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Abstract

We investigate the heterogeneous effects of daily particular matter (PM) pollu-
tion on Italian hospitalizations and their costs. We exploit public transportation
strikes as plausibly-exogenous shocks in PM. We find that young individuals, an
arguably healthy age group, exhibit economically meaningful responses to changes
in air pollution. A higher prevalence of pollution-induced hospitalizations also ex-
ists among the elderly, low educated individuals and migrants coming from low
income countries. Our results imply a large role for differential avoidance behav-
ior driving heterogeneous marginal effects. PM exposure also affects the intensive
margin since pollution-induced hospitalizations are not only more frequent but
they are characterized by a higher complexity, generating additional costs.
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1 Introduction

Air pollution contributes to serious illness, premature death and lost productivity, es-

pecially in urban areas (Graff Zivin and Neidell, 2012, He et al., 2018, Isen et al., 2017,

Schlenker and Walker, 2015, Simeonova et al., 2019, among others). While the health

effects of air pollution are well documented, we know very little about how concentration-

response functions vary across different groups and socio-economic status (SES). Expo-

sure to air pollution translates into costs through an individual-specific damage function.

According to Hsiang et al. (2019) the damage function is closely related to SES, rais-

ing concerns about environmental justice (Banzhaf et al., 2019, Lavaine, 2015, Neidell,

2004). Socio-economic factors interact with vulnerabilities through two major chan-

nels: heterogeneous sensitivity (i.e. baseline health) and heterogeneous compensatory

behavior (i.e. avoidance and defensive investments (Deschenes et al., 2017, Moretti and

Neidell, 2011)). Therefore, to properly quantify the welfare costs of air pollution, it is

necessary to account for both baseline health and individual actions to avoid pollution

exposure.

In this paper we estimate the heterogeneous health effects of particulate matter

(PM), one of the most diffuse and harmful air pollutants, on urgent respiratory hos-

pitalizations. We use these estimates to calculate the cost of PM exposure for various

population groups in Italy, a country with strict environmental regulation and moderate

air pollution levels. To derive marginal health effects net of avoidance behavior, we ex-

ploit public transportation (PT) strikes as an instrumental variable (IV) for endogenous

air pollution. PT strikes are an ideal instrument in our setting: they create plausibly-

exogenous shocks in air pollution concentration due to unexpected traffic congestion but

do not prevent individuals from engaging in their daily routines. In addition, PT strikes

in Italy are frequent and affect a very large portion of the at-risk population, allowing

for a large-scale analysis.

Our paper improves on previous work in several ways. We first offer a simple con-

ceptual framework to show how compensatory behavior may affect hospitalization costs
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of pollution for a given individual exposure and sensitivity. This framework allows us to

clarify the channels through which our empirical findings should be interpreted, disentan-

gling the different roles of heterogeneous sensitivity versus heterogeneous compensatory

behavior. We analyze the costs of exposure to air pollution examining heterogeneity

across educational attainment, migration status, and age. For this purpose, we consider

the universe of hospitalizations rather than a subset of patients from a particular in-

surance plan or geographical area. The institutional context offers two benefits. First,

the Italian health system is publicly provided, with minimum frictions for accessing the

healthcare. Second, the cost of health treatment is largely homogeneous across individ-

uals, so it is unlikely that differentials in the expected cost of treatment are generating

sample selection. Importantly, our estimation procedure disentangles the extensive and

the intensive margins of pollution effects, considering, respectively, the number of hospi-

talizations and their unit costs. We thus show that hospitalizations arising from higher

PM concentrations are not only more likely to occur, but also more complex to deal

with. Our large-scale empirical analysis uses data for all major Italian cities between

2013 and 2015 and employs state-of-the-science data on PM10 concentrations.

We find that particle pollution instrumented by PT strikes causes an increase in

urgent respiratory hospitalizations: a one standard deviation (s.d.) increase in PM10

(corresponding to 10.37 micrograms per cubic meter) causes an additional 0.55 hospital-

izations per 100,000 residents. Importantly, we find that moderately young populations

(aged 15–44) exhibit economically meaningful and statistically significant responses to

changes in air pollution, implying a large role for differential avoidance behavior driving

heterogeneous marginal effects. Moreover, we find a higher prevalence of pollution-

induced hospitalizations among low educated individuals and migrants coming from low

income countries.

We then examine to what extent traffic-born adverse air quality affects the complex-

ity of hospitalizations. We find that one additional s.d. in average PM10 concentration

increases the average unit cost for asthma hospitalizations by 84.4%, suggesting that

higher pollution levels make hospitalizations not only more frequent but also more com-
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plex. Likewise, one additional s.d. of PM10 causes an 18.6% increase in average unit

cost for chronic obstructive pulmonary disease (COPD) hospitalizations. Considering

both the extensive and the intensive margins, we estimate that a daily increase of one

s.d in PM10 is associated with an additional 2,603 euros of medical spending per 100,000

individuals, representing a 45% increase in the average daily expenditure for respiratory

hospitalizations. We find that for young people the spending increase is 4,837 euros

per 100,000 individuals, while for the elderly it is 8,774. While the estimates might

be downward biased for the elderly due to residual unobserved avoidance behavior, for

the young they represent the true health cost of pollution exposure. We summarize

the heterogeneity of these effects with a heat map showing how cities with different age

structures and different PM exposures can face similar health costs.

Based on these results, we offer back-of-the-envelope calculations of the total daily

monetary costs of a one s.d. increase in PM10 for the 17.8 million residents in the

111 municipalities we consider, which amounts to 331,843 euros. 85% of this spending

increase comes from the extensive margin (hospitalization count); the remaining 15%

comes from the intensive margin (increased complexity of hospitalizations). Overall,

the total daily costs of a one s.d. increase in PM10 represent approximately 0.4% of the

total daily health expenditure in Italy.

From a policy perspective, our results on health impacts for the 15–44 age group are

the most novel and informative. While we do not explicitly estimate the distinct roles

of heterogeneity in sensitivity and heterogeneity in compensatory behavior, for this age

group we can infer their relative roles. The fact that the young, arguably the most

healthy age group is significantly harmed by PM10 exposure suggests that they opti-

mally respond to their low marginal health sensitivity, choosing low levels of defensive

behavior. These novel results imply an important role for economic incentives deter-

mining defensive spending and compensatory behaviors, which may ultimately lower the

exposure an individual faces, conditional on ambient conditions. Additionally, our find-

ings concerning the extensive and the intensive margins unveil incremental complexity

of hospitalizations, hence additional costs, in response to air pollution.
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2 Particulate matter and health

Air pollution has well documented negative affects on human health. Most of the ev-

idence on the health effects of air pollution relates to particulate matter (PM), ozone

(O3) and nitrogen dioxide (NO2). Due to its large diffusion and ability to penetrate the

lungs and blood stream, PM is considered “the most pernicious form of air pollution”

(Chay et al., 2003). PM consists of pollution particles of different sizes and composi-

tions directly emitted into the atmosphere. When inhaled, PM can cause cardiovascular

and pulmonary disease, and premature death (WHO, 2013). In particular, PM10 con-

sists of particles that are less than 10 micrometers (µm) in aerodynamic diameter, and

originates from both natural and anthropogenic sources, though most particle pollu-

tion comes from fuel combustion from motor vehicles (diesel in particular) and heating

(EEA, 2016). Many countries are trying to regulate PM levels, which requires an ac-

curate assessment of the health effects of marginal pollution concentrations. Because

of road traffic, with over 80% of trips made by private cars, particle pollution in Italy

represents a major source of concern for policy makers and an important parameter for

improving air quality (EC, 2019).1

Estimating the causal effect of PM on health is complicated by widely-documented

methodological issues, including omitted variable bias and measurement error. Several

quasi-experimental studies have tried to overcome these challenges by introducing plau-

sibly exogenous sources of variation in pollution (Dominici et al., 2014). Recently, an

influential body of literature has investigated the effect of air pollution on healthcare

utilization, focusing on NO2, CO and PM (Deryugina et al., 2019, Halliday et al., 2015,

Schlenker and Walker, 2015, among others). These studies find that air pollution has

a strong adverse effect on hospitalizations and mortality for young children and the

elderly, and quantifies the costs of air pollution. While the literature has benefited im-

mensely from their findings, each of these studies addresses a single subpopulation or

1Italy has failed to address air quality standards, especially for PM10. As a consequence, the
European Commission in 2017 requested Italy to take appropriate actions in order to ensure good air
quality and safeguard public health (EC, 2017).
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geographical area. Moreover, most studies take place in settings featuring frictions in

access to healthcare and differential costs of treatment, where selection issues make it

difficult to estimate the cost of pollution.

3 Heterogeneous effects of air pollution

There is a growing literature on the distributional consequences of environmental condi-

tions and environmental policy (see Hsiang et al. (2019) for a recent review) that focuses

on the distribution of the marginal effect of pollution. This distribution can be explained

by two main mechanisms. First, individuals facing the same ambient conditions may

exhibit differential health responses due to biophysical differences in vulnerability, such

as age and baseline health. Second, individuals facing the same ambient conditions

may exhibit differential health responses due to their optimal investments in defensive

expenditures or compensatory behaviors, such as avoiding time spent outside during

high pollution periods (Deschenes et al., 2017, Graff Zivin and Neidell, 2013). These

two mechanisms have very different welfare implications. On the one hand, knowing the

extent of biological effects makes it possible to design policies that can encourage opti-

mal levels of avoidance behavior. On the other hand, knowing the extent of deliberate

avoidance is necessary to properly quantify the economic impact of pollution, and to

construct an optimal policy response. Although we do not explicitly estimate the two

distinct effects, we lay out a theoretically-grounded framework that allows us to inter-

pret our empirical results for various groups of individuals as a function of biological

versus avoidance heterogeneity.

