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Abstract

In this paper, we propose an approach to estimate models with network interactions

in the presence of individual unobserved heterogeneity. The latter may impact the forma-

tion of ties and/or exogenous effects, thereby undermining identification of the associated

parameters. In a panel setting, we devise a way to cope with these sources of endogeneity

by relying on observable variations. When exogenous effects are involved, one can con-

trol for unobserved heterogeneity by including time-averages of the endogenous variables.

When unobserved individual traits affect the process of network formation, it is possible

to explore the role of network statistics. We derive a 2SLS estimator in order to address

simultaneity bias, relying on sources of variation provided by the product between succes-

sive powers of the network matrix and the matrix of exogenous covariates; we assess the

performances of the method via a Monte Carlo exercise, considering various combination

of models and different ranges of parameters for both network interactions and the social

multiplier. We also separately assess the cases in which unobserved sources hit the net-

work structure only or act on exogenous effects as well. Focusing on the former case, our

approach may be also applied when a simple cross-section is available. More generally, it

does not require full knowledge of the spectrum of agents’ interactions.

Key-Words: Networks, Individual Unobserved Heterogeneity, Dynamic Network For-

mation, network Statistics.
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1 Introduction

The estimation of models accounting for interactions across agents has become widely popular

in recent years, because of a renewed interest to evaluate the role of spillovers. Those spillovers

may account for spatial, social or economic interactions. Indeed, this distinction mainly refers

to the underlying phenomenon of interest, not to the statistical method one is willing to use

to make inference, though the nature of the phenomenon we are studying and the associated

modelling may affect the soundness of estimation results. Whether one is focusing on spatial

or network interactions, it is well known that the presence of a term accounting for interactions

is not identified by simple least squares estimation because of what is commonly known as

“simultaneity bias”. In these models, interactions enter the estimating equation as the product

between the so-called adjacency (interaction, proximity, etc) matrix and the dependent variable

(and/or some L-dimensional vector of covariates), a description which may remind of linear si-

multaneous equation models. Among others Paula et al. [2018] stress how network formation

models present difficulties for identification in this setting, especially when links can be interde-

pendent. Various solutions have been proposed in the literature to tackle simultaneity bias. For

instance, Kelejian and Prucha [1998] introduced a so-called generalized spatial 2SLS (GS2SLS)

in a cross-section framework, an approach involving successive powers of the proximity matrix

applied to those variables producing spillovers. This approach has been subsequently extended

by Lee [2003] - to set out optimal instruments - and then extended by Baltagi et al. [2014] in

the context of models with multilevel error structures. However, all those studies presume the

only source of endogeneity in estimating regression models including interactions variables is

the one aforementioned, maintaining that the interaction matrix is being exogenously given.

Studies introducing endogenous interaction matrices started to emerge in the recent years, from

Lee et al. [2012] - who focus on the identification of central players in a network, Goldsmith-

Pinkham and Imbens [2013] - who study how homophily affect the formation of ties - to Horrace

et al. [2016] - who consider the role of selection bias onto the network structure.

In this paper we consider threats posed by unobserved individual heterogeneity when estimating

models where endogenous effects (say, interactions) and exogenous effects are present and we

do focus on a panel setting. Unobserved heterogeneity is thought to affect exogenous variables

on one hand, while it does also impact links forming the interaction matrix, thereby violating

any assumption about an exogenously given interaction matrix. As a solution, we propose

using observed quantities to control for such heterogeneity. Since the latter hits two different

observed “parts” of the estimating model, we i) exploit the panel setting to back-out the time-

invariant component of the otherwise exogenoues variables and ii) consider network statistics

which are tightly linked with heterogenous profiles. We then use those quantities to proxy

unobserved heterogeneity and then proceed using the aforementioned approaches to estimate

the parameters of our reference model. Indeed, in i) we are just applying to a spatial/network

setting the argument raised by Mundlak [1978] in showing equivalence between the customarily

termed “fixed-effects” and “random-effects” estimators; ii) is relatively novel, though Graham
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[2017] uses indegree meausures to control for unobserved heterogeneity in the context of network

estimation; still, Liu [2014] focuses on Bonacich centrality measures to improve identification

of social interactions. More recently, Paula et al.’s [2018] present a framework to identify

preference parameters based on sets of local network structures which come from the structure

of individual preferences themselves. This work shares underlying similarities with Qu and Lee

[2015], who also rely on observed quantities to in order to account for the endogenous formation

of network ties. We investigate the finite sample performances of the proposed estimator over

various simulation exercises.

The paper is organised as follows: section two presents the general model framework; section

three addresses the impact of unobserved heterogeneity on the formation of ties and/or on

the exogenous effects and describes our proposed estimator; section four describes the network

formation process in presence of unobserved heterogeneity; section five assess the performances

of the proposed method via a Monte Carlo exercise considering various combination of models

and different ranges of parameters for both network interactions and the social multiplier;

section six concludes.

2 Framework

We consider a setup in which network interactions alongside a vector of other covariates (exoge-

nous or not) do explain an outcome variable. Further, we consider the error component having

an additive compound structure, that is, it does consist of a time-invariant and individual spe-

cific term alongside a time-varying term. Suppose we use a linear regression model in order to

estimate the parameters of variables so far, that is:

y = Gyρ+Xβ + u , (1)

where the sample at hand consists of panel data and y is an NT × 1 vector, X is an NT × k

matrix andG is an NT×NT block diagonal matrix where the diagonal blocks consists of entries

considered at a certain time period. u is an NT × 1 vector accounting for all is unobserved to

the econometrician, which we can break down as u = α⊗ ιT + ε, where α is an N × 1 vector,

iT is a T × 1 vector of ones and ε is NT × 1 vector.

Cliff and Ord [1973] introduced a model like that in (1), which is customarily termed SAR

(spatial autoregressive), irrespectively of the presence of a set of covariates alongside (spatial)

lags of the dependent variable.1,2

Following Manski [1993, 1995], we define the observed terms in the right-hand side of eq. (1) as

1You may also see, among the others, Anselin [1988]. Recent reviews of the literature with discussions on
still-standing issues include Corrado and Fingleton[2012] and Gibbons et al. [2015].

2Insofar, “lags” refers to the number of successive powers of the adjacency matrix G applied to x entering
the instruments matrix.
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endogenoues effects (Gy) and contextual effects (X).3 However, estimation of such an equation

as it stands is going to yield inconsistent parameters estimates because of what is known as

“simultaneity” bias, since y appears on both sides of the equation.

Indeed, let us simply rewrite eq. (1) and premultiply it by the matrix G to get4:

Gy = G [I −Gρ]−1 (Xβ + u) =

=
+∞
∑

l=1

GlXβρl−1 +
+∞
∑

l=1

Glαρl−1 +
+∞
∑

l=1

Glερl−1 =

=
p
∑

l=1

(

GlXβρl−1 +Glαρl−1
)

+
+∞
∑

l=p+1

(

GlXβρl−1 +Glαρl−1
)

+
+∞
∑

l=1

Glερl−1 def
= (2)

def
= SGXφ+ SGαρ+R

(

S
(p+1,∞)
GX φ(p+1,∞)

)

+R
(

S
(p+1,∞)
Gα ρ(p+1,∞)

)

+ T
(

S
(1,∞)
Gε ρ(1,∞)

)

def
=

def
= SGXφ+ SGαρ+RGX +RGα + TGε (3)

where SGX , SGα and φ, ρ are, respectively, NT × p matrices and p × 1 vectors whose

products yields, respectively, the two terms entering the first sum in (2). Further: RGX =
+∞
∑

l=p+1

GlXβρl−1, RGα =
+∞
∑

l=p+1

Glαρl−1 and TGε =
+∞
∑

l=p+1

Glερl−1 .

As it stands eq. (3) provides us with a potentially fruitful set of “internally” observed quantities

one may use to explain exogenous variation inGy. By internally, we mean that those quantities

are obtained from eq (1). The underlying logic of the approach consists in exploiting variation

due to the linkages of one’s ownBlume, L. and Brock, W. and Durlauf, S. and Ioannides, Y.

[2011] linkages.5 On this ground, we follow Kelejian and Prucha [1998], Baltagi et al. [2014]

and consider a 2SLS estimation procedure6 in order to recover the parameters entering eq (1).

To this end, let us first define H = (SGX, X)and let us rewrite together the two “stages” we

have described so far as a matter of clarity:

y = Gyρ+Xβ +α+ ε (4)

Gy =H [φ, β]
′

+ SGαρ+ ξ (5)

where ξ = RGX +RGα + TGε. Let us now state the following assumptions:

3It is also customary to label as contextual effect any term involving pre-multiplication ofX with the network
matrix G (or any power of it).

4Recall that the matrix [I −Gρ] is invertible if |ρ| < 1.
5In this respect, the description above resembles the so-called “Hausman instruments”, see Hausman et al.

