introduction

The W matrix is the term commonly used in network and spatial econometrics to describe a matrix
de�ning the connectivity between N entities that are located in two-dimensional space. As described
in Corrado and Fingleton (2012), one can envisage the N entities to be nodes of a network and the
quantitative values or weights assigned to the cells of W to be indicators of the existence of, and
perhaps importance of, a link between each pair of nodes. Typically W, denoted by WN below, is
of dimension N by N and in many spatial econometric applications, the N entities will be places
on the surface of the earth, for example cities, regions or countries, and connectivity between these
localities will be some function of �distance� between them. Its role is to provide a parsimonious
parametrization for interdependence between observations on a variable. As explained by LeSage
and Pace (2009), once we allow for dependence relations between a set of N entities on a single
variable, for example as represented by the N by 1 vector Y , there are potentially N2�N parameters
that de�ne individual interdependence, such as the relation between yi and yj , having excluded
dependence of an observation on itself. This leads to an over-parametrization problem, which can
be solved by imposing an a priori structure, or weights matrix W , on the interdependence relations,
thus reducing the number of parameters to be estimated from N2 �N to one. The quantity in cell
(i; j) ofWN , wij , may be a function of great circle distance, a binary indicator of distance based on
whether i and j are contiguous or not, or a much more complex measure of connectivity. Typically,
in a spatial econometric model we capture the interdependence among the entities represented by
the cells of vector Y by the N by 1 vector WNY which is commonly referred to as the spatial lag.
The i0th element

PN
j=1wijyj ofWNY is a linear combination of �neighbouring� values of Y, weighted

according to the i0th row of matrix WN so that WNY is typically one of a number of explanatory
variables in a spatial econometric model which is associated with a single parameter, say �. Hence,
by imposing structure on interdependence viaWN , only this single parameter, rather than N

2 �N ,
is assumed to be unknown. Given � 6= 0, the presence ofWNY in a spatial econometric model is a
signal that mutual interdependence among the elements of Y is important and the presence of the
spatial lag is required to avoid misspeci�cation and biased parameter estimates.
Increasingly there is a growing awareness of the importance of connectivity in modelling which extends
beyond its roots in spatial econometrics and economic geography. Nodes need not necessarily be
places and there is a burgeoning wider literature that provides additional support to the concept of
network interaction. Network interaction has become an important issue in economic research, for
example, connections via networks enable the bene�cial exchange of goods, information and services.
The manifestations of connections are spillovers. Spillovers have diverse origins, and therefore one
would anticipate that the way to model them takes various forms. For instance, they may be the
outcome of network economics, commuting, migration, displaced demand and supply e¤ects in the
housing market, localized information �ows through social networks, strategic interaction between
policy makers, tax competition between local authorities, or even simply arbitrary boundaries causing
spatial autocorrelation. Some of these networks are dynamic and endogenous, but modelling these is
beyond the scope of the present paper. Here we restrict attention to the case in which W describes
a �xed, exogenously determined interaction structure. Our illustrations take a subset of the many
models to show some of the implications of models incorporating network interdependence.
While the cell values of W are assumed to be known, in reality often they are not known and a
model is estimated using a W matrix that is inaccurate. This leads us to the principal problem
under discussion in this paper, what are the implications for model outcomes of misspecifying the
W matrix in the model structure? The paper focuses on two speci�c types of model embodying
the W matrix, �rstly a dynamic spatial panel model and secondly a multilevel model with spatial
e¤ects. In section 2 of the paper we outline the speci�cation of the dynamic spatial panel model.
Section 3 outlines the estimation method. Section 4 gives Monte Carlo simulation results in which
we discuss the implications for estimation and interpretation of model estimates as W departs from
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the true W used in the data generating process (DGP). Section 5 gives speci�cation details of the
second model we consider, which is a multilevel model with spatial dependence. Section 6 describes
estimation techniques for this model. Section 7 focuses on interpretation of the multilevel model
outcomes under W matrices that are di¤erent from that used in the data generating process of a
Monte Carlo simulation. In section 8 we brie�y discuss how the true W might be approximated and
the problems this entails. Section 9 concludes.

2 The Dynamic Spatial Autoregressive Panel Model

The set-up for spatial panel models is the existence of separate time-series, one for each of N inter-
acting entities (such as cities, regions, countries) with distinct locations. We refer to the N entities in
the panel context generally as individuals. The model we discuss is dynamic, so that the individual
i�s observed value of the dependent variable at time t depends in part on the value at t� 1. Thus in
the model speci�cation

yt = 
yt�1 + �1WNyt + xt� + "t (1)

In which yt = (y1t; :::; yNt) denotes the N by 1 vector of observations at time t of a regressand, xt
is an N by k matrix of regressors and "t is the N by 1 vector of errors. Also WN is the N by
N connectivity matrix, and WNyt is an N by 1 vector thus giving a spatial autoregressive process
involving the spatial lag of yt. Also 
 and �1are scalar temporal lag and spatial lag parameters
respectively and � is a k by 1 vector of parameters relating to the k regressors. Additionally the
model includes a spatial autoregressive error process is given by

"t = �2MN"t + ut
ut = �+ �t

(2)

in which �2 is a scalar parameter, and MN is a connectivity matrix speci�c to the errors. For
simplicity of exposition we assume that MN = WN . Regarding the two components of ut, � is
an N by 1 vector of individual-speci�c (node-speci�c) time invariant e¤ects and �t is a remainder
term. These error components capture unobservable variables and are treated here as random e¤ects,
so that �i � iid(0; �2�) , �it � iid(0; �2�) and cov(�i; �it) = 0 hence �i and �it are independent of
themselves and each other. The individual-speci�c component � imparts time dependency to the
error process and accounts for spatially autocorrelated inter-node heterogeneity.

3 Estimation

Baltagi et al (2013) give an estimation method for this model which re�ects the presence of the
spatial lagWNyt. Here we provide a brief summary. The starting point for estimation is approach
of Arellano and Bond (1991) for the dynamic panel model which is applied to the di¤erence equation
for the dynamic spatial panel model, which is

�yt = 
�yt�1 + �1WN�yt +�xt� +��t (3)

Following Anderson and Hsiao (1981, 1982) and Arellano and Bond(1991), by di¤erencing a dynamic
model one eliminates the unobserved individual e¤ects �i, which are correlated with the time-lagged
dependent variable, and this leads to orthogonality conditions and hence valid instruments, which
are levels of the endogenous and explanatory variables which are uncorrelated with the di¤erenced
errors, assuming no serial correlation in the errors. Baltagi et al (2013) (see also Bouayad-Agha and
Védrine, 2010) add to the orthogonality conditions of Arellano and Bond (1991) to take account of
the presence of the endogenous variableWNyt, so that, assuming the variables xt are exogenous, the
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orthogonality conditions are

E(yil��it) = 0 8i; l = 1; 2; :::; t� 2; t = 3; 4; :::; T
E(xk;im��it) = 0 8i; k m = 1; 2; :::; T ; t = 3; 4; :::; T
E(
P
i6=j wijyjl��it) = 0 8i; l = 1; 2; :::; t� 2; t = 3; 4; :::; T

E(
P
i6=j wijxk;jm��it) = 0 8i; k m = 1; 2; :::; T ; t = 3; 4; :::; T

(4)

Assuming exogenous x, the assumption is that the regressors are uncorrelated with all past, present
and future �. Therefore we can use all lags of the xs andWNxs as instruments for every t. Making a
weaker assumption that the xt are predetermined would entail one deeper lag to ensure orthogonality
and assuming xt comprises endogenous variables means that the lag has to be two deep as in the
case of endogenous yt, as explained by Bond (2002). In these cases the admissible set of instruments
changes with t, as t increases more lags become orthogonal and can be included in the instrument
set. In this example we impose exogeneity in the DGP, but the signi�cant point here is that what is
assumed forWN a¤ects the instruments, di¤erentWN lead to di¤erent instruments.