Avoidance behavior relates to transient actions that individuals take to reduce their

realized exposure to pollution (Graff Zivin and Neidell, 2013). Given the lack of ad-

equate data, avoidance behavior often constitutes an important source of endogeneity

in empirical analysis. Avoidance responses in our setting are typically represented by

non-market behavior, like spending time indoors (Hsiang et al., 2019, Moretti and Nei-

dell, 2011). Since these behaviors are very difficult to measure, it is infeasible for us to
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explicitly quantify them. To estimate the health effect of air pollution net of avoidance

behavior we make some simple assumptions. We first assume that avoidance is costly

and, in our setting, its cost is mostly related to the disutility associated with reallocating

time across activities, or to the opportunity cost of time. Then, we assume that this

cost is heterogenous across groups of individuals. For instance, the most susceptible

individuals are more likely to adapt to their sensitivity to air pollution and may opti-

mally decide to avoid staying outdoors on high pollution days. Conversely, individuals

engaged in working and schooling activities have limited scope for avoidance, since the

labor and schooling supply is inelastic to relatively normal day-by-day fluctuations in

air pollution. A similar argument holds for materially disadvantaged individuals, who

are also less likely to compensate for the negative effects of bad air quality (Adler and

van Ommeren, 2016, Cournane et al., 2017, Forastiere et al., 2007, Germani et al., 2014,

Halliday et al., 2015, Isen et al., 2017, Lavaine, 2015, McCubbin and Delucchi, 1999,

Sun et al., 2017, among others).

Based on Graff Zivin and Neidell (2013) and Deschenes et al. (2017), we formulate

a simple framework, where we let e denote ambient pollution concentrations, a ∈ [0, 1]

captures avoidance behaviors, and f [e(1 − a)] indicates health damage as a function of

the actual pollution experienced (i.e. if there is full avoidance, a = 1 and all ambient

pollution exposure is avoided). Suppose each subpopulation k has a differential response

to a given level of pollution, leading to different health damage functions fk[e(1 − a)].

Avoidance is costly and this cost differs across subgroups of individuals. A representative

agent in population k will choose the amount of avoidance that minimizes total damages,

including the cost of avoidance:

min
a

fk[e(1 − a)] + ck(a). (1)

First order conditions imply

−
∂fk

∂ẽ
=

∂ck

∂a
, (2)
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where ẽ = e(1 − a) is the actual pollution the agent experiences net of avoidance be-

havior. Optimal avoidance a∗
k(e) satisfies the first order condition, and will differ across

each subpopulation k if the sensitivity to effective pollution and/or the cost of avoid-

ance differs across these k groups. If their avoidance costs are convex, given ambient

concentrations e, populations that are less sensitive to effective pollution or that face a

high avoidance cost will optimally choose a lower level of avoidance a∗
k. Whenever we

observe a marginal effect of health outcomes with respect to a given level of pollution

e, we measure the total derivative of health with respect to PM concentrations e, net of

any avoidance behavior a, which differs across groups k:

dfk

de
=

∂fk

∂e
+

∂fk

∂a

∂a∗
k

∂e
. (3)

The first term of this total derivative is the group specific sensitivity (∂fk

∂e
), which

we assume has a positive sign. The interaction term is the optimal avoidance behavior

(∂fk

∂a

∂a∗

k

∂e
), where we assume the partial derivative of the health damage function with

respect to avoidance behavior has a negative sign and the partial derivative of avoidance

behavior with respect to pollution has a positive sign. Since health damage increases

with sensitivity and decreases with avoidance behavior, dfk

de
is an underestimate of ∂fk

∂e
.

If avoidance behavior is sufficiently intense, it may entirely offset a high biological sen-

sitivity, delivering negligible overall health effects; conversely, if there is no avoidance

behavior, the biological effect and the overall health effect will coincide.

In this study we exploit this framework in order to offer a theoretically-grounded

intuition for the interpretation of our results. While with the data at hand we are unable

to directly observe optimal compensatory behavior a∗
k, we build on previous literature

that documents a nonlinear gradient of dfk

de
with age, finding significant effect of pollution

on health of infants and the elderly, and none or negligible effects for young adults. We

thus exploit an empirical strategy that allows to make plausible assumptions about

avoidance behavior on various age groups in relation to air pollution exposure. The
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exogenous source of variation in PM that we exploit are PT strike events, which deliver

unexpected increases in traffic-born pollution on strike days. As we explain in Section

5, this strategy allows us to focus on time-varying behavioral responses to shocks in

pollution, minimizing concerns about residential sorting and other structural responses

to high levels of pollution. One should notice that while in our setting pollution peaks

are modest and hard to notice, congestion is a visible and straightforward correlate

of pollution, hence the resulting increase in pollution levels may be public knowledge,

potentially motivating individuals to engage in avoidance behavior. Nevertheless, PT

strikes occur on regular working/school days, and the associated avoidance behavior

among working-age individuals and school-age children is negligible, as their opportunity

cost of avoidance is very high. Therefore, even though we do not explicitly control

for avoidance behavior, focusing on the 15–44 age groups within our empirical setting

uncovers the effect of air pollution holding avoidance behavior fixed, i.e. the biological

effect.

4 Data

We combined administrative data on urgent respiratory hospitalizations for the pe-

riod from 2013 to 2015 with pollution concentration data and information on public

transportation strikes at the day-municipality level. Our data is at the finest level of

disaggregation, represented by 8,090 municipalities, even though we only use the 111

province capital cities for our core analysis (see Figure 4). For each of the 1,095 days

between 2013 and 2015, and for each of the 111 administrative municipalities, we con-

sider a balanced panel consisting of 121,545 observations. In this section we describe

the main features of the data; see Appendix Table A.1 for additional information.2

2In January 2010 there were 8,090 Italian municipalities (corresponding to Local Administrative
Units according to the European classification of territorial units), which were the building blocks of
Italian provinces corresponding to the NUTS 3 level of the Eurostat classification. Each province is
governed by a municipality. Following several administrative reorganizations, the number of municipal-
ities dropped to 7,954 in 2018, with both the number of provinces and their capital cities undergoing
organizational changes: the number of Italian provinces increased from 107 to 110; during the period
between 2010 and 2018, these provinces were headed by 111 unique municipalities (in some cases the
administration moved to a different municipality, e.g. the case of Cesena-Forlí). In our analysis, we
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4.1 Hospitalization Data

The Hospital Discharge Data (SDO) from the Italian Ministry of Health is our main

data source. These data provide information on the universe of hospitalizations deliv-

ered by public hospitals and publicly funded private hospitals. The universal provision

of healthcare in Italy is a favorable setting for our analysis since the Italian health system

is publicly provided, with minimum frictions for accessing the healthcare. In addition,

the cost of health treatment is largely homogeneous across individuals, so it is unlikely

that differentials in the expected cost of treatment are generating sample selection. The

records contain socio-demographic information (age, gender, nationality, place of birth

and residence, educational attainment) along with clinical information (diagnoses, pro-

cedures performed, hospital transfers, discharges) and hospitalization details (hospital

type and specialty). We restrict the data to urgent hospitalization episodes, disregarding

programmed or elective hospital stays.3

Hospital discharge records include information on the primary diagnosis determin-

ing each hospitalization, but they also list up to five secondary diagnoses describing

other conditions. We limit our analysis to hospitalizations with a primary diagnosis for

respiratory diseases following the International Statistical Classification of Diseases and

Related Health Problems v.9 (ICD-9 codes).4 This sample restriction is more stringent

than the approach adopted by Schlenker and Walker (2015), who classify a patient as

suffering from a specific illness if either the primary or one of the secondary diagnoses

codes lists a respiratory illness, but it allows us to precisely identify pollution-induced

events. For instance, since traffic congestion correlates not only with air pollution but

also with driving safety, the hospitalization of a car accident victim who also suffers from

asthma may be wrongly attributed to air pollution, violating the exclusion restriction

consider all 111 municipalities that constituted an administrative city in Italy at any point during our
sample.

3We use programmed hospitalizations to test the robustness of our results (see Section 6.5).
4ICD-9 codes for Respiratory diseases: Acute respiratory infections (460-466), Other diseases of the

upper respiratory tract (470-478), Pneumonia and influenza (480-488), Chronic obstructive pulmonary
disease and allied conditions (490-496), Pneumoconioses and other lung diseases due to external agents
(500-508), Other diseases of respiratory system (510-519).
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of our IV strategy.

During the period 2013–2015, there were roughly 30 million hospitalizations in 8,090

municipalities in Italy, and approximately 11.2 million (39%) were urgent. Approxi-

mately 31% of the urgent hospitalizations were delivered to residents of the 111 munic-

ipalities we include in our sample. A subset of 11.7% of hospitalizations, corresponding

to a total of 403,859 events, was due to primary respiratory disease diagnoses, which is

the main outcome in our study.

In our core analysis, we count the number of daily hospitalizations when municipal-

ity of residence matches the municipality of hospitalization.5 While Italian residents are

free to seek healthcare anywhere in Italy, it is unlikely that patients with urgent cases

of respiratory disease are traveling farther than necessary for medical care. Moreover,

administrative towns are more likely to receive inflows of workers from minor surround-

ing towns than to generate worker outflows. According to our calculations based on

individual surveys concerning aspects of daily living conducted by the Italian National

Institute of Statistics (ISTAT), in 2013 only 11% of residents living in big Italian cities

commuted outside their municipalities of residence each day; most of these workers are

better educated and between 30 and 45 years old. We exclude hospitalizations delivered

to non-residents of administrative towns and hospitalizations delivered to non-residents

outside administrative towns.6 While individuals commuting to administrative munic-

ipalities are also exposed to the environmental conditions in their host towns and, as

a consequence, are more likely to be hospitalized in these towns, we are not able to

convincingly make any assumption about their actual exposure to air pollution. We

thus collapse the data by day of hospitalization × patient’s municipality of residence

cells, for a total of 121,545 observations covering 111 major Italian cities from 2013 to

2015.

In order to assess the heterogeneous effects of pollution exposure, we divide the

data into five age groups (0–14, 15–24, 25–44, 45–64 and over 65), three educational

5The patient’s municipality of residence matches the hospital’s municipality in 98.7% of cases.
6Before applying this restriction, we carefully test for the mobility response of residents on PT strike

days to see if strike episodes affect how likely individuals are to seek hospitalization outside their town
of residence. Results are available upon request.
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levels (primary, secondary and tertiary school attainment) and migrant status. We

further distinguish between migrants from low vs. high income countries, based on

the World Bank country classification.7 We obtain daily counts of hospitalizations for

the entire population and for each of the socio-economically relevant subgroups. Our

final outcomes are daily municipality-level hospitalization counts expressed per 100,000

residents. When we consider specific age, education or migration groups, we adjust the

relevant resident population to that particular group.