[1994].
6More generally, one could consider any instrumental variable estimator.
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E [α|X] = 0 (6)

E [ε|X] = 0 (7)

E [ε|SGX ] = 0 (8)

E [α|SGX ] = 0 (9)

E [ξ|SGX ] = 0 (10)

E [Gy|SGX ] 6= 0 (11)

Assumptions (6) and (7) allow to identify the regression coefficients for the set of contextual

effects, while the remaining assumptions are needed to consistently estimate the parameter

associated with the endogenoues effect. In particular, assumptions (8), (9) and (10) imply

mean independence between SGX and any unobserved term entering either equations (4) and

(5), while (11) implies the set of instruments for Gy induces exogenous variation on it. The

latter assumption should indeed be complemented with one regarding the column rank of the

instruments matrix, a point we will return to later. Lastly, note that assumption (6) implies

E [SGX |SGα] = 0, while (10) implies that E [SGX |TGX ] = 0 as well.

Provided assumptions (6)- (11) are satisfied, we consider the following Generalized 2SLS esti-

mator for the parameter vector [ρ, β] in equation (1):

[

ρ̂, β̂
]′

=
(

Z
′

PZ
)−1 (

Z
′

Py
)

(12)

where Z = (Gy, X) and P =H
(

H
′

H
)

−1
H

′

.

3 The role of unobserved heterogeneity

Now, we wish to make a step forward in the model we have briefly described so far. We introduce

the case in which unobserved and time-invariant components - α in our setting - do affect both

the network formation process - hence, any variable embedding network interactions - and some

subset of the “other” covariates. Both cases are likely to invalidate both eq (4) and (5). In this

respect, we figure out to approach these issues by relying on variation coming from observable

quantities which correlate with unobserved heterogeneity. It is important to separate out each

of the two effects heterogeneity has on invalidating the aforementioned estimation strategy. The

impact on exogenoues effects is a standard omitted variable problem one would face when trying

to estimate any regression equation and this obviously has nothing to do with the presence of

endogenous effects in the estimating equation. On the other hand, if unobserved heterogeneity

does play a role in the process of link formation - by affecting each row Gi· of the interaction

matrix G - any variable accounting for interaction effects obtained premultiplying the variable

itself by the matrix G is going to be affected as well. This point has no relation with the
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simultaneity issue considered before, for the vector y appearing on both side of equation (1)

would harm identification of parameters irrespectively ofG being endogenous or not. Motivated

by this discussion, we are going to face each of the two sources of endogeneity described earlier

separately in what follows.

3.1 Unobserved heterogeneity and exogenous effects

Let us consider the NT × k1 matrix [x1, x2, . . . , xK1
] , k1 ≤ k, or expanding across N and T ,

x
′

kit = [xk11, . . . , xkN1, . . . , xkNT ]
′

and let us for the moment allow k1 = 1, such that we can

write the following:

xit = f (αi, v
x
it) , ∀i, t (13)

where vxit accounts for all factors affecting xit but αiand let us assume vxit ⊥ αi so we can invoke

separability of the function above.

As it stands, eq (13) implies that assumptions (6) and (7) above are violated, the implication

being that identification of contextual effects can not be obtained. Indeed, this is a well known

issue in applied econometrics and many solutions have been proposed in this respect. Actually,

we use the information embedded in the equation above to express the unobserved α in terms

of observed quantities. In this respect, let us note that:

∂xit
∂αi

=
∂xit+k

∂αi

, ∀i, t, k

∂xit
∂αi

6=
∂xjt
∂αj

, ∀i, j, t

So, the variation induced in xit is entirely due variation across observations rather than through

time, which means we can recast the relationship between xit and αi in terms of averages of

the former, x̄i, that is, we can consider E (x̄i|αi) in place of eq (13). Since the latter implies

some dependence relation between x(and x̄) and α, we can use variation in x̄ (across units) to

control for unobserved αi , hence, we write the following linear (in the parameters) auxiliary

relation:

αi =
L

∑

l=1

x̄liδl + ηxi , ∀i (14)

where, we also assume that E (vi| x̄i′) = 0, ∀i, i′.7 For L = 1, eq (14) yields the formulation

proposed by Mundlak [1978].

7Alternatively, we might consider a non-parametric specification for the relationship in (14)
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3.2 Unobserved heterogeneity and network interactions

Let us now move attention to the role unobserved heterogeneity may have in shaping the forma-

tion of links. Later, we are going to be more specific in describing how individual (unobserved)

traits may affect the formation of ties among subjects; for the moment, we take for granted

such a relationship. In this respect, if the unobserved αi is going to affect the formation of each

link gijt of which the network gi·t of individual i is made of, is, we may write the following:

gijt = h
(

αi, v
g
ijt

)

, ∀i, j, t (15)

For the moment, we do not impose any limitation on h () and let us focus on the implications of

eq (15): by hitting each single link formed by individual i, unobserved heterogeneity is going to

shape each i’s network and some of its underlying characteristics, hence the vector of unobserved

terms α correlates with the whole proximity matrix G we have encountered before. To the

extent such correlation involves GX (and all its successives lags used in eq (5) as instruments

for Gy), assumption (9) we made before no longer holds. A similar argument is made in Qu

and Lee [2015] and we report simulation evidence in this respect later.

Using the same logic we applied before, we would like to cope with E (gijt|αi) 6= 0 using

observed quantities which are time invariant. Indeed, this would actually imply to specify as

many ancillary relations as the number of potential links each i has available8, which - at least

- may be a costly strategy in terms of parameters to be estimated.

In order to circumnvent this issue, we can re-target our focus on each individual i’s network as

a whole, as we have seen αi is going to affect every link i has available. So, suppose there is

some observed statistic µg
it describing features of each i’s network and whose variation across

units is (also) attributable to αi. Then, we may write down an ancillary relation which mimics

that we considered before (we omit the g suffix therein):

αi =
M
∑

m=1

µ̄m
i ψm + ηgi , ∀i (16)

where, again, we assume E (ηgi | µ̄
m
i′ ) = 0, ∀i, i′, m. One remark is useful at this stage: first of all,

in eq (16) we directly considered a time average of the network statistic µit as we did previously

for xit in order to avoid confusion, but most importantly, since averaging over T allows to better

catch variation of the statistic induced by α. Nonetheless, we could consider a non averaged-out

statistic as well, which makes such approach implementable also with cross-sectional data.

8In the current context we are not going to place an a priori restriction over the available sample, so that
each observation has N -1 potential links available. Below, we are going to be more specific on this issue.
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3.3 Estimation model controlling for unobserved heterogeneity

In the previous section we have written down each correction separately for exposition purposes.

However, from a statistical standpoint, we are going to consider eqs (14) and (16) as one

expression:

αi =
L

∑

l=1

x̄l
iδl +

M
∑

m=1

µ̄m
i ψm + ηi, ∀i

where we have maintained the previous notation as a matter of clarity. Stack across i and

without loss of generality consider linear terms only:

α = X̄δ + µ̄ψ + η (17)

We can then rewrite eq (4) using the ancillary expression above to obtain:

y = Gyρ+Xβ + X̄δ + µ̄ψ + ηε (18)

and let us define ZDC =
(

Gy, X, X̄, µ̄
)

, κ2C = (ρ, β, δ, ψ). Now, based on (17), let us

reconsider the term SGα:

SGα =

p
∑

l=1

Glαρl−1 =

p
∑

l=1

Gl
(

X̄δ + µ̄ψ + η
)

ρl−1 def
= [SGX̄ , SGµ̄]

[

π
′

X̄, π
′

µ̄

]′

+ SGηρ (19)

where SGX̄ and SGµ̄ are, respectively, NT×pk1 and NT×p matrices, while πX̄ and πµ̄ are, re-

spectively, pk1×1 and p×1 column vectors. Hence, we defineHDC =
(

SGX , SGX̄ , SGµ̄, X, X̄, µ̄
)

and, consequently PDC =HDC

(

H
′

DCHDC

)

−1
H

′

DC . Eventually, we obtain:

κ̂DC =
(

Z
′

DCPDCZDC

)−1 (

Z
′

DCPDCy
)

(20)

As a matter of completeness, let us also formally define the estimator for the case unobserved

heterogeneity is just relating to network ties. Actually, this means we do not need eq (14)

and, accordingly, considering versions of eqs (17)-(19) without terms relating to X̄ , we are left

to define: ZSC = (Gy, X, µ̄) , κSC = (ρ, β, ψ), HSC = (SGX , SGµ̄, X, µ̄) and PSC =

HSC

(

H
′

SCHSC

)

−1
H

′

SC in order to obtain:

κ̂SC =
(

Z
′

SCPSCZSC

)−1 (

Z
′

SCPSCy
)

(21)