Following Kapoor et al(2007) and Kelejian and Prucha (1998), some conditions need to be imposed
on WN to give consistent estimation. WN should be uniformly bounded in absolute value, which
means that a constant c exists such that

max1�j�N
PN
h=1 jwjhj � c � 1

max1�h�N
PN
h=1 jwjhj � c � 1

(5)

And this should hold for all N , so conceptually as N increases the bound c still holds.
Having obtained consistent parameter estimates using appropriate instruments, the next step in the
estimation process involves estimation of the parameters of the error process, �2; �

2
� and subsequently

�2�, which also depends onMN =WN . The method adopted follows the GM approach of Kapoor et
al(2007).
To summarise, following Baltagi et al (2013), there are four steps in the estimation process.
In step 1, we �rst eliminate, by �rst di¤erencing, the individual e¤ects. Then on the basis of the
di¤erenced data we use an IV or GMM estimator to obtain consistent estimates of 
; �1and � .
In step 2, resulting consistent IV or GMM residuals are used to obtain consistent GM estimates
of �2; �

2
� and �

2
1 = T�2� + �

2
� hence �

2
�. This is achieved by solving sample moments involving

MN =WN using nonlinear least squares. We provide some detail of this to highlight the role played
by MN =WN .
For the GMM estimation at step 2, following Kapoor et al (2007),

��0 � � = 0 (6)

and
~��

0
� ~� = 0 (7)

where � and ~� are 3 by 4 matrices, � and ~� are 3 by 1 vectors and � =
�
�2 �22 �2� �21

�

is a vector of parameters. Using the estimated disturbances "̂ , one obtains sample counterparts g
and ~g of vectors � and ~� , and sample counterparts G and ~G of matrices � and ~�. Thus, given
Q0 = (IT �

JT

T
)
 IN and Q1 =

JT

T

 IN in which JT is a T � T matrix of 1s, IT is a T � T diagonal

matrix , IN is a N� N diagonal matrix,

G =

2
6664

2
N(T�1) "̂

0Q0"̂�1
�1

N(T�1) "̂
0
�1Q0"̂�1 1 0

2
N(T�1) "̂

0
�2Q0"̂�1

�1
N(T�1) "̂

0
�2Q0"̂�2

1
N
t1 0

1
N(T�1)("̂

0Q0"̂�2 + "̂
0
�1Q0"̂�1)

�1
N(T�1) "̂

0
�1Q0"̂�2 0 0

3
7775 (8)
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g =

2
64

1
N(T�1) "̂

0Q0"̂
1

N(T�1) "̂
0
�1Q0"̂�1

1
N(T�1) "̂

0Q0"̂�1

3
75 (9)

G
�
�2 �22 �2� �21

�0
� g = �( �2 �2� �21) (10)

~G =

2
664

2
N
"̂0Q1"̂�1

�1
N
"̂0�1Q1"̂�1 0 1

2
N
"̂0�2Q1"̂�1

�1
N
"̂0�2Q1"̂�2 0 1

N
t1

1
N
("̂0Q1"̂�2 + "̂

0
�1Q1Q1"̂�1)

�1
N
"̂0�1Q1"̂�2 0 0

3
775 (11)

~g =

2
4

1
N
"̂0Q1"̂

1
N
"̂0�1Q1"̂�1

1
N
"̂0Q1"̂�1

3
5 (12)

~G
�
�2 �22 �2� �21

�0
� ~g = ~�( �2 �2� �21) (13)

Here we see the role played by the error connectivity matrix MN =WN in that t1 = tr(W
0
NWN ),

"̂�1 = (IT 
WN )"̂ and "̂�2 = (IT 
WN )"̂�1.
Given that �( �2 �2� �21) ,

~�( �2 �2� �21) are vectors of residuals, the nonlinear least squares
estimators are given by

(�̂2; �̂
2
� ; �̂

2
1) = argminf�( �2 �2� �21)

0 �( �2 �2� �21)+
~�( �2 �2� �21)

0 ~�( �2 �2� �21) g
(14)

Estimation is via unconstrained non-linear least squares estimation using a modi�ed Newton-Raphson
method allowing minimisation based on numerical di¤erences.
In general the variances of �( �2 �2� �21)

0 �( �2 �2� �21) and
~�( �2 �2� �21)

0 ~�( �2 �2� �21)
di¤er, but for simplicity we have not introduced di¤erential weighting. Kapoor et al (2007) note that
giving equal weight does give consistent estimates.
Step 3 uses estimated to give preliminary one-step consistent spatial GMM estimates thus

�̂1 = (�~x
0�ÂNZ

�0�~x)�1�~x0�ÂNZ
�0�y (15)

in whichWN again has a role since �~x = (�y�1; (IT�2 
WN )�y;�x), �1 = (
; �1; �
0) and ÂN =h

Z�
0
(IT�2 
 ĤN )(G
 IN )(IT�2 
 Ĥ

0
N )Z

�
i�1

with ĤN = (IN � �̂2WN )
�1. In this Z� is the matrix

of instruments and G is a matrix of constants used to obtain the weights matrix of moments AN as
detailed in Baltagi et al(2013).
In step 4, the �nal two step-spatial GMM estimates are given by replacing ÂN by V̂N hence

�̂2 = (�~x
0�V̂NZ

�0�~x)�1�~x0�V̂NZ
�0�y (16)

In which V̂N =
h
Z�

0
(IT�2 
 ĤN )(�~�)(�~�)

0(IT�2 
 Ĥ
0
N )Z

�
i�1

where �~� are di¤erenced residuals

obtain from step 3.

4 Monte Carlo Simulation

The aim of these Monte Carlo simulation is to demonstrate the e¤ect of misspecifying WN . This
is done by obtaining data by a DGP based on a true WN and then estimating the model using a
misspeci�ed connectivity matrix ~WN . We take di¤erent approaches to W matrix speci�cation. First,
to facilitate simulation, the spatial matrix "j ahead j behind" given by Kelejian and Prucha (1999)
is adopted, where WN is based on j = 2; 5 and 10. The result is N by N matrices with zeros on
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the main diagonal and with non-zero weights equal to 0.25, 0.1 and .05 summing to 1 both across
rows and down columns. Data yt are generated via yt = 
yt�1 + �1WNyt + xt� + "t, t = 1; :::; T ,
commencing with y0 = (IN � �1WN )

�1(x0� + "0).
Following Baltagi et al (2013),

xit = �xit�1 + �t (17)

with xi0 = 0, �t � N(0; �2�). To operationalise the simulations, we utilise the following parameter

values � = 0:6; �2� = 5:0, 
 = 0:2; � = 1:0 and �1 = 0:7; N = 100 at T = 7.
For the error process

"t = �2MN"t + ut; t = 0; :::; T
ut = �+ �t

(18)

with �2 = 0:4, MN =WN , �i � N(0; �
2
�), �it � N(0; �

2
�), �

2
� = 0:8 and �

2
� = 0:2.