In order to quantify the economic burden of the pollution exposure on direct health

expenditure, we calculate individual hospitalization costs. Based on patient primary

and secondary diagnoses, surgical intervention, diagnostic and therapeutic procedures,

and individual age and sex, an algorithm adopted by the Italian Department of Health

assigns each hospitalization episode into a specific Diagnosis Related Group (DRG).

DRGs classify hospital patients by assigning a cost and a standard length of hospital

stay to each hospitalization .8 Additionally, each DRG includes information on a sup-

plementary cost applied to days exceeding the standard length of stay. We exploit this

information to construct individual hospitalization costs by assigning the cost of the

DRG to each individual, rescaled to account for any extra hospital stay days. This

procedure allows us to capture a more accurate cost pattern based on the severity of

each hospitalization episode. We then collapse the individual costs by municipality ×

day of hospitalization cells. We express the total costs in two ways: per hospitalization

and per capita. In the first case, we calculate the average unit cost (AUC) of a respi-

ratory disease hospitalization as the ratio of total costs of urgent cases of respiratory

disease to the number of hospitalizations for each day/municipality. We calculate the

unit costs for both the overall pool of respiratory disease and for each disease type. The

average unit cost is a comprehensive measure of the average complexity of respiratory

hospitalizations faced by a municipality on a given day. In the second case, we calculate

7According to World Bank (2014), high income countries are countries with per capita gross national
income (GNI) in the previous year > 12, 746$, while those who fall below the threshold are in the low-
middle income countries group. For further details see https://blogs.worldbank.org/opendata/

updated-income-classifications.
8DRG prices are the key parameters through which hospitals are financed by the central adminis-

trations.
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the per capita respiratory hospitalization costs as the ratio of total costs of urgent cases

for respiratory disease to the number of residents for each municipality × day cell. This

represents the total average cost (TAC) since it captures changes in both the unit cost

and the count of hospitalizations. We refer to increased healthcare costs from a higher

number of hospitalizations as the extensive margin (TAC), those arising from a higher

unit cost of hospitalizations as the intensive margin (AUC), and the combination of the

two as the total cost of pollution-induced hospitalizations.

Table 1 presents descriptive statistics for the full sample of hospitalizations and for

each socio-economic subgroup separately. Since all the results come from aggregation

procedures that reduce the relevant variables to rates, we weight observations by the

size of the municipality population (Janke, 2014, Janke et al., 2009, Knittel et al., 2016,

Schlenker and Walker, 2015, among others). We observe an average of two hospitaliza-

tions per day. Hospitalizations are highest for the elderly and children. Both the overall

and group-specific counts are extremely variable, with s.d.s larger than the means. The

number of hospitalizations for individuals with only primary education is higher than

for other education attainment categories. Finally, the number of hospitalizations is

lower for migrants, although citizens from low-income countries undergo hospitalization

more frequently than those from high-income countries.

The average AUC for an urgent respiratory hospitalization is 2,856 euros, and this

cost varies according to the specific respiratory problem: 1,648 euros for asthma, 2,237

euros for COPD, and 2,884 euros for pneumonia. The average TAC for urgent respi-

ratory problems amounts to 0.05 euros/day per resident in the 111 municipalities we

consider. For context, the total Italian healthcare expenditure amounts to 5 euros per

resident/day, so urgent respiratory hospitalizations account for approximately 1%.9

9The public healthcare fund (FSN) amounts to 110,000 million euros/year for a population of about
60 million.
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4.2 Air Pollution Concentrations

Our core analysis focuses on PM10, particle air pollutants ten micrometers or smaller in

aerodynamic diameter. This pollutant is the most relevant in our setting since a large

fraction of PM10 is generated by road traffic, and PM10 is widespread in urban areas.

PM10 is also relevant from a policy perspective since recent official statistics report that

its concentration has decreased more slowly than other traffic-related pollutants such as

carbon monoxide (CO) and nitrogen dioxide (NO2) (EEA, 2019). Fuel combustion is the

primary source of PM10, and most fuel combustion comes from road traffic. Non-exhaust

emission sources related to traffic, such as mechanical abrasion of brakes and tires and

corrosion of vehicle components, also contribute to PM formation. These particles,

often referred to as ‘road dust’, may be suspended or resuspended in the atmosphere

as a result of tire shear and vehicle-generated turbulence. While our analysis focuses

on PM10, we also consider other traffic-related pollutants directly emitted from exhaust

such as NO2 and CO, and ozone (O3), a secondary pollutant formed from a reaction

between NO2, hydrocarbons and sunlight. We use data on these additional pollutants

in our robustness checks in Section 6.5.

Data on PM10 and O3 concentrations come from the Copernicus Atmosphere Mon-

itoring Service (CAMS) managed by the European Centre for Medium-Range Weather

Forecasts (ECMWF).10 These data come from a combination of direct observation from

satellites, monitoring stations and reanalysis.11 Air pollution reanalysis data offer three

substantial improvements over monitoring stations measures. First, as discussed in

Filippini et al. (2019), using monitoring stations data assumes that the pollution con-

centration is homogeneous within a given administrative unit, and this assumption is

unlikely to hold especially in the Italian case. Therefore, individuals living far from the

10At the time we are writing, CAMS data are not available for CO and NO2 during the period
2013–2015. In order to test if PM10 drives our main results in a multi pollutant model setting, we
supplement CAMS data with monitoring station data for CO and NO2.

11Reanalysis is a systematic process for estimating concentrations across a grid by combining different
observational sources such as monitoring stations, satellites, aircraft, ship reports and other inputs
with a climate model. This framework provides a dynamically consistent estimate of the climate and
pollution at each time period and location.
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monitoring stations are likely to be exposed to different pollution levels from those actu-

ally registered, generating a mismatch between the true pollution level and the assigned

one. Second, these estimates are sensitive to the approach used to impute pollution

at aggregate levels; since measurement error is not normally distributed, the direction

of the bias is ambiguous (Lleras-Muney, 2010). Third, there are only a few monitoring

stations and their number and location may vary over time in a non-random way (Fowlie

et al., 2019, Grainger and Schreiber, 2019). CAMS data overcome all these limitations,

providing homogenous information over time and space on a granular geographical area.

CAMS data are reported on a regular grid of about 18×18 km at the Italian latitudes.

In order to obtain administrative-level concentrations for the 8090 Italian municipalities,

we combine CAMS grids with administrative boundaries using a spatial join algorithm

that assigns a grid point to a municipality if the point is contained within the municipal-

ity’s boundary. When a municipality contains more than one grid point, as in the case

of major urban centers, we assign the average value calculated for all the grid points

within that municipality. On the contrary, in the few municipalities where no grid points

fall within their boundaries, we assign a value averaged over the closest grid points.

To test the validity of our reanalysis data and test weather PM is driving our re-

sults, we also collect air pollution concentrations from monitoring stations. We obtain

these data from the Airbase database of the European Environmental Agency (EEA),

which includes validated concentration measures from monitoring stations in a large

number of Italian municipalities (see Section 6.5). Figure 5 plots weekly trends of PM10

concentrations, averaged over the period 2013–2015, with data from both CAMS and

monitoring stations. The two sources follow a similar trend even though concentration

readings from monitoring stations are higher and more variable. The higher variance is

due to the fact that monitoring stations only provide readings in the exact place where

the station is placed, without accounting for air pollution dispersion near the monitor.

Since monitoring stations are not randomly located, the resulting noise is likely to gen-

erate selection bias. Since CAMS data are processed on a regular grid, they provide a

more reliable measure of pollutant concentrations over any geographical area. Table 3
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presents descriptive statistics for the pollutant concentration levels from both sources.

4.3 Public transportation strikes

Italy has been consistently above the average in the European “country-strike league”

(Vandaele, 2011). Indeed, even though transport is one of the essential services and

strikes are explicitly regulated by Law no. 146/1990 and Law no. 83/2000, the Ital-

ian transport sector is strike-prone. Strikes are regulated by the Guarantee Authority

(Commissione di Garanzia), which ensures that citizens’ basic needs are satisfied during

strikes.

We construct a public transportation (PT) strike database by combining informa-

tion provided by the Italian strike commission12 and the Ministry of Infrastructures and

Transport. We use information on strikes that took place at the municipality level,

excluding national and regional PT strikes, and day-long national general strikes. Italy

faced 855 strike episodes in 91 municipalities over the study period, with only a few last-

ing for more than one day. When considering only the 111 administrative municipalities,

we are left with 470 single-day strike episodes distributed across 72 municipalities.

The first three panels of Figure 1 show the distribution of one-day strike activity

across years, months, and day of the week. Strikes tend to take place in all months,

with a significant drop during the summer. Strikes are most likely to occur on Mondays

and Fridays, and we observe a pronounced spike in strikes in 2015. The fourth panel

plots the frequency of strikes with respect to their duration, showing a clear majority

of single-day strikes. We leave out all multi-day strike episodes, due to their lower

effectiveness and different nature. As observed by van Exel and Rietveld (2001), long

strike episodes are likely to generate adaptive behavior, complicating our analysis.

PT strikes affect traffic congestion and pollution levels. This effect is larger for bigger

municipalities where the resident population is more dependent on PT. Several studies

highlight that PT strikes increase traffic density and road congestion as a result of the

switch to private cars (Adler and van Ommeren, 2016, Anderson, 2014, Bauernschuster

12Commissione di Garanzia Sciopero https://www.cgsse.it/web/guest/home
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et al., 2017, van Exel and Rietveld, 2001, among others). We expect the higher depen-

dence on PT in administrative municipalities to generate a larger impact of strikes on

traffic-related PM levels (Basagaña et al., 2018, Bauernschuster et al., 2017, Chaloulakou

et al., 2005, Meinardi et al., 2008, Pereira et al., 2014). Conversely, in smaller munici-

palities where PT serves a limited share of the population, strikes are unlikely to cause

a sufficient variation in traffic congestion and air pollution.

4.4 Local population

Data for the annual local population size are publicly available from ISTAT. Table 4

shows summary statistics for the Italian resident population in the 111 administrative

cities. The total population for the period 2013–2015 amounts to 54,012,341 individuals,

approximately 18 million per year.