So far, we have voluntary neglected the structure of errors. However, the compound error term

u = α⊗ ιT + ε implies the covariance matrix is no longer diagonal, i.e.:

Ω = V (u) = σ2
α (Jt ⊗ IN ) + σ2

εINT
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Adapting formulations used in Baltagi et al [2014], we can rearrange terms to recast terms to

represent Ω in terms of its spectral decomposition:

Ω = λ1Q1 + λ2Q2 (22)

where λ1 = σ2
ε , λ2 = Tσ2

α + σ2
ε and Q1 = INT −

(

IN ⊗ J̄T

)

, Q2 =IN ⊗ J̄T .
9 From eq (22)

we can then obtain10:

Ω−1 = λ−1
1 Q1 + λ−1

2 Q2 (23)

Premultiplication of both sides of (18) by Ω−1/2 yields a GLS-SC2SLS estimator:

κ̂∗DC =
(

Z
′

DCP
∗

DCZDC

)−1 (

Z
′

DCP
∗

DCy
)

(24)

or, in the case we were only correcting for the endogenoues ajdacency matrix:

κ̂∗SC =
(

Z
′

SCP
∗

SCZSC

)−1 (

Z
′

SCP
∗

SCy
)

(25)

with P ∗

SC = H(·)C

(

H
′

(·)CΩH(·)C

)

−1

H
′

(·)C , (·) = D, S. With unknown parameters to be

estimated enter the expression for Ω, the feasible-GLS estimation of equations (24) and (25)

would yield a panel version of the Keleijan and Prucha [1998] estimator.

4 Network formation with unobserved heterogeneity

In this section we provide a simple example in which observation-level unobserved heterogeneity

affects the network formation process. We wish to use a link generating function displaying a

flexible shape as concerning its argument, where changes in its shape would be the product of

individual heterongeity.

Let us define as sender that node i whom network (and underlying links) we are focusing on

and let us define as receiver every node j the sender can choose as component of his network.

The weight that each link between any sender i and each receiver j has on i’s network is given

by the following:

gijt =
exp (γ0 + γ1αizjt + γ2cij + vijt)

∑

j exp (γ0 + γ1αizjt + γ2cij + vijt)
, j 6= i (26)

First of all, we set gijt = 0, ∀i = j, t - that is we rule out reflexive ties - and note that weights

formed according to eq (26) are not necessarily symmetric or, put another way, we are focusing

on a directed network.
9J̄N = JN

N
and the two matrices at the numerator are matrices of ones.

10See also Wansbeek Kapteyn [1982].
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Links formed according to eq (26) obey a normalized exponential function - a.k.a. softmax

function - the range of this being bounded within the [0, 1] interval and such that
∑

j gijt = 1.

For low values of the numerator relative to the denominator gijt → 0, which is a convenient

approximation to a setup in which units do not establish ties with the whole set of potential

nodes.11 Network weights formed this way are consistent with a setup in which“choosing”units

derive (some notion of) utility from every alternative j given by the argument entering the

exponential term in the aformentioned equation, Eventually, the resulting gijt may invariantly

be seen as the probability individual j has to be chosen by individual i at time t or the weight

the former is having on i’s network. However, the latter statement implies that link-formation

and weight attribution occur simultaneously.

The tie formation mechanism reported above relates to a wide amount of empirical research

in industrial organization12 and to studies accounting for spillovers effects, like in Bayer and

Timmins [2007].13

We attribute an a priori meaning to each term entering the argument of the logistic function.

For instance, αi ∈ (0, 1) and reflects observational heterogeneity in evaluating the true zj,

irrispectively of the time period. For instance, such heterogeneity could represent individual

propensities to evaluate potential peers or just reflect heterogenous preferences. The J dimen-

sional vector z can be thought as some kind of “selection” vector potentially available to any

observational unit when deciding about establishing a tie. It is worth stressing that zj must

exhibit some degree of variability across observations as well; intuitively, if candidates peers

would not be heterogenous among themselves, it had been useless for each i to have any such

“selection skill” , hence variation in αi would turn uneffective in determining weights.

The next term, crsij account for distance between any two individuals i and j belonging to any

two groups r and s (where cij = 0 means observations do belong to the same group). We

point out that, in the present context, such groups based variable is assumed to be exogenously

determined and it does not enter the outcome equation (1). The presence of costs due to

distance across individuals (where distance may currently be catching different concepts of

distance) reduces the incentives for an individual to establish links outside its own group, other

things being equal. Focusing only on α and c scalars entering the link geneating equation, the

last point point holds no matter αi, as g (cij|αi) < g
(

c
′

ij|αi

)

, cij < c
′

ij. On the other hand, it

does imply that conditionally on cij: g (αi|cij) > g (αi′ |cij) , αi > αi′ .

The parameters γ1 and γ2 account for the size the respective terms have in determining weights,

while γ0 may be interpreted as an overall propensity to establish (or not) ties. Finally, vijt is

comprehensive of any other receiver-sender-time factor impacting on the corresponding link.

11As a robustness check, we have conducted simulation exercises in which all those gijt < g∗ijt = .005 are set
to zero. As expected, results do not change significantly as compared to those in which we do not apply such
threshold.

12In particular, we refer to the so-called “characteristics space” approach to demand estimation - see, for
instance, Berry [1994] and Berry, Levinsohn and Pakes [1995].

13More generally, Blume [1993], Brock [1993], Durlauf (1993), Brock and Durlauf [1993] were among the
most important contributions in introducing binary choice models in the context of social interactions. See also
Blume et al. [2011].
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The next three figures highlight some features of indvidual networks resulting from eq (26)

and the implied network structure. Figure 1 plots indivual network weights as a function of

z conditional on individual type α for three different values of the parameter γ1 and set of

potential verteces J = 100. In order to single out the role played by unobserved heterogeneity,

we do not consider the role of the remainder term vijt and set t=1.

The four quadrants of the plot highlight how an individual network is shaped by α. In the first

quadrant gij → ḡ = 1
J
, which implies i’s outdegree approaches the maximal outdegree (which

also implies full connectivity); furthermore, peers’ selection variable z plays no role in i’s arcs

formation. Moving across the other quadrants, selectivity in the formation of ties progressively

arises and, in this respect, we can also appreciate the different magnitude associated with

different parameters values.

Figure 1: Network weights and Z by α type

Table 1 reports summary statistics on network characteristics for the network of senders. First,

it turns out no unit is isolated, while dmax
O = 1

2
J . Also, the maximal weigth attributed to a tie

is close to .9, which means such unit has formed an almost exclusive tie.

Table 1: Summary statistics for individual networks
Variable Obs Mean Std. Dev. Min Max
Outdegree 50 17.58 12.99 4 57
Range 50 0.44 0.21 0.07 0.84

Std. Dev. 50 0.05 0.02 0.01 0.08

Based on I=50 senders and J=100 receivers (γ1 = 2, γ2 = −2)
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Based of the same setting of previous graphs, Figure 2 plots weights frequencies conditionally

on α. The mass of frequencies gravitate around ḡ = .01, though the vertical bar slims down for

highly α endowed individuals - meaning that a greater number of arcs are indeed zero.14

Figure 2: Network weights densities by α type

Pronounced selectivity emerges across panels for“high”αs, though maximal arcs size gets bigger

for higher values of the parameter γ1 (see panel c below).

14Recall that we conventionally set to zero weights gij < 0.005. The number of zero weights for “low”α is 12,
25 and 38 for γ1 = 1, 2, 3 respectively.
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Figure 2’: Network densities by α type (cont’d)

Finally, in the three panels of Figure 3 we plot the outdegree frequency distributions associated

with the already mentioned three values of γ1 . The (out)degree distribution is a crucial statistic

for describing the structure of a network. For instance, it does embed information concerning

connectedness patterns of a network as well as the shape of heterogeneity within a network;

further it may result a sufficient statistics for the determinants of network formation, like in

Graham [2017].15

We actually consider J=50 realizations and include the remainder term vijtin determining

weights allowing for time variation. The most important message provided by the three panels

below concerns the rise of network level concentration for outdegree cardinality as concerning

higher values of γ1. That is, the whole network displays substantial stability over the support,

though increasing γ1 reduces the “counfounding” role played by vijt. Interestingly, moving

across panels, the outdegree distribution seems to be somewhat mixing between the so-called

“scale-free” distribution and that of a Poisson network.16 Moreover, highest nodes cardinalities

gravitate far away from maximal outdegree as well as non-reiceving (i.e. isolated) nodes are

avoided. In the context of dichotomous and/or symmetric networks, it has been shown that

completeness (i.e. extreme connectedness) may harm identification of social effects.17 Although,

this is less a concern in the current directed and row-normalized network, completeness may

still cause some unpleasant consequences for identification, as well as not being a prominent

feature of many real world networks.