Estimation is based on ~WN generated assuming j = 2; 5 and 10, so given j, ~WN , with equal weights
0:25; 0:1 and :05, is substituted forWN in Section 3. In the simulations, so as to reduce the importance
of the initial values, we ignore the outcome of the �rst 10 iterations.
Observe that there are some conditions attached to valid parameter estimates, as given by Baltagi
et al (2013). For this model to be dynamically stable and stationary, the parameter space requires
(IN � �1WN ) to be non-singular, where IN is the (N x N) identity matrix. Non-singularity occurs
when �1 6= 1=ri for all ri where ri denotes an eigenvalue ofWN and so is guaranteed when 1=rmin <
�1 < 1=rmax where rminis the most negative purely real characteristic root ofWN . Thus we require
�1 to fall within these bounds. It is convenient to observe that with row normalisation ofWN , as in
the case here since rows sum to 1.0, rmax = 1. Also dynamic stability and stationarity occurs when
j
j < 1 � �1rmax and �1 > 0, and j
j < 1 � �1rmin when �1 < 0 (though here we do not exclude
complex eigenvalues) and j
j < 1. In addition, the conditions imposed on �2 mirror those for �1 but
with respect toMN rather thanWN , although hereMN =WN . Note that for j = 10, rmax = 1 and
rmin = �0:2782, for j = 5, rmax = 1 and rmin = �0:3457, and for j = 2 rmax = 1and rmin = �0:5625.
Hence the structure ofWN a¤ects the conditions de�ning valid parameter estimates.
The outcomes described below are the result of 1000 Monte Carlo samples, where the mean is the
mean of the 1000 parameter estimates taken over 1000 replications, the bias is the di¤erence between
the estimate and the true value averaged over 1000 replications, and RMSE is the square root of the
mean of 1000 squared biases.
The outcomes summarised in Table 1 show clearly that when the true WN of the DGP is used
in estimation, so that ~WN = WN , then the estimates are comparatively unbiased with relatively
small RMSEs. However when ~WN 6= WN bias and RMSE increase, and the means in some cases
violate the stability and stationarity conditions, suggesting the same for individual simulations. The
rami�cations of this are particularly evident when ones examines the �true� derivatives given in Tables
4, 5 and 6. As pointed out by LeSage and Pace (2009), Debarsy et al (2012) and Elhorst (2013),
unlike standard regression, the derivatives @y

@xk
6= �k. This is as a consequence of feedback e¤ects

caused by the lagged endogenous variable and leads to the matrices of derivatives given in equations
(5) and (6). Equation (5) relates to the instantaneous e¤ect at time t, hence the total short-run e¤ect
is the e¤ect on yt at time t of a one unit change in xt in each of N nodes. The total long-run e¤ect is
the e¤ect on yT at time T (T very large) of a one unit change in xt in each of N nodes which remains
through all times from t to T . LeSage and Pace (2009) suggest summarising these by using the mean
of the main diagonal of (5) and (6) to represent mean direct e¤ects, and the means of the o¤-diagonal
cells to represent indirect e¤ects. Total e¤ects are the sum of mean direct and mean indirect e¤ects.
We calculate these using the simulation means given in Tables 1. The results in Table 2 show that
when ~WN =WN there is a large amount of spillover as re�ected by the size of the indirect e¤ects
especially in the long-run. Thus in the long-run, the total e¤ect of a unit increase is maintained
through time in each of the N cells of xt; t = 1; :::; T ; T !1 is an equilibrium increment in the level
of yT of about 11, depending on j hence WN . In the cases in which ~WN 6=WN , especially when
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the means violate stability and stationarity conditions, somewhat �deviant� outcomes occur which are
very dissimilar to the �true� values obtained when the estimates are based on the true WN of the
DGP. 2

64

@y1
@x1k

: @y1
@xNk

: : :
@yN
@x1k

: @yN
@xNk

3
75
t

= (IN � �1WN )
�1

2
4
�k : 0
: �k :
0 : �k

3
5 (19)

2
64

@y1
@x1k

: @y1
@xNk

: : :
@yN
@x1k

: @yN
@xNk

3
75 = ((1� 
)IN � �1WN )

�1

2
4
�k : 0
: �k :
0 : �k

3
5 (20)

The second approach to W matrix generation is to apply a random process, so that each of N = 100
nodes connects at random to other nodes. We assume that were the network to extend so that
N > 100 additional nodes would be isolated and unconnected to the network so that WN would
be uniformly bounded in absolute value. Figures 1 and 2 illustrate two alternative networks that
provide the basis for comparison of misspeci�cation e¤ects. We refer to Figure 1 as a dense network,
and Figure 2 as a sparse network. On the sparse network there are 409 inter-nodal connections with
a network density equal to 0.0411 and on the dense network there are 618 with a network density
equal to 0.062. The sparsity of the networks is conditioned somewhat by a wish to otherwise avoid
isolated nodes, so in both networks each node has at least one connection to another node. As with
the j-ahead and j-behind networks, the main diagonal comprises zeros and we normalise the initial
matrix of 1s and 0s so that the resulting matrices WN and ~WN have rows which sum to 1, so
each row has the same non-zero cell values summing to 1, with values determined by the number of
connections for each row (node). Tables 3 again illustrates the e¤ect of misspecifying the true matrix
WN so that ~WN 6=WN , summarising the outcomes from 1000 Monte Carlo samples. Using the true
matrix, so that ~WN =WN , generally produces relatively unbiased estimates and small RMEs. Note
that for the dense matrix, rmax = 1 re�ecting row normalisation, but many of the characteristic roots
are complex numbers. Of the real characteristic roots, and rmin = �0:3746. Likewise for the sparse
matrix, rmax = 1 and the most negative real characteristic root is rmin = �0:4721. Table 4 shows
that in terms of short and long-run, direct, indirect and total e¤ects, again using the means from
the Monte Carlo simulations, the derivatives are quite similar if we assume the trueWN , regardless
of the density. However wrongly assuming a dense matrix in particular makes the total long-run
e¤ect much larger than the �true� derivative, and wrongly assuming a sparse matrix makes the total
long-run e¤ect much smaller than the �true� derivative.

5 The Multilevel Spatial Autoregressive Panel Model

So far we have discussed the implications of misspecifying the matrixWN in the context of Dynamic
Panel SAR models. However, there is also a growing interest in determining how misspecifying
WN a¤ects the observed individual outcome when variables are organized in a nested hierarchy, as
in Multilevel SAR Panel models, which are becoming increasingly popular across the range of the
social sciences.2 While network e¤ects are invariably ignored, we see many applications of multilevel
modelling in educational research where there exist a number of well de�ned groups organized within
a hierarchical structure, such as class within schools, leading to the analysis of e¤ects on individual

1The density of a network is de�ned as the proportion of actually observed ties among the potentially observable
ones. In a directed, binary network with actors there could be N(N�1) ties hence the density is de�ned as D(N�1)=N
where D is the number of ties.

2Over the past decade there has been a development of methods which have enabled researchers to model hierarchical
data. Examples of these methods include multilevel models (see, for example, Goldstein (1998), random coe¢cient
models (Longford, 1993) and hierarchical multilevel models proposed by Goldstein (1986) based on iterative generalized
least squares (IGLS).
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pupil behaviour coming from di¤erent hierarchical levels. In geographical studies, we can often
envisage a hierarchy of e¤ects at the level of cities, regions containing cities, and countries containing
regions. Failure to recognize these e¤ects emanating from di¤erent hierarchical levels can lead to an
incorrect interpretation of causality. However, while accounting for multilevel e¤ects goes some way to
providing proper inferential analysis, nevertheless this will be �awed if individuals are also connected
via a network. This section combines multilevel random e¤ects and simultaneous interactions between
individuals caused by their interconnection in a network and examines the e¤ects of misspecifying
the matrixWN in this setting.