4.5 Weather Conditions and Holiday Data

Air pollution concentration data are adjusted for dispersion factors such as weather

conditions. Nevertheless, we still want to control for weather factors since adverse

respiratory health problems are independently related to weather variability, especially

temperature (Deschenes and Moretti, 2009). We therefore collect municipality-specific

weather data from the Gridded Agro-Meteorological dataset managed by Mars-Agri-

4-Cast13. In particular, we use daily average (mean of the minimum and maximum)

measures of temperature, wind speed at 10 meter elevation, and total precipitation.

This database contains meteorological parameters from weather stations interpolated

on a 25×25 km grid.14 We follow the same procedure we applied to air pollution data to

guarantee a homogeneous measure of weather over space and time. We report descriptive

statistics of selected weather parameters in Table 5, while Figure 6 shows trends of the

weather parameters over time. Following Knittel et al. (2016), we flexibly control for

13 http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
14Meteorological data are available on a daily basis from 1975 to the last calendar year, covering EU

Member States, neighboring European countries, and Mediterranean countries.
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weather conditions by including second-order polynomials in our weather variables.15

We also employ data listing school and public holidays, both at the local and the

national level, to control for days when commuting activity is systematically lower.

School holiday data come from the Ministry of Education, Universities and Research; we

retrieved the public holiday dates from a Google search. We then transformed holiday

data into municipality-day dummy variables for when school/public holidays are in

effect. Of the 121,545 day and municipality pairs, 9,657 observations, approximately

8%, refer to a school or a public holiday.16

5 Empirical strategy

Our main goal is to investigate the causal effect of PM10 on urgent respiratory hospital-

izations. OLS fixed effects models in this setting are poorly identified, since variation in

pollution is correlated with many unobservable determinants of health, even when ex-

ploiting within-location variation over time. Day-to-day fluctuations in pollution might

be correlated with how residents choose their daily activities, leading to different health

outcomes. For instance, good weather may encourage individuals to spend more time

outdoors; this may give rise to more traffic congestion but also reduce health adversities.

Therefore, if activity choices are correlated with changes in air pollution, we might see

different health outcomes for reasons completely unrelated to pollution. This funda-

mental flaw leads to bias in simple OLS or fixed effects models and motivates our choice

to use a quasi-experimental identification strategy.17

To identify the causal effect of air pollution, we leverage PT strike episodes to capture

exogenous changes in air pollution concentrations due to shocks in traffic congestion. IV

15We also test alternative weather specifications by including third-order polynomials and by calcu-
lating quantiles of the overall daily distribution of each measure, which are equivalent to the following
bins: for the temperature 68.5°C, 8.51–13 °C, 13.61–17.5 °C, 17.55–22.1°C, ≥ 22.11°C; for rain 0 mm,
0.0005–0.6 mm, 0.60–7.2 mm, 7.24–15 mm, ≥15.1 mm, and for wind 61.5 m/s, 1.51–2 m/s, 2.03–2.59
m/s, 2.60–3.5 m/s, ≥3.53 m/s. These alternative specifications deliver results (available upon request)
that are very similar to our baseline estimates.

16There are 7,659 school holidays and 4,329 public holidays, which overlap in 2,331 cases.
17We report OLS fixed effects model estimates at municipality-day level, which serve as a benchmark

for our quasi-experimental estimates, in Appendix Table A.2.
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estimated has been used in a number of pollution-related studies to reduce bias caused

by measurement error and non-random assignment of pollution exposure (Arceo et al.,

2016, Currie and Walker, 2011, Halliday et al., 2015, Knittel et al., 2016, Schlenker

and Walker, 2015). Recently, Lavaine and Neidell (2017) exploit the French oil refinery

strike in October 2010 to estimate the impact of air pollution on birth outcomes and

respiratory-related hospitalizations. Moreover, Bauernschuster et al. (2017) observe that

transportation strikes in Germany have sizable effects on traffic congestion, increasing

pollution, traffic accidents, travel time and emergency room (ER) respiratory disease

visits.

In Italy, PT strike episodes are a particularly compelling IV. PT strikes in Italy are

relatively frequent and represent a routine event that residents are used to coping with.

Moreover, since the Guarantee Authority ensures that a limited amount of transporta-

tion is guaranteed during the so-called ‘protected hours’ on strike days, PT strikes do

not represent a complete shutdown, but a substantial limitation of the PT network.

This setup is valuable for our analysis because it downplays the possibility that labor

supply or school activity is curtailed on strike days, while providing exogenous shocks to

traffic congestion since a large number of commuters turn to private and rental vehicles.

Traffic congestion results in fuel combustion with tailpipe emissions of PM. Moreover,

the friction resulting from wheel-to-road contact further increases PM levels. Formally,

we specify our two-stage least squares (2SLS) model as

Pirdwy = α+βPTStrikeirdwy+ζWirdwy+hirdwy+γd+δw+ηy+θi+φZid+ρry+εirdwy First stage

(4)

Hirdwy = α+λP̂irdwy+ζWirdwy+hirdwy+γd+δw+ηy+θi+φZid+ρry+µirdwy Second stage

(5)

where Hirdwy denotes the number of urgent respiratory hospitalizations per 100,000 citi-

zens in city i, in region r, on day of the week d, in week of the year w, and in year y. Pirdwy

is the endogenous air pollutant concentration expressed in µg/m3, and PTStrikeirdwy
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is the strike dummy variable. P̂irdwy is the first stage predicted value of Pirdwy, while

Wirdwy and hirdwy are controls for weather conditions (up to a second-order polynomial

in rain, wind-speed and average temperature), and a set of dummies indicating school

and public holidays. Moreover, θi, γd, δw, ηy are city, day of week, week of year and year

fixed effects that account for time-invariant differences between municipalities, seasonal

fluctuations in exposure due to commuting and time spent outdoor during the week and

effects or recurrent episodes of specific epidemics common to all municipalities.

It is plausible that municipalities or regions experienced different changes in the like-

lihood of striking due, for instance, to differential changes in economic opportunities,

while also experiencing differential trends in pollution and baseline health. Moreover,

seasonality in health, pollution, and striking probability may be different across mu-

nicipalities or regions. We thus include an additional set of municipality-specific time

trends Zid, and region×year fixed effects ρry that control for spatially-varying secular

temporal effects. We weight all estimates by municipality population size and cluster

standard errors on municipalities to allow for correlation within municipalities exposed

to similar levels of air pollution (Cameron and Miller, 2015).18

An important concern for our IV setting is the potential correlation between various

pollutants co-emitted from the same source. Other than PM, transport vehicles emit CO

and NO2. One might argue that if PT strikes change the concentrations of more than

one pollutant simultaneously, the exclusion restriction is violated. We thus directly test

this hypothesis in a multi-pollutant model. Finally, to further support our identification

strategy, in Section 6.5 we present an extensive set of falsification tests and alternative

model specifications.

18We also test alternative weights including the number of hospitalizations at the municipality level.
We obtain similar results (available upon request).
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6 Results

6.1 Public Transportation Strikes and PM10

To begin with, we analyze the relationship between PM10 and PT strikes in an event

study framework. We augment our empirical strategy in Equation 4 with distributed

lags and leads constructed according to Figure 7. PT strikes are indexed on a time scale

τ , where we define τ = 0 as the event date, τ = [−3, −1] as the pre-event window, and

τ = [+1, +4] as the post-event window. We frame the actual timing of each strike on

this synthetic timeline and estimate the following equation:

Pirdwy =
4∑

τ=−3|τ Ó=−1

βτ PTStrikeτ +ζWirdwy +hirdwy +γd +δw +ηy +θi +φZid +ρry +εirdwy,

(6)

where Pirdwy denotes the endogenous PM10 concentrations, τ = [−3, +4] represents

the time scale, the vector Wirdwy controls for weather conditions, hirdwy is a set of

dummies indicating school and public holidays, γd, δw, ηy and θi are a set of fixed effects,

Zid contains municipality-specific time trends and ρry are region-year fixed effects, as

described in Equation 4 and Equation 5. Finally, εirdwy is an idiosyncratic error term.

On a PT strike day (τ = 0), we observe an average increase of 0.90 µg/m3 in PM10 and a

gradual leveling off in the next 3 days. These results use the sample of all municipalities

where a strike event takes place and are not directly comparable with the first-stage

results obtained from the full sample of the 111 administrative municipalities in the IV

setting.

Table 6 presents first stage results across different model specifications, controlling

for holidays (columns (3) and (4)) and weather conditions (columns (2) and (4)).19 In

the most demanding specification in column (4), which includes dummies for public

and school holidays and weather controls, the PM10 coefficient is 0.83 µg/m3 with fully

statistically significance. Larger coefficients obtained in less demanding specifications

19The first-stage F-statistics (calculated using the Cragg-Donald F-test) are well above 10, clearing
the rule-of-thumb hurdle for a weak first stage (Staiger and Stock (1997) and Stock and Yogo (2002)).
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(column (1)-(3)) are not surprising since PM10 is highly responsive to weather conditions

and to programmed daily holidays when economic activity is reduced (Knittel et al.,

2016, Schlenker and Walker, 2015). These estimates are in line with the generalized

differences-in-differences estimates of Bauernschuster et al. (2017), who show that strikes

significantly increase PM10 concentration peaks. Even though these authors find a larger

increase in PM10 levels on strike days (5 µg/m3 during peak hours), their results refer

to more rare and harsh strike events occurring in Germany.

6.2 Effects of PM10 on respiratory hospitalizations

Table 7 reports second stage coefficients, i.e the effect of PM10 on total urgent respiratory

hospitalizations. Our most complete specification (Column 4) shows that one additional

unit of µg/m3 in PM10 increases the number of hospitalizations by 0.074 units per

100,000 residents. This result is in line with recent causal evidence on the effect of air

pollution on similar health problems (Halliday et al., 2015, Knittel et al., 2016, Schlenker

and Walker, 2015, e.g.), but larger than the estimates obtained from other identification

strategies. If we consider causal estimates of particle pollution (PM10 or PM2.5), Halliday

et al. (2015) have the most comparable results. They find that a unit increase in PM10

causes a 5.7% increase in ER hospitalizations which, in our case, amounts to 3.6%.