15See also Wasserman and Faust [1994] and Graham [2015].
16see Jackson [2008].
17See, for instance, Bramoullé et al. [2009] or Blume et al. [2011] .
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Figure 3: Outdegree densities
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4.1 Network statistics and unobserved heterogeneity

Now that we have described some features of the network structure in the discussion above,

we present stylized evidence regarding the link between endogenoues α and various network

statistics considered at the individual level. It is not immediate to apply some of the commonly

used statistics describing network architecture in the current environment, for we also interested

in statistiics displaying variation over units. However, one of the salient features emerging from

the previous discussion is the extent to which heterogeneity affects the network structure. On

this ground, we are going to focus attention onto three statistics and their relation with α: the

range, the standard deviation and outdegree of individual networks, being defined, respectively,

as:

RGi.t
= max (gijt)−min (gijt) ≈ max (gijt) , j 6= i (27)

σGi.t
=

√

√

√

√

1

J

∑

j 6=i

(

gijt −
1

J

)2

(28)

dO,Gi.t
=

J
∑

j=1

1 (gijt > 0) (29)

where, in the current setting: J = N − 1, and set an approximation threshold for the indicator

defining the outdegree function g∗ijt = 0.005.

Figg. 4-6 document the relationship between unobserved heterogeneity and the network indi-

cators introduced above over various combinations of the parameters γ1 and γ2. To be precise,

in the following figures we plot time-averages of those statistics, as they enter the estimator we

defined before.

There are two salient stylized facts showing up: all the statistics considered are strongly associ-

ated with individual unobserved heterogeneity, and this is true irrespectively of the parameters

combination used. The second aspect to consider concerns the shape of the relationship, which

may change between and within statistic (especially for the outdegree measure) for different

combination of parameters. The latter aspect is more evident by contrasting Figure 6 with

the precedings: for both range and standard deviation of individual networks there seem to

emerge a convex relationship with α. It is worth noting that such non-linearity would not being

picked-up by a simple correlation measure and, most importantly, allows to underline that a

non-linear functional approximation for E (α| µ̄) should be considered when implementing the

correction proposed earlier.
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Figure 4: Unobserved heterogeneity and network stats (1)

In order to strengthen the argument we are making, let us consider the partial derivative of

RGi·t with respect to α. To simplify things, let us restrict attention to the term entailing α in

the numerator of eq (26) and focus on max (gijt) in eq (27), leaving aside the time index, set

γ1 = 1 and z∗ : gijt (z
∗) ≥ gijt (zj) , ∀j, so that :

∂max (gijt)

∂αi

=
exp (γ1αiz

∗)
∑

j 6=i

exp (γ1αizj)
=

=
z∗exp (αiz

∗)
∑

j 6=i exp (αizj)− exp (αiz
∗)

∑

j 6=i zjexp (αizj)
[

∑

j 6=i

exp (γ1αizj)

]2 =

=
exp (αiz

∗)
[

∑

j 6=i

exp (γ1αizj)

]2

(

z∗
∑

j 6=i

exp (αizj)−
∑

j 6=i

zjexp (αizj)

)

∝

∝ z∗
∑

j 6=i

exp (αizj)−
∑

j 6=i

zjexp (αizj) =

=
∑

j 6=i

(z∗ − zj) exp (αizj) > 0 , ∀zj < z∗

Since, z∗ ≥ zj, ∀j, the result holds with strict inequality unless z∗ = zj. Using the same

argument - reversed - it turns out that
∂min(gijt)

∂αi
> 0, which implies that ∂RGi·t

∂αi
> 0 unless

max (gijt) = min (gijt).
18

18Indeed, the way links are actually formed generally produces zero weights, so that approximating RGi·t =
max (gijt) is perfectly fine.
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Figure 5: Unobserved heterogeneity and network stats (2)

Figure 6: Unobserved heterogeneity and network stats (3)

We anticipate that in our simulation exercises we are going to rely on the time averages of the

range and standard deviation to proxy unobserved heterogeneity. Despite a seemingly tight link

with α, we leave aside outdegree measures, mainly because such measure may be mis-interpreted

with respect to the underlying mechanism associated with α. That is, one may come to the

conclusion that heterogeneity simply impacts on the cardinality of each i’s network; though

the connectedness of an individual’s network is surely affected by higher or lower realizations

17



of α, the latter is going to affect the strength of ties, which is given by the size of weights.

Nonetheless, based on the heuristical evidence reported above, (out)degree is a valid candidate

proxy as well.

5 Simulation experiment

5.1 Data generating process and setup description

In what follows we report simulation evidence for the corrections proposed before. We break

down results for the case in which unobserved heterogeneity only affects network forma-

tion and those in which also exogenous effects correlate with unobservables. For both set

of results we consider different combinations of the network parameters, namely: (γ1, γ2) =

{(1, 2, 3)× (−1, −2, −3)}. Moreover, we perform various simulation exercises under the sce-

nario in which only network interactions are affected by unobservables, that is, we consider i)

results using non-linear (second-order polynomial) corrections ; ii) we investigate the behaviour

of the proposed correction over two different sizes for the groups defining the distance measure

,cij, NC = (10, 20); iii) we do compare the models with both linear and non-linear correction

with fixed-effects and first differencing estimators; lastly, we repeat our simulation exercise for

two different values of the parameter defining endogenous effects, ρ = (.3, .7)19.

The data generating process is Y = [I − ρG]−1 (Xβ1 + u), where the matrix of exogenous

effects is actually restricted to be the NT × 1 vector x1 following an AR (1) process: x1it =

φxx1it−1 + εxit, ∀i, t, with φx = 0.8. We consider x1i0 and εxit as i.i.d draws from a standard

normal distribution. The regression parameter associated with exogenous effects β1 = .4. In

the unobserved part of the model,u = α ⊗ iT + ε, α is a N × 1 vector of i.i.d draws from a

standard uniform distribution with support (0, 1), while the NT ×1 vector ε ∼ N (0, INT ); we

rule out correlation between unobservables, hence E (αi, εit) = 0, ∀i, t.

In eq (26) we set γ0 = 0 and consider the triplets of values described above for γ1and γ2. We

have already defined α, while we actually consider zjt = zj
i.i.d.
∼ N (1, 3), while vijt are draws

from a standard normal distribution.20

Finally, the variable accounting for extra-group distance is defined as: crsij = |θri − θsj | , and

each θ
(·)
i derives from randomly assigned group membership, based on draws from a uniform

distribution with support ∈ (0, 1).

All the results reported are based on 1000 simulations and all the tables restrict to statistics

concerning ρ and β1. Nominal coverage is set to .95.

19We comment in the main text results based on NC = 10 only. In Appendix 2, we report results based on
setting the expected group numerosity to 20; we do so by i) keeping the number of groups fixed to 10, while
increasing cross-sectional units to N=200 and ii) by keeping N=100 and reducing the number of groups to G=5.

20We have also conducted some preliminary sensitivity analysis over z, considering various combinations of
parameters for the mean and standard deviation and results appear to be stable across those combinations. The
same seems to be true when considering an AR (1) process for zjt.
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5.2 Simulation results

We present a preview of results in the two panels of Figure 7. We consider the empirical densities

of the estimators involving the use of network statistics as proxy for unobserved heterogeneity,

namely, network range and network standard deviation. In both panels network parameters

are the following: γ1 = 2 and γ2 = −2. The two panels differ as concerning the nominal value

of ρ (the dashed vertical line in figures).

The density of the estimator based on network range is relatively more centered around the true

vale and also displays lower probabilities in the tails and this is the case in both panels. Indeed,

if we compare densities across panels, we also note that for higher ρ the empirical distributions

of both estimators are even more precise and centerd around the true value.

Figure 7: Empirical densities of estimators

Tables (2)-(10) report simulation results for models estimated using linear versions of the av-

erages of network range and standard deviation. For each combination of parameters and

correction we estimate four models, according to the lags used. Results concern the empirical
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mean, standard deviation and coverage of each estimator over the simulation sample. Results

can be summarized as follows:

1. Statistics for β1 display extreme stability across all estimators and models, with β̂1 = .4,

ˆs.e.β̂1
≈ .04 and empirical coverage approaching the nominal one. The only exception is

given by the models using just one lag in the instrument matrix for the estimator using

no correction for unobserved heterogeneity.

2. The estimator for ρ which uses no correction for unobserved heterogeneity displays sub-

stantial bias, while estimated standard errors are generally higher as compared with the

estimators employing some correction and empirical coverages are really low. There does

not seem to emerge any pattern related to the combination of network parameters as con-

cerning estimated standard errors, though the bias is higher for γ1 = 1. Again, models

using just one lag in the instrument exhibit substantial instability.

3. Comparing statistics for the two correction proposed, the estimator using the network

range prevails on that using network standard deviation over all statistics considered.