Multilevel models with group e¤ects are generally de�ned as economic environments where the
payo¤ function of a given agent takes as direct arguments the choice of other agents (Brock and
Durlauf, 2001). A typical example is the emergence of social networks where it is often observed that
people belonging to the same group tend to behave similarly (Manski, 2000) and the propensity that
a person behaves in a certain way varies positively with the dominant behaviour in the group (Bern-
heim, 1994; Kandori, 1992).3 As an example, consider students within classrooms, with students�
scores yij dependent on individual student attributes, xij . In addition other unmeasured causes of
individual score variation are represented by random group (classroom) e¤ects �j and by individual
random e¤ects, �ij ; capturing individual latent traits. With �1 6= 0 scores may also be endogenously
determined so that a higher score level achieved by one student spills over (viaWNyt) to other stu-
dents in the class. The problem in linear multilevel models is the identi�cation of the parameters in
the presence of what Manski (2000) calls re�ection problems insofar individual behaviour is a¤ected
by the behaviour of the group (s)he belongs to. If the groups are small and the interactions are
con�ned within each group the identi�cation of the endogenous group e¤ect, �1, can be challenging in
particular with cross-sectional data. As stressed by Brock and Durlauf (2001) panels allow, instead,
for intertemporal interactions and for a richer notion of belief formation which ameliorates identi�ca-
tion of the coe¢cients in the structural model.4 In addition a more general network structure allows
for spillovers both within and between groups which further facilitates identi�cation.

We now examine the particular case of a two-level hierarchical network model where the inter-
individual network interactions spill over across group boundaries. Our model again commences with
a matrix WN which maps the connections between N individuals in a network. We take account
of the existence of groups of individuals because of the existence of levels by the following notation.
WN is an N by N matrix of connectivity, with cells values 1 and 0 according to whether a pair of
individuals is connected (more generally, we can assign values other than 1 and 0 to allow for the
strength of the connection between pairs of individuals). Assume individuals are also nested into G
groups within a dense and a sparse network structure as shown in Figures 3 and 4, so each group
has several individuals within it and spillovers spread across groups. The number of links of each
individual varies in the two network structures according to whether it is sparse or dense, nonetheless
we assume that each node has at least one connection. We represent the existence of both within and
between group e¤ects by writing the matrixWN as:

WN =

2
664

W11 ::: W1q ::: W1J

W21 ::: W2q ::: W2J

::: ::: ::: ::: :::
WJ1 WJq WJJ

3
775 (21)

Given group p and group q the generic elementWpq; p = 1; :::; J ; q = 1; :::; J;is an Np by Nq matrix
de�ning the interconnectivity between individuals in group p and those in group q: The matrix

3Other in�uences are the so called peer in�uence e¤ects which have been extensively examined both in education
(Bénabou (1993)), in the psychology literature (Brown (1990) and Brown, Clasen, and Eicher (1986)) and in the
occurrence of social pathologies (Bauman and Fisher (1986); Krosnick and Judd (1982); Jones (1994)).

4Of course, identi�cation only becomes a problem in linear-in-means models, and any nonlinearity, for instance as in
an expanded spatial Durbin model (see Gibbons and Overman, 2010), automatically solves the problem.
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WN thus de�nes how individuals are connected to other individuals, and these could be in the same
group, or in di¤erent groups. In the absence of consideration of network e¤ects, much of the multilevel
literature assumes that inter-individual interaction is restricted to within group boundaries which is
the main cause of lack of identi�cation of the endogenous e¤ect. Thus, from a spatial perspective
it is assumed, somewhat di¤erently from conventional spatial econometrics involving autoregressive
processes, that inter-individual interactions are restricted spatially.

A Multilevel SAR Panel model can be represented as:

yij;t = �1

JX

j=1

NjX

i=1

Wij;ghygh;t + xij;t� + eij;t (22)

In the above, we assume a hierarchical structure with J groups (j = 1; :::; J): Nested within group j
there are Nj individuals (i = 1; :::; Nj). And for each individual there are T observations (t = 1; :::; T ).
Hence, the response yij;t partly depends on the endogenous spatial lag with typical element of the
weights matrix W denoted by Wij;gh = Wk;l(k = ij; l = gh) where ij denotes individual i within

group j: Thus k; l = 1; :::; Nj with N =
PJ
j=1Nj andWN is the N by N network matrix.

The hierarchical random e¤ects operate via the errors. Accordingly, the error components for N
individuals distributed amongst G groups are considered to be:

eij;t = �j + �ij + �ij;t (23)

in which �j is the unobservable group speci�c e¤ect which is constant over time, and assumed to be
i.i.d. (0; �2�); �ij is the time invariant unobservable individual e¤ect distributed as i.i.d. (0; �

2
�); and

�ij;t is the remainder disturbance distributed as i.i.d. (0; �
2
�): Each of �j ; �ij and �ij;t are independent

of each other and also internally independent.
We can see how the identi�cation in presence of endogeneity can pose serious challenges in this

setting by considering the following additional regression:

bywij;t =
1

1� �1

�
�0 + x

w
ij;t�1

�
where bywij;t =

JX

j=1

NjX

i=1

Wij;ghygh;t and xwij;t =

JX

j=1

NjX

i=1

Wij;ghxgh;t

(24)
which is derived directly taking the spatial average of (22). We note that the set of regressors
(1;Y wij;t;xij;t) in the structural model (22) requires the estimation of (2 + k) parameters. While in the

reduced form implied by (22) and by (24) the set of regressors5 (1;xij;t;x
w
ij;t) allows one to identify

(1 + 2k) parameters. Assuming k = 1 all parameters in the structural equation (22) are therefore
just exactly identi�ed.

5.1 Identi�cation and Endogeneity in SAR Multilevel Panel Data

The main assumption behind the identi�cation of the endogenous e¤ect is that there no correlation
between the error terms at the individual and group levels and the regressors. This, of course, may be
a limiting assumption. For example, students or school unobservable e¤ects may be correlated with
some of the observable characteristics at the school of individual level. To account for this potential
correlation we consider the following extended model:

yij;t = �0 + �1y
w
ij;t + xij;t� + eij;t (25)

eij;t = e�j + e�ji + �ij;t
5 If we replace the instrument (24) in (22), we obtain the following reduced form Yij;t = �0 + xij;t� +

�
1

1��
1

x
w
ij;t� +

�j + �ij + �ijt with a set of regressors given by (1;xij;t;x
w
ij;t):
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where eij;t is an error containing both individual e¤ects, e�j , group e¤ects, e�ij , and a remaining
disturbance term, �ij;t, which is iid across i, j and t.