This difference is likely caused by our different focus: Halliday et al. (2015) analyze

the impact of volcanic particle pollution, whereas our estimates relate to PM10 directly

emitted from exhaust and road dust. The authors offer a broad discussion of possible

differences between pollution originating from various sources and regions, concluding

that direct comparisons of relative toxicity of PM likely depend on other characteristics

of local industrial activity, weather factors, and concomitant air pollutants. Moreover,

Ward (2015) find that a one s.d. increase in PM concentration causes a 4% increase in

children hospitalization, which is close to our estimate. Other direct comparisons should

be interpreted with caution since we address the contemporaneous health response,

whereas most of the literature focuses only looks at mortality, which captures only the

most severe health damage.
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6.3 Heterogeneous effects of PM10

Our results so far refer to the overall population, without accounting for heterogeneity

in how exposure to air pollution shocks affects individual health. There is abundant ev-

idence that adverse health effects of air pollution are larger for infants and the elderly.

Indeed, early childhood is a period of rapid growth when organ systems are particu-

larly susceptible to health shocks (Beatty and Shimshack, 2014, Mudway et al., 2018,

Schwartz, 2004), whereas in the elderly, co-existing chronic disease and cumulative ex-

posure to air pollution increase susceptibility, hospitalization and the risk of mortality

(Janke et al., 2009, Simoni et al., 2015).

We analyze the heterogeneous effects of air pollution on the young and adults, a

topic rarely addressed in the literature. According to our conceptual framework, our

estimated marginal effects recover the total derivative of hospitalization rate with re-

spect to pollution exposure, which includes the age specific health sensitivity to PM10

net of the optimal amount of compensatory behavior. While heterogeneous biophysi-

cal vulnerability is likely to be lowest among the 15–44 age group, they are the most

involved in the labor market and schooling; this attachment limits their scope for avoid-

ance behavior on strike days. Therefore, our marginal effects capture age-specific health

sensitivity to PM10 for this age group. Similarly, we explore the health effects of pollu-

tion on socio-economically disadvantaged groups. If lower education and lower income

give rise to major vulnerability due to greater heterogeneous sensibility or weaker com-

pensatory behavior, the marginal effect on hospitalization rates will capture this group’s

heterogeneous sensitivity to pollution.

Our heterogeneous effects analysis therefore isolates distinct groups of the popula-

tion, based on their age, education and migration status, and evaluates whether their

health penalties, resulting from similar exposure to air pollution, are significantly dif-

ferent. To capture the heterogeneous effects of PM10, we aggregate hospitalizations into

distinct categories, and for each category we create an outcome measure, i.e. the count

of hospitalizations for 100,000 residents in each group. To prevent our estimates from
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conflating age heterogeneity with heterogeneity that is actually driven by the group

characteristics, we include controls for the age structure of each subpopulation. This

allows us to account for the fact that the primary education level population is system-

atically younger than the tertiary education level population. The same argument holds

for migrants from low income countries.

Table 8 presents second-stage results for five age subgroups following Equation 5,

weighted by the size of municipality population for each age group. We find significant

and positive effects in young adults aged 15–24 and 25–44, with a one s.d. increase

in PM10 causing one additional urgent hospitalization for the first group, and 0.44 for

the second group. In interpreting these results, we refer to our conceptual framework,

trying to disentangle sensitivity and compensatory actions. If young individuals are less

sensitive to respiratory consequences and choose their avoidance behavior level in line

with their low biophysical perception and a high avoidance cost faced on strike days,

the positive effect on hospitalization rate is likely to materialize mainly through the

biological effect because of the lack of avoidance actions. In fact, lifestyle patterns are

likely to be inelastic to traffic congestion in the short run due to schooling or work life.

The young thus seem to respond to their low marginal sensitivity and high avoidance

costs by neglecting compensatory investments. The parameter estimate thus confirms

the intuition that the healthiest age group shows evidence of a significant pollution effect

on health likely because it engages in the least avoidance behavior. This suggests an

important role for economic incentives determining compensatory behavior. Conversely,

we find no effects for the 45–64 age group, which might be the result of greater avoidance

by these individuals, offsetting the health damage specific to this age group.

In Table 8 we also observe an increase of 0.24 hospitalizations (statistically significant

at 1%) in the number of urgent respiratory cases for individuals aged 65 and older for

a 1 µg/m3 increase in PM10. If this coefficient is scaled up to one s.d., the effect

amounts to 2.5 additional daily hospitalizations for a one s.d. increase in PM10. This

result is economically meaningful and highly statistically significant. In view of the

heterogeneous sensitivity, the elderly are frequently found to bear clinically relevant
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consequences of pollution. Additionally, this estimate might represent an underestimate

of the true differential sensitivity, as individuals belonging to this age group choose their

optimal level of avoidance behavior in line with their high sensitivity and low avoidance

cost.

Disadvantaged individuals are likely to suffer from worse baseline health and are also

likely to bear very high avoidance costs on work days, with related health inequalities

representing the consequences of differences that are largely beyond individual control

(Neidell, 2004, among others). To offer a deeper understanding of the unequal health

response to air pollution spikes, we estimate PM10 hospitalizations in relation to SES

proxied by educational attainment and migrant status.

Our estimates in Table 9 show a particularly pronounced effect of PM10 on urgent

hospitalizations among individuals with only primary education attainment; a one s.d.

increase in PM10 leads to 1.5 additional respiratory hospitalizations for this subpopu-

lation. The same estimate for the subpopulation with a secondary education is 0.40

hospitalizations and is only weakly statistically significant. Under the assumption that

our the marginal effect for the low-educated individuals, net of their age, is to a narrow

extent affected by avoidance behavior, our estimates are close to the biological sensi-

tivity of this particular socio-economic group. The steep slope of the damage function

caused by PM10 for low educated individuals implies that a policy aimed at reducing

air pollution or promoting compensatory behaviors is likely to have sizable effects for

this group. Conversely, the flat slope for the secondary and tertiary education groups is

not informative about the heterogeneous sensitivity of these two subpopulations to air

pollution, since their biological response might be mitigated by avoidance behavior that

the two groups are better able to adopt in order to minimize their health damage.

Finally, we address disparities in the adverse impact of air pollution on health for

migrants. We report our results in Table 10 and point to the non-significant effects

of PM10 on urgent respiratory hospitalizations when considering foreign citizens from

countries with low-middle and high income based on the World Bank classification (see

Section 4). Since the low-middle income group aggregates countries with substantially
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different socio-demographic characteristics, we provide a deeper analysis focusing on the

group of African migrants who come from Morocco, Egypt, Nigeria, Senegal and Tunisia

and represent the vast majority of low-income migrants in Italy. Although our estimates

are only weakly statistically significant, this particular group of nationalities seems to

be adversely affected by air pollution, with a one s.d. increase in PM10 causing 0.53

additional hospitalizations. When interpreting the coefficient estimate, it is important

to underline that the number of daily hospitalizations for migrants is, on average, much

lower than for the general population, i.e. 0.30 vis-à-vis 2.05. The damage caused

by air pollution is thus larger for migrants since a one s.d. increase in PM10 doubles

their hospitalization rate. Nonetheless, a potential caveat of this result is that a large

group of migrants has limited access to healthcare. Full healthcare coverage in Italy

is only granted to foreign citizens who register with the national healthcare service

(SSN), which is not possible without formal residency. Since low-income migrants tend

to be in the country informally, they face major difficulties in obtaining residency status

and consequently healthcare coverage. Considering this differential cost of treatment,

hospitalizations of migrants that we observe in the data might be a severe underestimate

of the actual healthcare demand.

6.4 Health costs of air pollution

In this part of the analysis we quantify the costs from the strike-induced increases in

PM concentrations. Costs are the ultimate policy parameter and the recent literature

has focused on quantifying them (see Section 3). We expand the analysis of the health

consequences of air pollution by measuring hospitalization complexity proxied by the

average unit cost (AUC) reported in Table 2, which represents a novel margin for quan-

tifying the health costs of air pollution. The literature has often focused on extensive

margin measures, such as the number of hospitalizations for specific diagnoses, and the

associated total costs calculated by multiplying the differential by an average of DRG

tariffs. In our analysis we study the true cost of each discharge, which allows us to

capture the heterogeneous complexity of hospitalizations. While the impact of PM on
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the number of hospitalizations is an obvious cost of air pollution, the complexity of

hospitalizations represents the intensive margin, a cost that has been overlooked so far.

Table 11 shows the impact of PM10 on the AUCs of an urgent hospitalization with

primary diagnosis related, respectively, to any respiratory problem, asthma, pneumonia

or COPD. While we find no statistically significant effects on the complexity in the

overall group of respiratory problems, in the case of hospitalizations for asthma one

additional µg/m3 in PM10 concentration increases the unit cost by 194 euros which,

represents approximately 11.8% of the baseline AUC of asthma episodes. We find no ef-

fect on the complexity of urgent hospitalizations for pneumonia, which is in line with the

clinical literature analyzing the long-term effects of air pollution on pneumonia, though

evidence on contemporaneous effects is scant (Ji et al., 2017). We find a significant

impact on COPD costs, where a one µg/m3 increase in PM10 rises the hospitalization

cost by 65 euros, which represents a 2.9% increase compared with the baseline COPD

AUC.

These results lead us to conclude that exposure to higher PM10 concentration levels

not only generates more hospitalizations, but it also increases the complexity, hence the

costs, of hospitalizations for asthma and COPD, two important respiratory diseases.

The heterogeneous evidence across various hospitalization types is similar to findings

in the clinical literature (DeVries et al., 2016, Soriano et al., 2017). Moreover, the

evidence on hospitalization complexity suggests that previous studies solely analyzing

expenditures deriving from the increase in the number of hospitalizations are likely to

underestimate the total health costs of particle pollution.

Finally, considering both the extensive and intensive margins, we estimate the effect

of PM on total per capita healthcare costs. Table 12 shows that a daily increase of

one µg/m3 in PM10 is associated with an additional 251 euros of spending per 100,000

individuals. If scaled up to one s.d., these figures correspond to 45% of the average daily

expenditure on urgent respiratory hospitalizations.