In particular, estimated standard errors and empirical coverage are never, respecevitly,

higher and lower for the former and, as concerning coverage, the estimator considering the

range lies around .9 only for γ1 = 1, then approaching nominal coverage. The estimator

using network standard deviation (henceforth n.s.d.) is relatively more biased than that

using the range, though represents a sensible improvement with respect to the estimator

considering no correction, the bias lying around (.09, ..06). Indeed, the bias of the range

estimator is really small for those parameters combinations in which γ1 = 2 and lies

around +/ − .03 for, respectively, γ1 = 1 and γ1 = 3. Further, results are substantially

stables across models using different lags and, somewhat surprisingly, also models using

just one lag perform well over the statistics considered.

Motivated by the stylized evidence of the previous section, in Tables (11)-(13) we report results

from using 2nd order polynomial corrections for both range and n.s.d. for combination of

parameters involving γ1 = 3. The performances of the estimators based on both corrections

sensibly improve (the improvement is especially notable for the n.s.d. estimator), even though

standard errors are sligthly higher.

We now make an attempt to compare both linear and polyonomail range and n.s.d. estimators

with fixed-effects (ẁıthin) and first-differencing estimators which, indeed, are generally used to

cope with correlated individual and time-invariant effects21. We use the same settings as of the

previous results and focus models using two and four lags in the instrument matrix, only to

avoid proliferation of results. Tables (14)-(22) report the results, where, the first four columns

report mean squared errors (MSE), while the fifth to the eighth column report empirical mean

as reference. Rows refer to estimators. We try to summarize results as follows:

21See, for instance, Wooldridge [2010]
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1. MSE for β1 is always close or equal to zero, no matter the estimator, the model of the

combinations of network paramaters.

2. MSE of both linear and non-linear correction estimators are almost alway close to zero

for γ1 = 2, 3 irrespectively of the number of lags used. For γ1 = 1, linear corrections

estimators perform better in a MSE sense than the non-linear counterparts22, while the

latters have better performances for models using four lags. Nonetheless, even in those

cases, they always outperform in a MSE sense either fe and fd estimators, sometimes in

a non-negligible manner.

3. Fe and fd estimators generally display lower MSE in models using four lags and it is also

generally true that fe estimator performs better than fd estimator. For models using two

lags, both estimators lie around .1 in the best case scenario, which is for combinations of

network parameters fixing γ1 = 3 . Analogously, as concerning four lags models, fe and

fd estimators get really close to the set of network corrections estimators only for γ1 = 3.

In Tables 23-31 we repeat the same comparison exercise for ρ = .7. So, the purpose of those

results is twofold: on one side we assess the performance of the network corrections estimators

for stronger effects associated to the network multiplier; at the same time we evaluate those

estimator against fe/fd counterparts once more. The previous results are confirmed and rein-

forced. In particular: network corrections estimators are everywhere equal or really close to

zero, while fe/fd start getting close to zero when the model is estimated using four lags and

γ1 = 2, 3, while they almost never get close to zero when we use a two lags model.

Finally, Tables 32-40 report MSE and empirical mean for the parameters of interest under the

scenario in which unobserved heterogenous components also correlate with x1. We set again

ρ = .3. Rows 1 and 2 refer to estimator which, respectively, do not correct neither source of

endogeneity and correct for endogenoues x1 only. Our main concern is actually on β1; in this

respect the results are satisfactory in that the correction is effective, no matter the model or the

combination of network parameters. Moving attention to the parameters, we can appreciate

that with no correction, β1 is upward biased. Lastly, we note that this further correction

also benefits ρ in a MSE sense, as we can appreciate by looking the rows considering network

corrections (this time paired with the correction using time average of x1).

6 Concluding remarks

We propose an approach to estimate models with network interactions in the presence of indi-

vidual unobserved heterogeneity. The latter may impact the formation of ties and/or exogenous

effects, thereby undermining identification of the associated parameters. In a panel setting, we

22Again, this is in line with the anecdotal evidence drawn before.
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device a way to cope with these sources of endogeneity by relying on observable variations.

When exogenous effects are concerned, one can control for unobserved heterogeneity by in-

cluding time-averages of the endogenous variables in the systematic part of the model. When

unobserved individual traits affect the process of network formation, it is possible to explore the

role of network statistics affected by those unobserved traits. This is desirable and probably

unavoidable, at least from a dimensionality standpoint. As we have seen, if one would like

to manage each link as standalone, this implied to device as many corrections - or, any other

remedy - as the number of potential links. This is pointless, as long as one has an easy and

effective alternative at hand.

Such possibility seems to be not fully explored yet. Still, the network literature has emphasized

the importance of network statistics, though it is actually crucial to focus on statistics displaying

variation over individuals. We derive a 2SLS estimator where where we address simultaneity

bias using instruments provided by the product between successive powers of the network

matrix and the matrix of exogenous covariates and then complement the identification strategy

with the control approach highlighted above in order to cope with unobserved heterogeneity.

Identification issues are always a concern when using instruments based on the network matrix,

although in the current context it is less so, because of some intrinsic properties of the network

structure. In this respect, a full derivation of a model of network formation is beyond the scope

of this work; indeed, we have reported some descriptive analysis documenting insights about the

“behavioural”aspects of the implied network structure and the effective role of network statistics

in explaining unobserved variation. This approach can be easily extended to accomodate more

general error structures - including, for instance, group unobservables.

The method we propose is also easy to implement as long as one has information on the structure

of the relevant network. In this respect, it is worth stressing that, in principle, one does not need

to have full access to entire structure of links, as availability of the aforementioned statistics

would suffice as long as one has some (consistent) prior on the relevant network.

In a panel setting, we assess the performances of our method via a Monte Carlo exercise, in

which we consider various combination of models and intensities of network interactions. We

further account for different intensities of the social multiplier and separately assess the cases

in which unobserved sources hit the network structure only or act on exogenous effects as well.

Focusing on the former case, we underline that our approach may be also applied when a simple

cross-section is available, which makes it even more valuable under data constraints.
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Appendix 1: Tables

1. Baseline results using linear corrections for endogenous network

Table 2: Models performances using linear corrections

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. .38 .33 .19 .42 .40 .40

std. err. 152.94 .14 .15 .82 .04 .04

cover. .28 .91 .86 .96 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .86 .34 .21 .40 .40 .40

std. err. .17 .13 .14 .05 .04 .04

cover. .15 .89 .88 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .84 .33 .22 .40 .40 .40

std. err. .14 .12 .14 .04 .04 .04

cover. .14 .89 .88 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .84 .33 .22 .40 .40 .40

std. err. .14 .12 .13 .04 .04 .04

cover. .13 .89 .88 .95 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=1, γ2=-1; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.

Table 3: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. -.45 .33 .18 .42 .40 .40

std. err. 83.92 .14 .15 1.07 .04 .04

cover. .31 .90 .85 .96 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .83 .33 .21 .40 .40 .40

std. err. .21 .13 .14 .05 .04 .04

cover. .16 .89 .87 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .84 .33 .22 .40 .40 .40

std. err. .15 .13 .14 .04 .04 .04

cover. .14 .89 .88 .94 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .84 .33 .22 .40 .40 .40

std. err. .14 .12 .14 .04 .04 .04

cover. .14 .90 .88 .94 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=1, γ2=-2; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.
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Table 4: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. -4.62 .33 .18 .47 .40 .40

std. err. 4168.24 .14 .16 26.87 .04 .04

cover. .32 .90 .84 .96 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .85 .33 .20 .40 .40 .40

std. err. .20 .13 .15 .05 .04 .04

cover. .17 .89 .86 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .83 .33 .21 .40 .40 .40

std. err. .15 .13 .14 .04 .04 .04

cover. .15 .91 .87 .94 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .83 .32 .21 .40 .40 .40

std. err. .14 .13 .14 .04 .04 .04

cover. .14 .91 .87 .94 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=1, γ2=-3; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.

Table 5: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. .43 .29 .20 .38 .40 .40

std. err. 11.43 .12 .13 .32 .04 .04

cover. .21 .93 .88 .95 .95 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .68 .29 .23 .40 .40 .40

std. err. .16 .11 .12 .05 .04 .04

cover. .15 .94 .90 .95 .95 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .66 .29 .24 .40 .40 .40

std. err. .13 .10 .11 .05 .04 .04

cover. .14 .93 .90 .95 .95 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .66 .29 .24 .40 .40 .40

std. err. .12 .10 .10 .05 .04 .04

cover. .14 .94 .90 .95 .95 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=2, γ2=-1; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.
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Table 6: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. -.40 .28 .20 .60 .40 .40

std. err. 752.00 .12 .13 26.86 .04 .04

cover. .21 .93 .87 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .68 .29 .23 .40 .40 .40

std. err. .20 .11 .12 .05 .04 .04

cover. .15 .93 .89 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .67 .29 .23 .40 .40 .40

std. err. .13 .10 .11 .05 .04 .04

cover. .14 .94 .89 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .66 .29 .24 .40 .40 .40

std. err. .11 .10 .10 .05 .04 .04

cover. .14 .94 .91 .94 .95 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=2, γ2=-2; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.