We now extend Mundlak�s (1978) approach to a multilevel setting. According to Mundlak (see
also Debarsy, 2012) the random e¤ect speci�cation ignores the possible correlation between individual
e¤ects and regressors ��x 6= 0 and ��x 6= 0 (see also Ebbes et al, 2004). By controlling for this
correlation in an auxiliary regression for e�j and e�ij the assumption of independence between the
random e¤ects and the controls can be restored. In fact, as e�j and e�ij are time invariant, they should
only be correlated with the time-invariant part of the explanatory variables:

e�j = xij�3 + �j (26)

e�ij = xj�4 + �ij

where xij =

TX

t=1

xij;t denotes the average over time of x for the unit i, xj =

TX

t=1

xj;t denotes the

average over time for group j and �j � iid(0; ��) and �ij � iid(0; ��). By substituting (26) in (25):

yij;t = �0 + �1y
w
ij;t + xij;t� + xij�3 + xj�4 + �j + �ij + �ijt (27)

We can see how the identi�cation problem is relaxed in this setting by considering the following
instrumental regression for ywij;t which is derived by taking the spatial average of (27):

Eywij;t =
1

1� �1

�
�0 + x

w
ij;t�1 + x

w
ij�3 + x

w
j �4

�
(28)

where xwij =
TX

t=1

xwij;t denotes the average over time of the spatial lag for the individual e¤ect and

xwj =
TX

t=1

xwj;t is the average over time of the spatial lag for the group e¤ect. The model avoids the

linear dependence between ywj;t, x
w
ij;t since we also have in the instrumental equation for y

w
ij;t the

average over time of the spatially lagged individual and group e¤ects, xwij and x
w
j . This implies that

ywij;t depends on the entire history of the spatial interactions embedded in x
w
ij and x

w
j resolving the

contemporaneous correlation with the same variables. If we replace (28) in (27), we obtain:

yij;t = �0 + xij;t� + xij�3 + xj�4 +
�1

1� �1

�
xwij;t� + x

w
ij�3 + x

w
j �4

�
+ �j + �ij + �ijt (29)

We can state the following results for the identi�cation of the social interaction e¤ects in a panel
data setting:

� The set of regressors (1;ywij;t;xij;t;xij ;xj) in the structural equation (27) requires the estimation
of (2 + 3r) parameters.

� In the reduced form (29) the set regressors (1;xij;t;x
w
ij;t;x

w
ij ;x

w
j ;xij ;vj) allows to identify

(1 + 6r) parameters. The �ve parameters in the structural equation (25) are now over-identi�ed
and we can recover �1.

Hence, by augmenting the random e¤ects speci�cation with variables capturing the correlation
between (time-varying) regressors and individual and group e¤ects we are able to e¢ciently estimate
all the parameters in the structural model and identify the endogenous e¤ects. There are several
advantages of the proposed method. First, in the presence of network interconnectivity we can
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account for cross-group behaviour and achieve identi�cation of the endogenous social interaction
e¤ects using the additional information stemming from cross-group spillovers. Second, the model
avoids linear dependence between ywij;t, and x

w
ij;t which may be not provide su¢cient information for

the identi�cation of the endogenous spatial e¤ects (this would be an exactly identi�ed model as shown
in the section above). Now the equation for the spatial endogenous e¤ect, ywij;t; is linearly dependent
also on the individual average and on the group average over time of the spatial lag of the x variables,
xwij and x

w
j , which are time invariant and so are correlated with the (time invariant) individual and

group e¤ects. Hence, by introducing the two additional instruments xwij and x
w
j one can also remove

any residual correlation between the group and individual e¤ects �j ; �ij and the regressors (which is
the other source of endogeneity in the model) while continuing to use a random e¤ect speci�cation.

However, the identi�cation process rests on the proper speci�cation of the network matrix WN

and any misspeci�cation, as we will see in the simulations below, will translate into a bias in the
estimation of the endogenous e¤ect �1: Again, the signi�cant point here, as in the dynamic panel
data estimation, is that what is assumed forWN a¤ects the internal instruments, and di¤erentWN

lead to di¤erent internal instruments which a¤ect the individual outcome.

6 IGLS Estimation

The univariate model (22) written in matrix notation is:

yt = �1WNyt + xt� + et (30)

in which yt is of dimension (N x 1), xt is an (N x k) matrix of explanatory variables and et is the
error term of dimension (N x 1) comprising nested error components, with the su¢x t = 1; :::; T
denoting time. Also �1 is a scalar and � is a (k x 1) vector of parameters to be estimated. Stacking
over time, the model is

y = �1(IT 
WN )y + x� + e (31)

y = B�1(x� + e)

in which B = IT 
 (IMi
� �1WN ): The consequence of this is that (IT 
WN )y is not uncorrelated

with e, since E [(IT 
WN )ye
T ] = E [(IT 
WN )B

�1(X�+ e)eT ] = (IT 
WN )B
�1

 6= 0. The OLS

estimator is therefore not consistent.
The hierarchical two-stage method for estimating the �xed and random e¤ects in (30) originally

proposed by Goldstein (1986),6 is based upon an Iterative Least Squares (IGLS) method that results
in consistent and asymptotically e¢cient estimates of �. We �rst rewrite (30) in compact form as:

y = X� + �ee (32)

where X = [(IT 
WN )y x] ; � = [�1 �] and �e is the design matrix of the random e¤ects that will
be used in the estimation to derive the estimates for �2�, b�2� and b�2v:

First one obtains starting values for �; e� by performing OLS in a standard single level system
assuming the variance at higher level of the model to be zero. Conditioned upon e�; we form the
vector of residuals which we use to construct an initial estimate, V; the covariance matrix for the
response variable y: Then one iterates the following procedure �rst estimating b� in a GLS regression
as:

b� = (XTV�1X)�1
�
XTV�1y

�
(33)

6The method is currently implemented in the software RunMLwiN.
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and again calculating residuals br = y�Xb�. We vectorize the residual covariance matrix by stacking
the columns one on top of another into a vector, i.e. R� = vec(br brT ) regressing it on a design matrix
so that the estimated vector of regression coe¢cients b�e comprises the initial estimates of b�2�, b�2� and
b�2v. Hence, we estimate the random component variances as:

b�e = (��T
e

V��1��e)
�1
�
��T
e

V��1R�
�

(34)

where V� = 2 (V 
V) is the covariance matrix of R� and V = E(br brT ) is the covariance matrix of br
while ��

e

is the design matrix of the random e¤ects. Given V� new coe¢cients b� are estimated once
again. This procedure is repeated until some convergence criteria are met. Given the consistency
of the starting values, b�GLS , since at convergence b�IGLS = b�GLS ; the estimator in (33) provides a
consistent (maximum likelihood under Normality) estimator of �:We also obtain consistent estimates
of the �xed e¤ects standard errors using:

se(b�) = (XTV��1X)�1 (35)

Given that the IGLS method used in the context of random multilevel modelling is equivalent to
a maximum likelihood method under multivariate normality this in turn may lead to biased estimates
(see Rice et al, 1998). To produce unbiased estimates we use a Restricted Iterative Generalized Least
Squares (RIGLS) method which, after the convergence is achieved, turns out to be equivalent to a
Restricted Maximum Likelihood Estimate (REML). One advantage of the latter method is that, in
contrast to IGLS, estimates of the variance components take into account the loss of the degrees of
freedom resulting from the estimation of the regression parameters. Hence, while the IGLS estimates
for the variance components have a downward bias, the RIGLS estimates don�t.