Moreover, in Table 13 we report the same set of results for each age group, showing

that the costs from air pollution are unequally distributed across age groups. These
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estimates are in line with the evidence on the extensive margin presented in Table 8. In

particular, we find that a daily increase of one µg/m3 in PM10 causes an additional 466

euros of spending per 100,000 individuals for the 15–24 age group, and 163 euros for the

25–44 age group. Again, these estimates refer to the marginal healthcare cost defined

as the difference between biological sensitivity specific to each age group, and net of the

avoidance behavior adopted by individuals. Sizable health costs of pollution for young

individuals are a novel finding. The low investments in avoidance that we expect for the

younger individuals suggest that the cost estimates are the true health costs of pollution

for the 15–44 subpopulation; their economically relevant and statistically significant

magnitudes highlight the scope for policy interventions promoting compensatory actions.

Finally, we find the largest effect for the elderly, with one additional µg/m3 of PM10

causing an increase of 846 euros of spending per 100,000 individuals.

To better appreciate the heterogeneity of the total costs for urgent respiratory hospi-

talizations resulting from PM10 exposure, in Figure 3 we plot excess hospital costs corre-

sponding to a one s.d. increase in PM10 at the municipality level. For each municipality

we obtain predictions from the age-specific model estimates (Table 13), computed at

one s.d. increase in PM10 and the demographic structure observed in 2015. We smooth

the predictions on a regular grid of age/s.d. combinations. The resulting figure is a heat

map, where darker tones signal higher excess costs.20 Figure 3 shows how different ages,

in combination with different average PM10 concentration levels, impose similar costs on

the health system. For instance, a one s.d. increase in PM10 among young individuals

in the age group 15–24 in the most polluted municipalities yields comparable health-

care costs as a one s.d. increase in PM10 for the elderly exposed in the least-polluted

municipalities.

Based on these results, we carry out back-of-the-envelope calculations of total daily

monetary costs of air pollution for the 17.8 million residents in the 111 municipalities

20Our predictions are based on semi-elasticities of total urgent respiratory hospital costs. We compute
predictions at each municipality-specific s.d. for the average PM10 concentration. We then apply our
estimates to age-specific averages of total costs and expand them according to the demographic structure
of the 111 municipalities. We smooth the estimates across ages by applying a moving average to the
coefficient estimates. Each age/PM10 combination is then assigned to a tone corresponding to the
specific level in excess expenditure.

28



considered, which amount to 462,737 euros of additional spending for a one s.d. increase

in PM10; this accounts for approximately 0.51% of total public health expenditure in

Italy. Overall, our quantification of the health cost burden of PM pollution represents

a lower bound of the total health costs, since it does not account for the long run and

cumulative effects of pollution. Moreover, daily fluctuations in hospitalizations do not

account for individuals who experience less severe health issues related to pollution,

relying on their primary care physician or staying home sick. Nevertheless, the costs of

hospital care represent an important policy parameter since health expenditures devoted

to hospitalizations represent approximately 60% of the national healthcare budget in

Italy and are the least cost-effective healthcare service.

6.5 Robustness checks

In addition to the main set of estimates we presented above, we carry out a number of

sensitivity checks to confirm the robustness of our empirical findings. To begin with,

we validate our results based on pollution reanalysis data by comparing our estimates

with estimates based on PM measurements from monitoring stations. We subsequently

construct a multi-pollutant model to address possible threats to the exclusion restriction

in our IV setting due to co-emission of other pollutants. We develop a number of

parallel tests. We first falsify the treatment variable, then the outcomes and, finally, the

treatment assignment. Then, we alter our identification strategy by looking at multi-day

strikes and a larger estimation sample including all Italian municipalities. Moreover,

we check that our analysis is insensitive to alternative weighting schemes. We also

correct our findings for multiple hypotheses testing. Finally, we run our IV estimates

in a Poisson regression setting. All these tests validate our identification strategy and

confirm our main results.

Estimates based on pollution data from monitoring stations. In order to vali-

date the reanalysis air pollution data employed in our study, we perform a benchmarking

exercise in which we replicate the baseline results using air pollution data from moni-
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toring stations. Data from monitoring stations have several limitations. Nevertheless,

they are used in much of the existing literature (Janke, 2014, e.g.). We collect data from

the European Environmental Agency (EEA) AirBase database, which includes concen-

tration measures for traffic-related pollutants and the time span in our analysis. We

aggregate the data by municipality and day to obtain concentration averages that are

consistent with our original dataset. Our final sample is limited to municipalities in

which at least one monitoring station operates on a regular basis, which results in 66

administrative cities. Given this data limitation, in order to provide a direct comparison

we also present results of our IV framework using reanalysis data restricted to the same

sample of 66 administrative cities with monitoring stations. When multiple stations are

present in the same municipality, we average their readings. Given the granular texture

of Italian municipalities, we assume that measurement error in pollution assignment is

limited and allows for comparison with our original dataset.21 In the baseline specifi-

cation presented in Appendix Table A.11 we weight our estimates by the municipality

population.22 Our findings, presented in Appendix Table A.11 and Table A.12, suggest

that the effect of a strike is larger when PM is measured by monitoring stations. This

discrepancy is likely driven by the higher concentration values measured by point moni-

tors (see Figure 5). On the contrary, the second stage results are slightly smaller and less

statistically significant than the second stage results from our estimates using CAMS

data. One potential explanation is that measurement error in the standard approach

based on monitoring stations is not negligible when assigning air pollution exposure,

and this measurement error constitutes an attenuation bias.

Multi-pollutant model. As widely discussed in pollution and health papers (De-

schenes et al., 2017, Schlenker and Walker, 2015, among others), it is challenging to

isolate the impact of a single pollutant on health effects, because pollutants tend to be

highly correlated with each other. Since PT strikes causes an increase in PM through

21The average area of an Italian municipality is only 37.3 km2.
22We also weight by the number of monitoring stations in each municipality. These additional results,

though similar in sign and magnitude, are only weakly statistically significant, and are available upon
request.
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increased traffic congestion due to changes in commuting behavior, it is plausible that

other pollutants emitted by vehicles, such as NO2 and CO, also rise, violating the exclu-

sion restriction. To address this concern we construct a multi-pollutant model where we

test how the traffic congestion related pollutants affect our health outcome. We collect

additional data on other types of emissions and construct a multi-pollutant model. Since

CAMS reanalysis data do not include complete information on all these pollutants, we

employ data from monitoring stations including concentration readings for the three

main traffic-related pollutants, PM10, NO2 and CO.

We construct an alternative IV framework where, in order to simultaneously identify

our 2SLS model with three endogenous pollutants, we interact PTStrike event dummies

with a variable describing the per capita demand for PT. Per capita demand is the

number of passengers served by PT each year relative to the resident population. Cities

relying more on PT are likely to suffer a bigger response in commuting behavior and,

consequently, traffic congestion. Conversely, municipalities making a limited use of PT

are much less exposed to increased pollution levels on PT strike days. We create a

3-level ranking of PT dependence based on the 50th and 75th percentile cutoffs of the

PT demand level variable.23

Since monitoring readings are not available for the full set of 111 municipalities,

we employ two alternate approaches. The first approach uses all available monitoring

readings for an unbalanced panel of day-municipality observations (Panel A), while the

second approach uses only a subsample of municipalities containing all three pollutant

readings available for all 1095 days in only 54 municipalities (Panel B). Appendix Table

14 shows the estimates for four model specifications, where column (1) represents the

single pollutant model for PM10, columns (2) and (3) add CO and NO2 one at a time,

and column (4) reports the results for a three-pollutant model. The estimates of the

effect of PM10 are comparable to the results in our baseline specification. These findings

23Precisely, based on the distribution of PT demand registered in the three years of the analysis
weighted by the number of residents of each municipality, we divide each municipality in each year into
below median PT users, between median and third quartile PT users and highest quartile PT users.
We have tried various alternatives to this ranking without substantially changing the results. These
alternative specifications are available upon request.
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suggest that the urgent respiratory health effects are mainly attributable to PM10, and

not to CO and NO2. This is not surprising since we focus on respiratory health damages,

which are mainly responsive to PM10 (WHO, 2006, for a review), while CO impairs the

oxygen carrying capacity of the blood and produces cerebrovascular and cardiovascular

health problems (WHO, 2004).24

Falsification of Treatment—O3 as a Placebo Pollutant. We can check our iden-

tification strategy by exploiting pollutants that are not likely to be significantly affected

by daily fluctuations in traffic. We thus consider the effect of strikes on O3 as a placebo

pollutant. As in Figure 2, in Figure 8 we present the relationship between PT strikes

and O3 in an event study framework. We observe a non-statistically significant decrease

of ozone on strike days. O3 is indirectly generated by emissions but it is created by

a series of chemical reactions between substances present in the atmosphere (precur-

sors), which are present in urban areas regardless of traffic levels on a given day (i.e.

Graff Zivin and Neidell, 2012). There are several motivations that allow us to use O3

as a placebo. First, O3 levels are strongly dependent on sunlight and ambient tem-

perature, with O3 concentrations following strong seasonal patterns. Hence, even when

there is major traffic congestion, weather factors can strongly affect the formation of O3.

Second, O3 has a life span of several days, so higher O3 concentrations can be found in

regions distant from precursor emission sources because of wind. Third, several chemical

O3 destruction mechanisms found in cities are absent from rural areas (Saitanis, 2003).

Consequently, O3 concentrations are often lower in urban areas even though high levels

of precursors are emitted from vehicles (Pires et al., 2012). Finally, O3 levels are much

lower in the morning, when most of the effects of PT strikes take place. We estimate

our baseline specification by substituting PM10 with O3. The results are presented in

24The World Health Organization reports that “Community population studies on carbon monoxide
in ambient air have not found any significant relationship with pulmonary function, symptomatology
and disease” (WHO, 2004, p. 7). While Schlenker and Walker (2015) find effects of CO on respira-
tory urgent hospitalizations, is important to highlight that the authors also label hospitalizations for
cardiovascular health of individuals who have concomitant respiratory conditions as respiratory hospi-
talizations, making it difficult to distinguish between the two health issues, which are often correlated.
Our results, which isolate respiratory health problem, might diverge because of our narrower focus.
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Appendix Table A.5 and show non-significant effects of PT strike on O3.