Table 7: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. .61 .28 .20 .37 .40 .40

std. err. 43.78 .13 .14 1.55 .04 .04

cover. .23 .93 .86 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .68 .29 .22 .40 .40 .40

std. err. .16 .11 .12 .05 .04 .04

cover. .16 .94 .88 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .67 .29 .23 .40 .40 .40

std. err. .13 .10 .11 .05 .04 .04

cover. .15 .94 .88 .94 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .66 .29 .24 .40 .40 .40

std. err. .12 .10 .11 .05 .04 .04

cover. .15 .94 .89 .94 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=2, γ2=-3; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.
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Table 8: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. 1.21 .25 .19 .37 .40 .40

std. err. 21.09 .12 .13 2.03 .04 .04

cover. .20 .92 .85 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .63 .27 .22 .40 .40 .40

std. err. .14 .10 .11 .05 .04 .04

cover. .13 .93 .90 .94 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .61 .27 .24 .40 .40 .40

std. err. .11 .09 .10 .05 .04 .04

cover. .13 .94 .90 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .60 .27 .24 .40 .40 .40

std. err. .10 .09 .09 .05 .04 .04

cover. .14 .94 .90 .94 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, gamma1=3, γ2=-1; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.

Table 9: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. -.77 .25 .19 .46 .40 .40

std. err. 86.47 .12 .13 7.96 .04 .04

cover. .21 .92 .85 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .63 .27 .22 .40 .40 .40

std. err. .14 .10 .11 .05 .04 .04

cover. .15 .94 .90 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .61 .27 .23 .40 .40 .40

std. err. .11 .10 .10 .05 .04 .04

cover. .14 .94 .91 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .60 .27 .24 .40 .40 .40

std. err. .10 .09 .09 .05 .04 .04

cover. .16 .94 .91 .95 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=3, γ2=-2; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.
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Table 10: Models performances using linear corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. -.12 .25 .18 .39 .40 .40

std. err. 44.05 .13 .13 1.30 .04 .04

cover. .22 .92 .85 .96 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .62 .27 .22 .40 .40 .40

std. err. .15 .10 .11 .05 .04 .04

cover. .16 .94 .89 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .60 .27 .23 .40 .40 .40

std. err. .11 .10 .10 .05 .04 .04

cover. .15 .93 .90 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .59 .27 .24 .40 .40 .40

std. err. .10 .09 .09 .05 .04 .04

cover. .16 .94 .91 .95 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=3, γ2=-3; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.

2. Results using polynomial corrections

Table 11: Models performances using 2nd order polynomial corrections

Estimating Equations
ρ=.3 β1=.4

no +range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. 1.21 .29 .31 .37 .40 .40

std. err. 21.09 .18 .20 2.03 .04 .04

cover. .20 .93 .93 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .63 .30 .30 .40 .40 .40

std. err. .14 .13 .14 .05 .04 .04

cover. .13 .93 .93 .94 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .61 .30 .30 .40 .40 .40

std. err. .11 .12 .12 .05 .04 .04

cover. .13 .94 .93 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .60 .29 .30 .40 .40 .40

std. err. .10 .11 .11 .05 .04 .04

cover. .14 .93 .93 .94 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=3, γ2=-1; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.
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Table 12: Models performances using 2nd order polynomial corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. -.77 .29 .30 .46 .40 .40

std. err. 86.47 .18 .21 7.96 .04 .04

cover. .21 .93 .92 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .63 .29 .30 .40 .40 .40

std. err. .14 .13 .14 .05 .04 .04

cover. .15 .93 .93 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .61 .29 .30 .40 .40 .40

std. err. .11 .12 .12 .05 .04 .04

cover. .14 .93 .93 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .60 .29 .30 .40 .40 .40

std. err. .10 .11 .11 .05 .04 .04

cover. .16 .94 .95 .95 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=3, γ2=-2; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.

Table 13: Models performances using 2nd order polynomial corrections (cont’d)

Estimating Equations
ρ=.3 β1=.4

no range sd no range sd

y = Gyρ+ xβ1 +α+ ε

Gy = Gxφ+Gα+ ξ

coeff. -.12 .29 .29 .39 .40 .40

std. err. 44.05 .19 .22 1.30 .04 .04

cover. .22 .92 .93 .96 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
2∑

l=1

Glxφl +
2∑

l=1

Glαρl + ξ

coeff. .62 .29 .29 .40 .40 .40

std. err. .15 .13 .14 .05 .04 .04

cover. .16 .93 .93 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
3∑

l=1

Glxφl +
3∑

l=1

Glαρl + ξ

coeff. .60 .29 .30 .40 .40 .40

std. err. .11 .12 .12 .05 .04 .04

cover. .15 .93 .93 .95 .94 .94

y = Gyρ+ xβ1 +α+ ε

Gy =
4∑

l=1

Glxφl +
4∑

l=1

Glαρl + ξ

coeff. .59 .29 .29 .40 .40 .40

std. err. .10 .11 .11 .05 .04 .04

cover. .16 .94 .95 .95 .94 .94

N=100, T=4, groups=10; values of network parameters: γ0=0, γ1=3, γ2=-3; Z∼ N(1,3); X∼ AR(1),

AR par=.8; columns refer to models where, respectively, no correction is applied, range or standard

deviation are used to proxy unobserved heterogeneity.
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3. Comparison across corrections, within (fe) and first-differencing (fd) estimators (ρ = .3)

Table 14: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.57 0.00 0.42 0.00 0.86 0.40 0.84 0.40

range 0.02 0.00 0.02 0.00 0.34 0.40 0.33 0.40

sd 0.04 0.00 0.03 0.00 0.21 0.40 0.22 0.40

range (pol.) 0.11 0.00 0.07 0.00 0.22 0.40 0.24 0.40

sd (pol.) 0.09 0.00 0.06 0.00 0.26 0.40 0.27 0.40

fe 0.74 0.00 0.09 0.00 0.39 0.40 0.34 0.40

fd 0.27 0.01 0.11 0.01 0.34 0.40 0.34 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-1; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators

Table 15: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.74 0.00 0.41 0.00 0.83 0.40 0.84 0.40

range 0.02 0.00 0.02 0.00 0.33 0.40 0.33 0.40

sd 0.04 0.00 0.03 0.00 0.21 0.40 0.22 0.40

range (pol.) 0.11 0.00 0.07 0.00 0.22 0.40 0.24 0.40

sd (pol.) 0.09 0.00 0.06 0.00 0.26 0.40 0.27 0.40

fe 0.19 0.00 0.09 0.00 0.35 0.40 0.33 0.40

fd 0.27 0.01 0.11 0.01 0.34 0.40 0.34 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-2; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators
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Table 16: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.72 0.00 0.40 0.00 0.85 0.40 0.83 0.40

range 0.02 0.00 0.02 0.00 0.33 0.40 0.32 0.40

sd 0.04 0.00 0.04 0.00 0.20 0.40 0.21 0.40

range (pol.) 0.11 0.00 0.07 0.00 0.23 0.40 0.25 0.40

sd (pol.) 0.10 0.00 0.06 0.00 0.26 0.40 0.27 0.40

fe 0.15 0.00 0.09 0.00 0.34 0.40 0.33 0.40

fd 0.22 0.01 0.10 0.01 0.34 0.40 0.34 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-3; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators

Table 17: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.66 0.00 0.37 0.00 0.68 0.40 0.66 0.40

range 0.01 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

range (pol.) 0.01 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd (pol.) 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

fe 0.13 0.00 0.05 0.00 0.31 0.40 0.32 0.40

fd 0.17 0.02 0.05 0.01 0.30 0.40 0.32 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-1; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators
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Table 18: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.79 0.00 0.36 0.00 0.68 0.40 0.66 0.40

range 0.01 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

range (pol.) 0.01 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd (pol.) 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

fe 0.19 0.00 0.05 0.00 0.30 0.40 0.32 0.40

fd 0.17 0.01 0.06 0.01 0.33 0.40 0.33 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-2; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators

Table 19: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.64 0.00 0.35 0.00 0.68 0.40 0.66 0.40

range 0.02 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd 0.03 0.00 0.02 0.00 0.22 0.40 0.24 0.40

range (pol.) 0.02 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd (pol.) 0.03 0.00 0.02 0.00 0.22 0.40 0.24 0.40

fe 0.19 0.00 0.05 0.00 0.31 0.40 0.31 0.40

fd 0.13 0.01 0.05 0.01 0.33 0.40 0.32 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-3; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators
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Table 20: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.65 0.00 0.32 0.00 0.63 0.40 0.60 0.40

range 0.01 0.00 0.01 0.00 0.27 0.40 0.27 0.40

sd 0.02 0.00 0.01 0.00 0.22 0.40 0.24 0.40

range (pol.) 0.02 0.00 0.01 0.00 0.30 0.40 0.29 0.40

sd (pol.) 0.03 0.00 0.02 0.00 0.30 0.40 0.30 0.40

fe 0.08 0.00 0.03 0.00 0.31 0.40 0.31 0.40

fd 0.10 0.01 0.04 0.01 0.32 0.40 0.32 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-1; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators

Table 21: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.66 0.00 0.32 0.00 0.63 0.40 0.60 0.40

range 0.01 0.00 0.01 0.00 0.27 0.40 0.27 0.40

sd 0.02 0.00 0.01 0.00 0.22 0.40 0.24 0.40

range (pol.) 0.03 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd (pol.) 0.03 0.00 0.02 0.00 0.30 0.40 0.30 0.40

fe 0.09 0.00 0.03 0.00 0.32 0.40 0.31 0.40

fd 0.10 0.01 0.04 0.01 0.32 0.40 0.32 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-2; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators
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Table 22: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction variables (cont’d)
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.71 0.00 0.32 0.00 0.62 0.40 0.59 0.40

range 0.01 0.00 0.01 0.00 0.27 0.40 0.27 0.40

sd 0.02 0.00 0.02 0.00 0.22 0.40 0.24 0.40

range (pol.) 0.03 0.00 0.02 0.00 0.29 0.40 0.29 0.40

sd (pol.) 0.03 0.00 0.02 0.00 0.29 0.40 0.29 0.40

fe 0.08 0.00 0.03 0.00 0.32 0.40 0.31 0.40

fd 0.12 0.01 0.04 0.01 0.33 0.40 0.32 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-3; Z∼ N(1,3);

X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iv): linear and non-linear range as proxy, (iii) and (v):

linear and non-linear standard deviation as proxy, (vi) and (vii): fixed effects and first-differencing estimators
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4. Comparison across corrections, within (fe) and first-differencing (fd) estimators

(ρ = .7)

Table 23: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.27 0.00 0.12 0.00 1.01 0.40 0.99 0.40

range 0.01 0.00 0.00 0.00 0.72 0.40 0.72 0.40

sd 0.01 0.00 0.01 0.00 0.66 0.40 0.66 0.40

fe 0.12 0.00 0.04 0.00 0.73 0.40 0.73 0.40

fd 0.22 0.01 0.10 0.01 0.74 0.40 0.73 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators

Table 24: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.20 0.00 0.13 0.00 1.00 0.40 0.99 0.40

range 0.01 0.00 0.01 0.00 0.72 0.40 0.72 0.40

sd 0.01 0.00 0.01 0.00 0.65 0.40 0.66 0.40

fe 0.15 0.00 0.05 0.00 0.72 0.40 0.72 0.40

fd 0.14 0.01 0.07 0.01 0.74 0.40 0.74 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators

Table 25: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.21 0.00 0.12 0.00 0.99 0.40 0.99 0.40

range 0.01 0.00 0.01 0.00 0.71 0.40 0.72 0.40

sd 0.01 0.00 0.01 0.00 0.65 0.40 0.65 0.40

fe 0.13 0.00 0.05 0.00 0.72 0.40 0.72 0.40

fd 0.28 0.01 0.06 0.01 0.75 0.40 0.73 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators
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Table 26: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.67 0.00 0.14 0.00 0.90 0.40 0.91 0.40

range 0.00 0.00 0.00 0.00 0.70 0.40 0.70 0.40

sd 0.01 0.00 0.01 0.00 0.66 0.40 0.67 0.40

fe 0.07 0.00 0.02 0.00 0.71 0.40 0.71 0.40

fd 0.15 0.01 0.03 0.01 0.73 0.40 0.72 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators

Table 27: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.64 0.01 0.15 0.00 0.91 0.40 0.92 0.40

range 0.00 0.00 0.00 0.00 0.70 0.40 0.70 0.40

sd 0.01 0.00 0.01 0.00 0.66 0.40 0.67 0.40

fe 0.07 0.00 0.02 0.00 0.71 0.40 0.71 0.40

fd 0.16 0.01 0.02 0.01 0.72 0.40 0.72 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators

Table 28: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.44 0.00 0.13 0.00 0.92 0.40 0.92 0.40

range 0.00 0.00 0.00 0.00 0.69 0.40 0.70 0.40

sd 0.01 0.00 0.01 0.00 0.66 0.40 0.66 0.40

fe 0.25 0.00 0.02 0.00 0.71 0.40 0.71 0.40

fd 0.07 0.01 0.03 0.01 0.71 0.40 0.71 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators
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Table 29: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.26 0.00 0.11 0.00 0.87 0.40 0.87 0.40

range 0.00 0.00 0.00 0.00 0.69 0.40 0.69 0.40

sd 0.01 0.00 0.00 0.00 0.66 0.40 0.67 0.40

fe 0.04 0.00 0.01 0.00 0.70 0.40 0.70 0.40

fd 0.07 0.01 0.03 0.01 0.71 0.40 0.71 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators

Table 30: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.30 0.00 0.14 0.00 0.88 0.40 0.88 0.40

range 0.00 0.00 0.00 0.00 0.68 0.40 0.69 0.40

sd 0.01 0.00 0.00 0.00 0.66 0.40 0.67 0.40

fe 0.03 0.00 0.01 0.00 0.70 0.40 0.71 0.40

fd 0.19 0.01 0.02 0.01 0.71 0.40 0.71 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators

Table 31: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.52 0.00 0.11 0.00 0.88 0.40 0.87 0.40

range 0.00 0.00 0.00 0.00 0.68 0.40 0.69 0.40

sd 0.01 0.00 0.01 0.00 0.66 0.40 0.67 0.40

fe 0.07 0.00 0.01 0.00 0.71 0.40 0.71 0.40

fd 0.07 0.01 0.02 0.01 0.70 0.40 0.71 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.7 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) and (iii): range and standard

deviation as proxy, (iv) and (v): fixed effects and first-differencing estimators
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5. Results using linear corrections for both endogenous network and covariate

(ρ = .3)

Table 32: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction

variables
MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.25 0.01 0.22 0.01 0.71 0.45 0.72 0.45

no 2 0.22 0.00 0.21 0.00 0.74 0.39 0.75 0.39

range 0.01 0.00 0.01 0.00 0.33 0.40 0.33 0.40

sd 0.02 0.00 0.02 0.00 0.23 0.40 0.25 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-

1; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

Table 33: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction

variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.26 0.01 0.21 0.01 0.70 0.46 0.72 0.45

no 2 0.21 0.00 0.21 0.00 0.74 0.39 0.75 0.39

range 0.01 0.00 0.01 0.00 0.33 0.40 0.33 0.40

sd 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-

2; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

Table 34: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction

variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.27 0.01 0.21 0.01 0.70 0.46 0.72 0.45

no 2 0.21 0.00 0.21 0.00 0.73 0.39 0.74 0.39

range 0.01 0.00 0.01 0.00 0.32 0.40 0.32 0.40

sd 0.03 0.00 0.02 0.00 0.22 0.40 0.24 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-

3; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X
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Table 35: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.32 0.01 0.20 0.01 0.62 0.47 0.62 0.47

no 2 0.18 0.01 0.15 0.01 0.65 0.39 0.65 0.39

range 0.01 0.00 0.01 0.00 0.30 0.40 0.30 0.40

sd 0.01 0.00 0.01 0.00 0.25 0.40 0.26 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-

1; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

Table 36: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.31 0.01 0.19 0.01 0.62 0.47 0.62 0.47

no 2 0.18 0.01 0.15 0.01 0.65 0.39 0.65 0.39

range 0.01 0.00 0.01 0.00 0.29 0.40 0.30 0.40

sd 0.01 0.00 0.01 0.00 0.24 0.40 0.26 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-

2; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

Table 37: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.30 0.01 0.18 0.01 0.62 0.47 0.62 0.47

no 2 0.17 0.01 0.15 0.01 0.65 0.39 0.65 0.39

range 0.01 0.00 0.01 0.00 0.29 0.40 0.30 0.40

sd 0.02 0.00 0.01 0.00 0.24 0.40 0.25 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-

3; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

40



Table 38: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.36 0.01 0.19 0.01 0.59 0.47 0.59 0.47

no 2 0.17 0.01 0.13 0.01 0.62 0.39 0.60 0.39

range 0.01 0.00 0.01 0.00 0.28 0.40 0.28 0.40

sd 0.01 0.00 0.01 0.00 0.24 0.40 0.26 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-

1; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

Table 39: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.39 0.01 0.18 0.01 0.58 0.47 0.59 0.47

no 2 0.17 0.01 0.13 0.01 0.62 0.39 0.60 0.39

range 0.01 0.00 0.01 0.00 0.28 0.40 0.28 0.40

sd 0.01 0.00 0.01 0.00 0.24 0.40 0.25 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-

2; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

Table 40: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1 0.31 0.01 0.18 0.01 0.59 0.47 0.58 0.47

no 2 0.17 0.01 0.13 0.01 0.62 0.39 0.60 0.39

range 0.01 0.00 0.01 0.00 0.27 0.40 0.28 0.40

sd 0.01 0.00 0.01 0.00 0.24 0.40 0.25 0.40

N=100, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-

3; Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied , (ii) time average of X used as correction for

endogenous X (iii) and (iv): range and standard deviation as proxy for endogenous network and time average of X used as correction

for endogenous X

Appendix 2: Further results

In this section we present some extensions with respect to the main body of results presented

before. In particular, we let average group dimensionality to vary and we do so by i) increasing

N while keeping fixed the number of groups and ii) keeping N fixed and reducing the number

of groups. The first set of results is contained in Tables 40-48, while Tables 49-57 consider the
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second set of results. For both simulation exercises we compare the finite sample performances

of our proposed estimators with fixed effect estimator.23 The data generating process is the

same described in the simulation section, but for cross-sectional dimension or the number of

groups.

Both set of results confirm the goodness in a MSE sense of the estimators using network

statistics to correct for the presence of unobserved heterogeneity. Either we consider the range

or the standard deviation of the network, MSEs are extremely similar, no matter the lag-length

used and the size of the network parameters γ1 and γ2. This holds even if empirical means for

the two estimators may differ.

Results for the reference within-estimator are more complex, although the patterns are similar

for results considering N=200 and those considering G=5. They clearly underperform for

models estimated using two lags as instruments; when lag-length is four, their performance gets

closer to “correction-based” estimators as the size of γ1 increases.

1. Results for N=200

Table 41: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.50 0.00 0.42 0.00 0.88 0.40 0.88 0.40

range 0.02 0.00 0.02 0.00 0.41 0.40 0.41 0.40

sd 0.02 0.00 0.01 0.00 0.27 0.40 0.27 0.40

fe 0.17 0.00 0.07 0.00 0.36 0.40 0.34 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 42: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.48 0.00 0.41 0.00 0.87 0.40 0.87 0.40

range 0.02 0.00 0.02 0.00 0.41 0.40 0.41 0.40

sd 0.02 0.00 0.02 0.00 0.27 0.40 0.27 0.40

fe 0.15 0.00 0.07 0.00 0.36 0.40 0.34 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

23We do not report results for the first-differencing estimator, based on the poorer records emerging from the
main set of results.
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Table 43: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.51 0.00 0.40 0.00 0.85 0.40 0.87 0.40

range 0.02 0.00 0.02 0.00 0.41 0.40 0.41 0.40

sd 0.02 0.00 0.02 0.00 0.26 0.40 0.27 0.40

fe 0.15 0.00 0.07 0.00 0.36 0.40 0.35 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 44: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.70 0.00 0.34 0.00 0.76 0.40 0.72 0.40

range 0.01 0.00 0.01 0.00 0.34 0.40 0.33 0.40

sd 0.01 0.00 0.01 0.00 0.27 0.40 0.27 0.40

fe 0.16 0.00 0.03 0.00 0.31 0.40 0.30 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 45: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.75 0.00 0.34 0.00 0.73 0.40 0.73 0.40

range 0.01 0.00 0.01 0.00 0.34 0.40 0.33 0.40

sd 0.01 0.00 0.01 0.00 0.26 0.40 0.27 0.40

fe 0.20 0.00 0.03 0.00 0.30 0.40 0.30 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 46: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.68 0.00 0.33 0.00 0.74 0.40 0.73 0.40

range 0.01 0.00 0.01 0.00 0.34 0.40 0.34 0.40

sd 0.01 0.00 0.01 0.00 0.26 0.40 0.27 0.40

fe 0.50 0.00 0.03 0.00 0.28 0.40 0.31 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect
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Table 47: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1.19 0.00 0.30 0.00 0.68 0.40 0.62 0.40

range 0.01 0.00 0.00 0.00 0.29 0.40 0.29 0.40

sd 0.01 0.00 0.01 0.00 0.24 0.40 0.26 0.40

fe 8.16 0.00 0.02 0.00 0.41 0.40 0.30 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 48: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1.45 0.00 0.30 0.00 0.65 0.40 0.62 0.40

range 0.01 0.00 0.01 0.00 0.29 0.40 0.30 0.40

sd 0.01 0.00 0.01 0.00 0.24 0.40 0.26 0.40

fe 0.20 0.00 0.02 0.00 0.32 0.40 0.31 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 49: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1.10 0.00 0.30 0.00 0.61 0.40 0.63 0.40

range 0.01 0.00 0.01 0.00 0.30 0.40 0.30 0.40

sd 0.01 0.00 0.01 0.00 0.24 0.40 0.25 0.40

fe 0.08 0.00 0.02 0.00 0.31 0.40 0.31 0.40

N=200, T=4, groups=10; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect
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5. Results for G=5

Table 50: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.55 0.00 0.39 0.00 0.83 0.40 0.83 0.40

range 0.02 0.00 0.02 0.00 0.34 0.40 0.33 0.40

sd 0.04 0.00 0.03 0.00 0.22 0.40 0.23 0.40

fe 0.22 0.00 0.12 0.00 0.34 0.40 0.33 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 51: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1.32 0.00 0.38 0.00 0.80 0.40 0.83 0.40

range 0.02 0.00 0.02 0.00 0.34 0.40 0.34 0.40

sd 0.04 0.00 0.03 0.00 0.21 0.40 0.23 0.40

fe 0.21 0.00 0.11 0.00 0.33 0.40 0.34 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 52: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.56 0.00 0.37 0.00 0.81 0.40 0.83 0.40

range 0.02 0.00 0.02 0.00 0.34 0.40 0.34 0.40

sd 0.04 0.00 0.03 0.00 0.21 0.40 0.23 0.40

fe 0.28 0.01 0.10 0.00 0.35 0.40 0.35 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=1, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect
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Table 53: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.61 0.00 0.32 0.00 0.67 0.40 0.64 0.40

range 0.01 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

fe 0.40 0.00 0.06 0.00 0.31 0.40 0.30 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 54: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.85 0.00 0.31 0.00 0.66 0.40 0.64 0.40

range 0.01 0.00 0.01 0.00 0.29 0.40 0.29 0.40

sd 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

fe 0.19 0.00 0.06 0.00 0.29 0.40 0.30 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 55: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1.07 0.00 0.30 0.00 0.65 0.40 0.65 0.40

range 0.01 0.00 0.01 0.00 0.29 0.40 0.30 0.40

sd 0.02 0.00 0.02 0.00 0.23 0.40 0.24 0.40

fe 0.15 0.00 0.04 0.00 0.30 0.40 0.30 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=2, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 56: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.79 0.00 0.29 0.00 0.62 0.40 0.58 0.40

range 0.01 0.00 0.01 0.00 0.27 0.40 0.27 0.40

sd 0.02 0.00 0.02 0.00 0.22 0.40 0.24 0.40

fe 0.09 0.00 0.04 0.00 0.30 0.40 0.29 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-1;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect
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Table 57: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 0.67 0.00 0.27 0.00 0.62 0.40 0.58 0.40

range 0.01 0.00 0.01 0.00 0.27 0.40 0.27 0.40

sd 0.02 0.00 0.02 0.00 0.22 0.40 0.24 0.40

fe 0.09 0.00 0.03 0.00 0.29 0.40 0.30 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-2;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect

Table 58: MSE and mean of parameters for models estimated using 2 and 4 lags of interaction
variables (cont’d)

MSE Mean

ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags) ρ (2 lags) β1 (2 lags) ρ (4 lags) β1 (4 lags)

no 1.19 0.00 0.26 0.00 0.64 0.40 0.58 0.40

range 0.01 0.00 0.01 0.00 0.27 0.40 0.28 0.40

sd 0.02 0.00 0.01 0.00 0.22 0.40 0.24 0.40

fe 0.09 0.00 0.04 0.00 0.29 0.40 0.30 0.40

N=100, T=4, groups=5; true values of structural pars: ρ=.3 β1=.4; true values of network parameters: γ0=0, γ1=3, γ2=-3;

Z∼ N(1,3); X∼ AR(1), AR par=.8; rows stand for: (i): no correction applied ,(ii) and (iii): range and standard deviation as proxy

for endogenous network (iv): fixed effect
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