6.1 Multivariate IGLS

We also consider a simultaneous estimation of yt andWNyt were we allow for a correlation between
the error terms at the individual and group levels and the regressors. This is done via a simultaneous
estimation of equations (27) and (28) which in compact form read as:

y = �1(IT 
WN )y + x� + JT ex�2+JGT ex�3+ e1 (36)

(IT 
WN )y = (IT 
WN )x
1 + JT (IT
WN )ex
2 + JGT (IT
WN )ex
3 + e2

where JT= JT
diag(INj ); JT =
�T �

0

T

T
is the operator computing averages of observations over time

with �T denoting a T -dimensional vector of ones and JGT = JT 
diag(JNj ) is the operator computing

averages over groups and over time in which JNj =
�Nj

�

0

Nj

Nj
. T is the number of time periods and there

are J groups each containing Nj units so that the total number of observations is
PJ
j=1Nj = N . We

denote with ex the set of controls excluding the constant term.
The equation for y, which normally would simply comprise the endogenous variable (IT
W)y

and the exogenous regressors x is thus extended to include, in parallel with Mundlak (1978), the
individual average and the group average over time of the x variables, JT ex and JGTex. The auxiliary
equation for WNyt, which would normally comprise only (IT
W)eX, also includes the individual
average and the group average over time of the spatial lag of the x variables, JT (IT
W)ex and
JGT (IT
W)ex. These additional variables are assumed to be linearly related to the unobservable
random e¤ects and required to produce consistent estimates.

System (36) can be written in compact form as:

y1 = X1�1 + �e1e1

y2 = X2�2 + �e2e2 (37)

12



where y1 = y, �1 = [� �2 �3] X1 = [X JT ex JGT ex], y2 = (IT 
WN )y, �2 = [
1 
2 
3] and X2 =
[(IT 
WN )x JT (IT
WN )ex JGT (IT
WN )ex]. The estimation of �1,�2, �e1 and �e2 is also done
via IGLS. Where the measurements have a Normal distribution IGLS provides maximum likelihood
estimates.

7 Monte Carlo Simulations

The aim of these Monte Carlo simulations is to demonstrate the e¤ect of misspecifyingWN and how
this a¤ects the identi�cation of the endogenous e¤ect �1. This is done by obtaining data by a DGP
based on a true WN and then estimating the model using a misspeci�ed connectivity matrix ~WN .
Speci�cally, data yt are generated via

yij;t = �1

JX

j=1

NjX

i=1

Wij;ghygh;t + xij;t� + eij;t (38)

where t = 1; :::; T and the observations are organised in a nested hierarchy with J groups (j = 1; :::; J)
and Nj individuals in each group (i = 1; :::; Nj). In our example we have 100 nodes organised in 10
groups and each node has 7 observations in time hence N = 100; G = 10 and T = 7. We also assume
thatWN is a time invariant network matrix. We set �1 = 0:7; � = 1 and we assume that the variable
xij;t is drawn from a uniform distribution, xij;t 2 (0; 1). For the error process we assume:

eij;t = �i + �ij + �ij;t (39)

where the error components are also drawn from a uniform distribution, hence �i 2 (0; 1), �ij 2 (0; 1)
and �ij;t 2 (0; 1).

To de�ne WN we consider the same sparse and dense network structures de�ned in section
four. The di¤erence in the network structure is that now nodes are nested within groups and nodes
interconnections are not con�ned within the same group but spillover across groups, as shown in
Figures 3 and 4. Table 5 illustrate the e¤ect of misspecifying the true matrixWN so that ~WN 6=WN

when we estimate equation (30) via IGLS, summarising the outcomes from 1000 Monte Carlo samples.
Using the true matrix, so that ~WN = WN , generally produces relatively unbiased estimates of �1
and � and small RMEs. When a dense matrix is assumed but the true matrix is sparse leads to larger
bias in the estimation of both �1 and �:

We now consider the outcome of multivariate estimation of both yt andWNyt to account for the
endogeneity ofWNyt. We �rst consider a multivariate model where there is no correlation between
the error terms and the regressors (�2 = �3 = 
2 = 
3 = 0). This shown in Table 6. The bias in
estimating the endogenous e¤ect �1 when the true matrixWN is misspeci�ed is much larger than in
the univariate estimation. This happens since yt and WNyt are jointly estimated but the equation
for WNyt is misspeci�ed since the internal instrument (IT 
WN )x uses the wrong matrix WN

which translates into a larger bias in the estimation of �1 in the equation for yt. We note that the
endogenous e¤ect �1 will be largely downsized especially when a sparse matrix in used in the DGP
but a dense matrix is assumed in the estimation. When we estimate the multivariate model assuming
correlation between the error terms and the regressors (�2 6= �3 6= 
2 6= 
3 6= 0), see Table 7, the
bias in the estimation of the endogenous e¤ect, �1, is even larger especially, again, when the true
matrixWN of the DGP is sparse but a denseWN is assumed in the estimation. Since the equation
for WNyt includes also the individual average and the group average over time of the spatial lag
of the x variables JT (IT
WN)ex and JGT (IT
WN)ex, which are also a function of WN, if WN is
misspeci�ed the bias in the estimation of the endogenous e¤ect, �1, is further ampli�ed.
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7.1 Interpretation

In the previous simulation study we have assumed a sparse WN matrix, condition likely to be met
in a number of scenarios, for example when interaction pools are limited. In order to obtain a
closer representation of the spatial interaction process in WN matrix construction choices, Anselin
(2010) suggests greater focus on modelling agents involved in social and economic interactions which
can indeed imply a network structure with a small number of interconnections. Assuming in the
estimation a dense network structure when the true underlying structure is sparse leads to serious
bias in estimating the strength of the endogenous e¤ect �1 which may invalidate the analysis. In
multilevel analysis is also good practice to account for potential correlation between the error terms
and the regressors by including spatial lags of x in the auxiliary equation for WNyt. In case the
matrix WN is misspeci�ed the inclusion of these spatial lags, which are a function of WN , further
increases the bias in the estimation of the endogenous e¤ect, �1.

The second issue related to WN as a representation of a network involving nodes (people or
places) and links between nodes is that these can be seen as dynamic evolving entities, and we can
envisage network development to be a response to costs and bene�ts in being a node or a link on the
network. Hence the misspeci�cation ofWN may simply come from ignoring its dynamical evolution
in time. Some networks might be dynamic and ephemeral, some networks in a stable equilibrium,
and some network slowly evolving. Following Goyal (2009), it may be the case that ephemeral and
dynamic networks manifest themselves when there are payo¤s. This leads to a theory of network
formation, thus �A game of network formation speci�es a set of players, the link formation actions
available to each player and the payo¤s to each player from the networks that arise out of individual
linking decisions�, and �A network is said to be strategically stable or an equilibrium if there are no
incentives for individual players (either acting alone or in groups) to form or delete links and thereby
alter the network� (Goyal, 2009). A quasi-stable network is similar to what is typically assumed in
the regional science or economic geography literature, where a network is �xed or only very slowly
evolving as a result of the sunk capital embodied in transport infrastructure investment which de�nes
the inter-nodal links. The emerging literature on endogenous network dynamics considers dynamic
stochastic network formation games which could give a more rational basis for the structure of the
WN matrix (see also Corrado and Fingleton, 2012).

The potential for dynamic WN matrices introduces some problems for estimation, given the
assertion that WN is necessarily a �xed entity. This may be of little consequence in cross-sectional
modelling, where at a given snapshot in time a �xed WN may be a reasonable approximation, but
with the extension of spatial econometrics to include panel data modeling there is the possibility that
WN evolves, and interacts with the regression variables. The possibility of endogenous interaction
leads Anselin (2010) to remarks that �an endogenous spatial weights matrix would jointly determine
who interacts (and why) and how that interaction a¤ects the rest of the model. Much progress
remains to be made...�. Nevertheless one can have a dynamicWN matrix if it is part of a simulation,
with no consequence for estimation, as in Fingleton (2001).