Falsification of Outcome I—Placebo diseases. We also investigate the effect of

pollution on other diseases that are unlikely to be affected by air pollution. We focus

on Diseases and Disorders of the Nervous System, Diseases and Disorders of the Muscu-

loskeletal System and Connective Tissue, and Diseases and Disorders of the Endocrine,

Nutritional and Metabolic System. The IV estimates are reported in Appendix Table

A.6 and do not provide any statistically significant results.

Falsification of Outcome II—Programmed Hospitalizations for Respiratory

Diseases. An important indirect test for the validity of our identifying assumption

is whether PT strikes also affect programmed hospitalizations for pollution-induced

diagnosis. We thus run our baseline specification on a sample of 132,317 day-hospital

programmed hospitalizations for respiratory disease, singled out according to primary

diagnosis records. The resulting IV estimates are reported in Appendix Table A.7 and

point to no statistically significant effects of PM10 on elective cases. Taken together,

the two falsification tests on the disease type and the hospitalization type reinforce the

identification strategy we use, confirming that a higher PM10 concentration level is the

mechanism through which PT strikes increase respiratory hospitalizations.

Falsification of IV assignment—Placebo Strikes in Unaffected Municipalities.

We conduct a falsification test where we randomly move the strike episodes across mu-

nicipalities. After assigning strikes to municipalities that did not witness strikes on those

days, we rerun our baseline estimation. The results are presented in AppendixTable A.8,

showing no significant effects on PM10 in the non-affected cities.

Multi-Day Strikes and Adaptive Response. Following Bauernschuster et al. (2017),

we test the effects of PT strikes lasting longer than one day. We thus substitute our

IV of one-day strikes with multi-day strike dummy variables. As shown in Appendix
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Table A.9, the first stage effect of multi-day strikes on pollution is weaker than single-

day strikes (0.94 instead of 1.20). This result is in line with the hypothesis of a change

in travel patterns after the first day of a strike since individuals are likely to adapt to

persistent PT stops. At the margin, a multi-day PT strike generates less additional PM

compared with the first day. The second stage results suggest, however, that the effect

of air pollution on urgent respiratory hospitalizations is larger (0.0651 vis-à-vis 0.0527).

This difference may be driven by the cumulative deviation from average levels of pol-

lution, where a prolonged increase of 1 µg/m3 in PM10 could generate larger adverse

effects on health if it persists over several days.

Estimates on All Italian Municipalities Along with the robustness checks pre-

sented above, we estimate our model specification by considering all Italian municipali-

ties, including non-administrative small towns. We construct a balanced panel dataset

for all Italian municipalities. The initial sample has 1,267,367 urgent respiratory hospi-

talizations defined in the primary diagnosis, and a population of 181,601,025 (an average

of 60 million per year) individuals distributed across 8,090 municipalities over 1095 days

(obs.= 8,858,550; n=8,090, t=1,095). The resulting IV estimates, presented in Appendix

Table A.10, confirm the results of our preferred specification using the sample of 111

administrative municipalities.

Additional Checks. Since our dependent variable is initially measured as hospital-

ization count in a given municipality and day, we also estimate an IV Poisson regression

model (Cameron and Trivedi, 2013, Mullahy, 1997, Windmeijer and Santos Silva, 1997)

to account for the non-negative and discrete nature of the data. While in this setting a

Poisson regression model might be more appropriate than a linear model (Park and Oh,

2018, Winkelmann, 2008), it may underestimate the dispersion of the observed counts

because there are too many zeroes in the dependent variable. For the sake of complete-

ness, we still provide the Poisson estimates. Following Schlenker and Walker (2015), we

include the residuals from our Equation 4 (i.e. the effect of PT strikes on pollution)
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as a control variable in Equation 5. In contrast with the baseline model, we do not

employ weights. The results, available upon request, confirm that respiratory disease

hospitalizations are sensitive to PM fluctuations.

We confirm that our results are robust to alternative weighting schemes. We use

specifications without weights and an alternative weighting scheme that includes the

number of hospitalizations at the municipality level instead of municipality population

size. The results, available upon request, are consistent with our main results.

Worker mobility is also a concern in our empirical setting. If traffic congestion is

drives the demand for healthcare away from the affected areas, residents in administra-

tive towns may be willing to access hospitals outside their residence area. In this case,

we may underestimate the treatment exposure, especially for the extensive margin of

hospitalization, since the treated individuals may access healthcare in areas not included

in our identification strategy. However, our results show no evidence in favor of differ-

ential hospital mobility on strike days in strike towns. All these considerations suggest

that our IV is unlikely to cause any sort of endogenous mobility since the out-of-town

flows of residents are negligible and not correlated with any ad-hoc individual actions.

Finally, since different null hypotheses arise in our setting from the heterogeneity

of the effect of pollution across various SESs and age groups, we provide a step down

bootstrap-based procedure for simultaneously testing multiple null hypotheses (Clarke,

2016, Romano and Wolf, 2016). The effects of PM persist significantly under this de-

manding criterion for testing the significance of our results. This last set of evidence is

available upon request.

7 Conclusions

In this study we provide a quasi-experimental investigation of the short-term negative

health effects of exposure to air pollution for different groups. We identify the causal

effect of air pollution by leveraging PT strike episodes occurring in specific city-day

combinations that generate traffic shocks with higher PM10 concentrations.

35



We find that an increase in PM10 induced by PT strikes leads to more hospitalizations

for urgent cases of respiratory disease. Our data allow us to explore the heterogeneity

of this effect in terms of exposure and vulnerability differentials by testing if air pollu-

tion disproportionately affects individuals characterized by lower SES. By disentangling

the impact of age, educational attainment and migrant status, we find that the young

and the elderly generate high hospitalization costs for urgent cases of respiratory dis-

ease. Moreover, the impact of air pollution is–ceteris paribus–stronger for individuals

with only elementary education and is attenuated for individuals with higher education,

whereas it disappears for those with tertiary education. When considering migrant sta-

tus, we find weak evidence of additional detrimental effects of air pollution for migrants

from low-income African countries.

From a policy perspective, our results on health impacts for moderately young in-

dividuals (aged 15–44) are the most novel and informative. While we do not explicitly

estimate the distinct roles of heterogeneity in sensitivity vis-à-vis heterogeneity in com-

pensatory behavior, the fact that the young, healthiest age group is found to be harmed

from PT strike-induced PM10 exposure suggests that they optimally respond to their

low marginal health sensitivity, choosing low levels of avoidance behavior. Quantifying

this differential is of directly policy relevance. Since deliberative avoidance is costly,

controlling for it in the estimation of health costs of air pollution leads to a proper

characterization of the associated social welfare cost.

Overall, our results imply that policy makers should perceive air pollution not only as

a technological issue, but also as a socio-economic phenomenon. Therefore, the strict and

reinforcing gradient between air pollution and SES stresses the role of complementary

policies aimed at improving the “boundary conditions” that are able to substantially

reduce or amplify these effects, particularly for younger individuals. Economic incentives

determining defensive spending and compensatory behaviors may ultimately lower the

exposure an individual faces, conditional on ambient conditions.

A pivotal part of our analysis decomposes healthcare costs into the extensive and

intensive cost margins of respiratory hospitalizations caused by PM10. We find that
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pollution not only causes additional costs due to more hospitalizations, but we also show

that hospitalizations tend to be more complex and expensive, costing approximately 8%

more than an average hospitalization for asthma for a one µg/m3 increase in PM10.

These findings imply that quantifying the healthcare burden deriving from PM should

take into account not only the number of healthcare services accessed, but also the

complexity of the services.

Our study has some limitations. One of them is common to all studies relying on

hospital data. Because the opportunity cost of time differs across individuals, for a

given health impact, different groups may differentially choose to take the time to go

to the hospital to get treatment. For example, a retired elderly patient may be more

likely to go to the hospital than a younger working-age individual, whose time cost

is higher. Nevertheless, in our setting we can plausibly assume that the differential

expected cost of treatment does not constitute an issue, at least for the non migrant

population. In this respect, while our estimates of the effect of air pollution on migrants

represent a novel finding, this result should be interpreted with caution. Migrants from

low-income African countries, who represent a large fraction of migrant inflows in Italy,

face important barriers to accessing healthcare since their irregular status precludes

them from applying for public healthcare. Although our results suggest that SES plays

an important role both in the biological effect and economic cost of air pollution, our

evidence on migrants should be interpreted as a lower bound estimate of the true effect.
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Figures

Figure 1: Distribution of Strike Events Across Time.

Notes: The data come from Commissione di Garanzia Sciopero https://www.

cgsse.it/web/guest/home and the Ministry of Infrastructures and Transport.
The figures refer to municipality level PT strikes, excluding national and regional
PT strikes, and amount to 470 single-day PT strike episodes distributed across
72 municipalities.
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Figure 2: The effects of PT strikes on PM10 in an event study framework.

Notes: The figure presents coefficient estimates from Equation 6. We
regress the daily PM10 concentrations on a PT strikes indexed in event
time τ = 0, controlling for up to a second-order polynomial in weather
conditions, holiday dummies, municipality and time fixed effects (day-of
week, week-of-year and year), municipality specific time trends and region-
year fixed effects. Estimates are weighted by municipality population size.
The dashed lines represent 95 percent confidence intervals. The results
refer to 4,156 observations covering 72 municipalities for 470 strike events.
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Figure 3: Heat Map of Excess Hospitalization Costs By Age and PM10 level.