8 Conclusions

We have demonstrated that the estimates produced are contingent on what is assumed about WN ,
given that in practice the trueWN is likely to be unknown. It is evident that an estimate of trueWN

should be based on data which gives an accurate measure of the interdependence between nodes. One
relatively simple but surprisingly popular approach, which is purely assumption rather than evidence
based, is that nodes only form network connections or interact with immediate neighbours. In this
case one might baseWN on a simple 1,0 metric of distance, in which 1 indicates that a pair of nodes
are contiguous (near), and 0 that they are not immediate neighbours (far). However this is a very
debatable assumption of what determines connectivity and a very crude measure of distance, which
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may not stand up to empirical scrutiny. It is simply a theory and it would seem somewhat risky
to base inference on the untested assumptions embodied within this contiguity matrix approach. A
slightly more sophisticated measure of distance would be straight line distance, travel time or some
related measure, so that non-contiguous nodes could be assumed to interact, with the strength of
interaction governed by the distance between pairs of nodes. However without evidence to support
this supposition, inference would seem to be on shaky ground. Treating areal units (counties, regions
etc) as nodes, Cli¤ and Ord (1973) go a step further by suggesting that wij = d

a
ij=s

b
ij in which dij is

a measure of distance between nodes i and j and sij is the proportion of i�s boundary shared with
j. However one would still have to assume values for a and b and therefore one would still be basing
WN on assumption.
Model-based approaches to connectivity such as Cli¤ and Ord (1973) relate connectivity, which may
be di¢cult to measure per se, to easy-to-measure variables such as geographic distance. The concept
of economic distance is similar, but partially relates connectivity to the size of the nodes (economies),

thus wij = Q�i Q
�
j d
�

ij in which N by 1 vector Q has elements which are measures of the size of N

economies (say cities, regions or countries), as given by employment or gross value added, dij is the
geographic distance separating nodes i and j, and �; � and 
 are parameters. If �; � and 
 were
known, thenWN could be constructed, but this is unlikely.
It appears that the limitations of modelling as described above should lead us to what appears to
be a more practicable way to proceed which is to estimate directly the spatial matrix. Lam and
Souza (2015) has proposed a direct estimation of the spatial weight matrix WN along with spatial
parameters, with recourse to a regularization based on the adaptive lasso with instrumental variables
which uses exogenous covariates as internal instruments. However, the direct estimation of WN is
clearly going to break down when the dataset are large.

An alternative route is to observe directly the interaction between nodes. Data measuring in-
ternodal connectivity are freely available in diverse forms, for example international or interregional
migration �ows, tra¢c �ows within and between cities, regions and countries, international trade
�ows, and more recently internet communications at various scale from the level of individual people
upwards. These various �ow data have at least two characteristics in common. One is that they are
dynamic rather than static, and secondly there is an overabundance of data, particular with regard
to electronic communication; we are in the era of big data. Neither of these characteristics are in
practice particularly attractive when it comes to using such data as a basis for WN , which needs
to be a static matrix in order to underpin our currently available estimation technology. Big data
needs to be reduced to a workable format, and this entails some form of reduction and modelling
strategy to extract usable information about connectivity on the network of interest. It is clear that
in modelling spatial phenomena, and probably generally, as ever there is a need for good judgement
as to the appropriate variables and how they are measured.

To sum up, network and spatial interactions have become an important issue in economic research.
Correctly modeling and estimating such e¤ects in spatial and network econometrics is, therefore, of
paramount importance. Particular attention should be paid to the de�nition of theWN matrix which
is what such network and spatial interdependence translates into. While the cell values of WN are
assumed to be known, in reality often they are not known and when a model is estimated using aWN

matrix that is inaccurate this will lead to biased estimates. We show this in the context of dynamic
and multilevel SAR panel data models. The results of the Monte Carlo simulations show a large bias
in estimating the strength of the endogenous e¤ect �1 when the spatial lag or the interconnectivity
assumed forWN in the estimation di¤ers from that of the true DGP. This implication is not far from
being the norm in many econometric analysis involving spatial and network e¤ects of various forms
where the estimates produced are conditional on what is assumed aboutWN , given that in practice
the trueWN is likely to be unknown.
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Table 1. Mean, bias and RMSE of dynamic spatial panel parameter estimates.

TrueW matrix is j = 5 ahead and j = 5 behind, 1000 Monte Carlo replications.
ASSUMED j = 2 j = 5 j = 10


 �1 � 
 �1 � 
 �1 �
Mean 0.2046 0.4948 1.0411 0.1958 0.7156 1.0009 0.2089 0.852 1.0172

Mean bias 0.0046 -0.2052 0.0411 -0.0042 0.0156 0.0009 0.0089 0.152 0.0172
RMSE 0.0117 0.5061 1.0412 0.0089 0.2848 1.001 0.0135 0.1613 1.0172

TRUE
j = 5 �2 �2� �2v �2 �2� �2v �2 �2� �2v

Mean 0.3614 1.2925 0.4452 0.3061 0.795 0.2302 0.3754 1.2137 0.5361
Mean bias -0.0386 0.4925 0.2452 -0.0939 -0.005 0.0302 -0.0246 0.4137 0.3361

RMSE 0.1613 0.546 0.2484 0.2246 0.1217 0.0344 0.3481 0.5057 0.3406

TrueW matrix is j = 10 ahead and j = 10 behind, 1000 Monte Carlo replications
ASSUMED j = 2 j = 5 j = 10


 �1 � 
 �1 � 
 �1 �
Mean 0.2130 0.3572 1.0470 0.2159 0.5374 1.0177 0.1963 0.7202 1.0004

Mean bias 0.0130 -0.3428 0.0470 0.0159 -0.1626 0.0177 -0.0037 0.0202 0.0004
RMSE 0.0172 0.6446 1.0471 0.0183 0.4648 1.0178 0.009 0.2805 1.0004

TRUE
j = 10 �2 �2� �2v �2 �2� �2v �2 �2� �2v

Mean 0.3703 1.1610 0.4436 0.2819 0.9144 0.3039 0.2291 0.7942 0.2213
Mean bias -0.0297 0.3610 0.2436 -0.1181 0.1144 0.1039 -0.1709 -0.0058 0.0213

RMSE 0.1841 0.4244 0.2525 0.2843 0.1907 0.1110 0.3560 0.1226 0.0355

TrueW matrix is j = 2 ahead and j = 2 behind, 1000 Monte Carlo replications.
ASSUMED j = 2 j = 5 j = 10


 �1 � 
 �1 � 
 �1 �
Mean 0.1958 0.7102 1.0012 0.2454 0.7477 1.0537 0.2894 0.7776 1.0967

Mean bias -0.0042 0.0102 0.0012 0.0454 0.0477 0.0537 0.0894 0.0776 0.0967
RMSE 0.0083 0.2900 1.0013 0.0483 0.2531 1.0538 0.0915 0.2255 1.0968

TRUE
j = 2 �2 �2� �2v �2 �2� �2v �2 �2� �2v

Mean 0.3589 0.7910 0.2409 0.1115 2.8426 0.9776 -0.1770 5.5118 0.9900
Mean bias -0.0411 -0.009 0.0409 -0.2885 2.0426 0.7776 -0.5770 4.7118 0.7900

RMSE 0.1274 0.1226 0.0414 0.4052 2.1559 0.7780 0.7154 5.0434 0.7900
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Table 2. Short and Long-run direct, indirect and total e¤ects using mean dynamic spatial panel
parameter estimates.

TrueW matrix is j = 5 ahead and j = 5 behind
ASSUMED j = 2 j = 5 j = 10

direct indirect total direct indirect total direct indirect total

TRUE Short-run 1.131 0.9295 2.061 1.119 2.401 3.520 1.157 5.715 6.872
j = 5 Long-run 1.523 1.941 3.464 1.673 9.623 11.3 9.37 -26.07 -16.7

TrueW matrix is j = 2 ahead and j = 2 behind
ASSUMED j = 2 j = 5 j = 10

direct indirect total direct indirect total direct indirect total

TRUE Short-run 1.254 2.201 3.455 1.201 2.975 4.176 1.192 3.740 4.932
j = 2 Long-run 2.116 8.54 10.66 4.187 148.8 153 -0.97 -15.38 -16.35

TrueW matrix is j = 10 ahead and j = 10 behind
ASSUMED j = 2 j = 5 j = 10

direct indirect total direct indirect total direct indirect total

TRUE Short-run 1.088 0.5405 1.629 1.066 1.134 2.20 1.064 2.512 3.576
j = 10 Long-run 1.423 1.013 2.436 1.429 2.697 4.126 1.485 10.5 11.99
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Table 3. Mean, bias and RMSE of dynamic spatial panel parameter estimates.
TrueW matrix is either sparse or dense, 1000 Monte Carlo replications.

ASSUMED SPARSE DENSE

 �1 � 
 �1 �

Mean 0.1983 0.7054 1.0015 0.2291 0.7406 1.0070
Mean bias -0.0017 0.0054 0.0015 0.0291 0.0406 0.0070

RMSE 0.0086 0.2950 1.0015 0.0309 0.2604 1.0071
TRUE
SPARSE �2 �2� �2v �2 �2� �2v

Mean 0.3788 0.7917 0.2302 0.1434 1.2044 0.7515
Mean bias -0.0212 -0.0083 0.0302 -0.2566 0.4044 0.5515

RMSE 0.1727 0.1213 0.0325 0.3562 0.4797 0.5539

ASSUMED SPARSE DENSE

 �1 � 
 �1 �

Mean 0.1933 0.4223 0.9799 0.1985 0.7061 1.0012
Mean bias -0.0067 -0.2777 -0.0201 -0.0015 0.0061 0.0012

RMSE 0.0117 0.5788 0.9800 0.0086 0.2945 1.0012
TRUE
DENSE �2 �2� �2v �2 �2� �2v

Mean 0.2969 1.1989 0.5202 0.3734 0.7919 0.2217
Mean bias -0.1031 0.3989 0.3202 -0.0266 -0.0081 0.0217

RMSE 0.2577 0.4681 0.3234 0.2334 0.1208 0.029

Table 4. Short and Long-run direct, indirect and total e¤ects using mean
dynamic spatial panel parameter estimates. TrueW matrix either sparse or dense.

ASSUMED SPARSE DENSE
Direct Indirect Total Direct Indirect Total

TRUE Short-run 1.018 2.381 3.400 1.028 2.854 3.882
SPARSE Long-run 1.329 9.072 10.4 1.612 31.56 33.18

ASSUMED SPARSE DENSE
Direct Indirect Total Direct Indirect Total

TRUE Short-run 0.983 0.7133 1.696 1.018 2.388 3.407
DENSE Long-run 1.222 1.328 2.549 1.331 9.169 10.5

20



Table 5. Mean, bias and RMSE of SAR-RIGLS Multilevel Panel data parameter estimates.
TrueW matrix is either sparse or dense, 1000 Monte Carlo replications.

ASSUMED SPARSE DENSE
�1 � �1 �

Mean 0.7000 0.9986 0.4083 0.9300
Mean bias 0.0006 -0.0013 -0.2916 -0.0609

RMSE 0.0004 0.0318 0.2916 0.0649
TRUE SPARSE

�2� �2� �2v �2� �2� �2v
Mean 0.5131 0.4896 0.5133 0.4891 0.5017 0.4923
S.E. 0.0414 0.0142 0.0048 0.0446 0.0462 0.0707

ASSUMED SPARSE DENSE
�1 � �1 �

Mean 0.6438 1.0574 0.6999 1.0022
Mean bias -0.0561 0.0574 -0.0001 0.0022

RMSE 0.0561 0.0652 0.0018 0.0342
TRUE DENSE

�2� �2� �2v �2� �2� �2v
Mean 0.4891 0.5016 0.4926 0.5133 0.4896 0.5123
S.E. 0.0560 0.0617 0.1713 0.0414 0.0142 0.0048

Table 6. Mean, bias and RMSE of SAR-RIGLS Multivariate Multilevel Panel data
parameter estimates. Regressors and error terms are orthogonal (�2 = �3 = 
2 = 
3 = 0):

TrueW matrix is is either sparse or dense. 1000 Monte Carlo replications.

ASSUMED SPARSE DENSE
�1 � �1 �

Mean 0.7001 1.0005 0.2747 0.8866
Mean bias 0.0001 0.0005 -0.4252 -0.1133

RMSE 0.0019 0.0335 0.4252 0.1134
TRUE SPARSE

�2� �2� �2v �2� �2� �2v
Mean 0.5133 0.4896 0.5126 0.4891 0.5017 0.4933
S.E. 0.0375 0.01425 0.0004 0.0419 0.0406 0.0810

ASSUMED SPARSE DENSE
�1 � �1 �

Mean 0.6317 1.0798 0.7000 0.9995
Mean bias -0.0682 0.0798 0.0001 -0.0004

RMSE 0.0684 0.0826 0.0102 0.0318
TRUE DENSE

�2� �2� �2v �2� �2� �2v
Mean 0.4891 0.5017 0.4925 0.5133 0.4896 0.5126
S.E. 0.0566 0.0803 0.1695 0.0375 0.0142 0.0050
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Table 7. Mean, bias and RMSE of SAR-RIGLS Multivariate Multilevel Panel data
parameter estimates. Regressors and error terms are correlated (�2 6= �3 6= 
2 6= 
3 6= 0):

TrueW matrix is is either sparse or dense. 1000 Monte Carlo replications.

ASSUMED SPARSE DENSE
�1 � �1 �

Mean 0.6993 0.999 0.2577 0.9215
Mean bias -0.0006 -0.0001 -0.4422 -0.0784

RMSE 0.0213 0.0324 0.4422 0.0793
TRUE SPARSE

�2� �2� �2v �2� �2� �2v
Mean 0.4891 0.5017 0.4930 0.4891 0.5017 0.4930
S.E. 0.0330 0.0141 0.0050 0.0358 0.0396 0.0853

ASSUMED SPARSE DENSE
�1 � �1 �

Mean 0.6435 1.0834 0.7008 1.0006
Mean bias -0.0564 0.0834 0.0008 0.0006

RMSE 0.0679 0.0841 0.0099 0.0340
TRUE DENSE

�2� �2� �2v �2� �2� �2v
Mean 0.4891 0.5017 0.4930 0.5133 0.4896 0.5133
S.E. 0.0637 0.0492 0.1700 0.0330 0.0141 0.0050
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Figure. Dense Network

Figure 2. Sparse Network
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group = 1 group = 2 group = 3 group = 4 group = 5

group = 6 group = 7 group = 8 group = 9 group = 10

Dense Network with 100 nodes and 10 groups:

group = 1 group = 2 group = 3 group = 4 group = 5

group = 6 group = 7 group = 8 group = 9 group = 10

Sparse Network with 100 nodes and 10 groups:
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