Notes: The figure shows excess hospitalization costs at the municipality level, for different PM10

increases (in s.d.) and ages. Predictions are based on semi-elasticities of total urgent respiratory
hospital costs.
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Figure 4: Map of the 111 Italian Municipalities
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Figure 5: Comparison of PM10 Weekly Average Levels from CAMS and Monitoring Stations Data

Figure 6: Trends of Weekly Respiratory Hospitalization Rate and Weather Conditions.
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Figure 7: Timeline for the Event Study
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Figure 8: The Effects of PT Strikes on O3 in an Event Study Framework
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Tables

Table 1: Summary Statistics - Hospitalization Data

Mean Std. Dev. Min Max

All ages 2.05 1.30 0 26.35
Ages below 14 2.12 3.52 0 102.24
Ages 15 - 24 0.39 1.66 0 74.34
Ages 25 - 44 0.35 0.94 0 33.25
Ages 45 - 64 0.82 1.35 0 46.58
Ages 65 and above 6.05 4.51 0 105.45
Primary education 3.18 2.11 0 46.16
Secondary education 0.58 1.12 0 28.67
Tertiary education 0.46 1.88 0 85.06
Low income countries 0.30 0.78 0 63.45
High income countries 0.05 0.50 0 53.79

Notes: Sample size is 121,545 (111 municipalities × 1095
days). Numbers represent daily municipality level urgent res-
piratory hospitalization rates expressed for 100,000 individu-
als; they refer to an initial sample of 403,859 urgent respi-
ratory hospitalizations defined in the primary diagnosis and
to a population of 54,012,341 individuals distributed across
111 municipalities over 1095 days. Statistics are weighted
by the relevant municipality population size. In case of each
age/education/migration specific group, the resident popula-
tion is adjusted to that particular group.

Table 2: Summary Statistics - Costs of Municipality Level Urgent Respiratory Hospitalizations

Mean Std. Dev. Min Max

Unit cost (per-hospitalization)
Respiratory 2855.85 785.81 703.04 6054.17
Asthma 1647.69 1345.53 299.50 5898.48
Pneumonia 2884.10 550.46 1724.17 3373.38
COPD 2237.03 330.46 299.50 2404.23

Total cost (per capita)
Respiratory all ages 0.05 0.05 0 0.74

Notes: The values are in euros. Sample size is 121,545 (111 mu-
nicipalities ÃŮ 1095 days). Statistics are weighted by the relevant
municipality population size.
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Table 3: Summary Statistics - Air Pollutants

Air pollutants (µg/m3) Mean Std. Dev Min Max N

CAMS data
PM10 17.48 10.72 1.03 203.63 121,545
O3 61.02 24.52 0.54 150.16 121,545
Monitoring stations
PM10 26.98 18.06 0 273.00 92,447
O3 38.04 30.40 0 167.28 81,998
CO 0.60 0.40 0 4.90 74,184
NO2 29.95 15.57 .04 156.00 94,991

Notes: CAMS sample includes 111 municipalities. Monitoring stations
sample refers to 66 municipalities.

Table 4: Summary Statistics of the Local Population.

Mean Std. Dev. Min Max Total

All ages 162,199.2 312,356.6 15,176 2,872,021 54,012,341
By age

Ages below 14 21,328.79 42,314.34 1,884 388,795 7,102,486
Ages 15 - 24 15,166.10 28,474.25 1,286 256,054 5,050,312
Ages 25 - 44 42,566.48 84,244.52 3,757 786,239 14,174,639
Ages 45 - 64 45,771.51 88,358.71 4,293 832,142 15,241,914
Ages 65 and above 37,366.34 69,811.02 3,726 620,912 12,442,990

By education levels
Pop. with primary ed. (p.c. rate) 0.60 0.04 0.48 0.69 30,841,632
Pop. with secondary ed. (p.c. rate) 0.30 0.03 0.24 0.35 16,654,839
Pop. with tertiary ed. (p.c. rate) 0.10 0.02 0.07 0.17 6,515,870

Migrants
All ages 32,390.44 78,888.19 642 727,126 10,786,018

Notes: The data refer to the resident population counts by age, education level and migrant
status in the 111 administrative cities in the period 2013-2015.

Table 5: Summary Statistics for Selected Weather Variables

Weather conditions Mean Std. Dev Min Max

Temperature (°C)
15.766 6.964 -15.1 33.3

(15.990) (6.381) (-3.9) (31.1)

Precipitation (mm)
2.437 7.489 0 264

(2.171) (7.730) (0) (66)

Wind speed (m/s)
2.660 1.418 0 20.3

(3.090) (1.544) (0.3) (10)

Notes: Sample size is 121,545 (111 municipalities ÃŮ 1095
days). Statistics are weighted by municipality population size.
Descriptive statistics computed on a sample of, corresponding
to 1-day strike day-municipality combinations, are reported in
parentheses.
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Table 6: First Stage Estimates of the Effect of PT Strikes on Average PM10 Concentration Level.

First stage

PM10 level
(1) (2) (3) (4)

PT Strike
1.239 0.874 1.166 0.828
[0.252] [0.204] [0.257] [0.207]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
F-statistics 31.17 18.80 27.62 16.88
N 121,545 121,545 121,545 121,545

Notes: All estimates include day-of-week, week-of-year,
year and municipality fixed effects, municipality specific time
trends and region-year fixed effects. Additional controls in-
clude dummies for school holidays and public holidays as
well as up to a second-order polynomial in atmospheric tem-
perature, precipitation and wind speed. Standard errors (in
brackets) are clustered at the municipality level. PT Strike
is an indicator dummy variable equal to unity when a strike
is in effect and zero otherwise. Estimates are weighted by
municipality population size.

Table 7: IV Estimates of the Effect of PM10 on Total Respiratory Hospitalizations.

Total Respiratory Hospitalizations

(1) (2) (3) (4)

PM10

0.055 0.075 0.054 0.074
[0.013] [0.022] [0.014] [0.024]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859
urgent respiratory hospitalizations defined in the primary di-
agnosis, and to a population of 54,012,341 individuals dis-
tributed across 111 municipalities over 1095 days. All esti-
mates include day-of-week, week-of-year, year and municipal-
ity fixed effects, municipality specific time trends and region-
year fixed effects. Additional controls include dummies for
school holidays and public holidays as well as up to a second-
order polynomial in atmospheric temperature, precipitation
and wind speed. Standard errors (in brackets) are clustered
on municipalities. Estimates are weighted by municipality
population size.
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Table 8: IV Estimates of the Effect of PM10 on Respiratory Hospitalizations in Different Age Groups.

Respiratory Hospitalizations
(1) (2) (3) (4)

Panel A. Age below 14

PM10

0.036 0.050 0.040 0.060
[0.058] [0.084] [0.061] [0.088]

Panel B. Age 15 - 24

PM10

0.068 0.096 0.070 0.097
[0.035] [0.054] [0.038] [0.057]

Panel C. Age 25 - 44

PM10

0.028 0.041 0.030 0.042
[0.012] [0.019] [0.014] [0.021]

Panel D. Age 45 - 64

PM10

-0.009 -0.012 -0.012 -0.017
[0.015] [0.021] [0.016] [0.022]

Panel E. Age 65 and above

PM10

0.175 0.242 0.172 0.236
[0.047] [0.067] [0.050] [0.071]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 urgent res-
piratory hospitalizations defined in the primary diagnosis, and to a
population of 54,012,341 individuals distributed across 111 municipal-
ities over 1095 days. All estimates include day-of-week, week-of-year,
year and municipality fixed effects, municipality specific time trends
and region-year fixed effects. Additional controls include dummies for
school holidays and public holidays as well as up to a second-order
polynomial in atmospheric temperature, precipitation and wind speed.
Standard errors (in brackets) are clustered on municipalities. Estimates
are weighted by municipality population size in each age group.
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Table 9: IV Estimates of the Effect of PM10 on Respiratory Hospitalizations by Educational
Attainment.

Respiratory Hospitalizations
(1) (2) (3) (4)

Panel A: PM10 - Primary ed. lev. 0.101 0.140 0.101 0.140
[0.030] [0.051] [0.033] [0.055]

Panel B: PM10 - Secondary ed. lev. 0.028 0.039 0.028 0.039
[0.013] [0.019] [0.014] [0.020]

Panel C: PM10 - Tertiary ed. lev. -0.002 -0.003 -0.005 -0.007
[0.029] [0.042] [0.032] [0.045]

Age classes YES YES YES YES
Weather YES YES
Holidays YES YEs
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 urgent respiratory hos-
pitalizations defined in the primary diagnosis, and to a population of 54,012,341
individuals distributed across 111 municipalities over 1095 days. All estimates
include day-of-week, week-of-year, year and municipality fixed effects, municipal-
ity specific time trends and region-year fixed effects and age controls. Additional
controls include dummies for school holidays and public holidays as well as up to
a second-order polynomial in atmospheric temperature, precipitation and wind
speed. Standard errors (in brackets) are clustered on municipalities. Estimates
are weighted by municipality population size in each age group.
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Table 10: IV Estimates of the Effect of PM10 on Respiratory Hospitalizations for Migrants by Origin
Countries.

Respiratory Hospitalizations

(1) (2) (3) (4)
Panel A: High income Countries

PM10

0.004 0.004 0.004 0.005
[0.010] [0.015] [0.011] [0.016]

Panel B: Low-middle income Countries

PM10

0.024 0.036 0.024 0.036
[0.021] [0.035] [0.022] [0.037]

Panel C: African countries

PM10

0.032 0.049 0.034 0.051
[0.018] [0.029] [0.019] [0.031]

Age classes YES YES YES YES
Weather YES YES
Holidays YES YEs
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 urgent respiratory hos-
pitalizations defined in the primary diagnosis, and to a population of 54,012,341
individuals distributed across 111 municipalities over 1095 days. All estimates in-
clude day-of-week, week-of-year, year and municipality fixed effects, municipality
specific time trends and region-year fixed effects and age controls. Additional con-
trols include dummies for school holidays and public holidays as well as up to a
second-order polynomial in atmospheric temperature, precipitation and wind speed.
Standard errors (in brackets) are clustered on municipalities. Estimates are weighted
by municipality population size in each age group.

Table 11: IV Estimates of the Effect of PM10 on Average Unit Costs (AUC) for Hospitalizations in
Four Distinct Respiratory Problems.

Unit Cost
All respiratory Asthma Pneumonia COPD

PM10

16.395 193.842 10.020 64.564
[19.601] [107.509] [40.756] [30.927]

N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 ur-
gent respiratory hospitalizations defined in the primary diag-
nosis, and to a population of 54,012,341 individuals distributed
across 111 municipalities over 1095 days. All estimates include
day-of-week, week-of-year, year and municipality fixed effects,
municipality specific time trends and region-year fixed effects,
dummies for school holidays and public holidays as well as
up to a second-order polynomial in atmospheric temperature,
precipitation and wind speed. Standard errors (in brackets)
are clustered on municipalities. Estimates are weighted by
municipality population size.
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Table 12: IV Estimates of the Effect of PM10 on Total Health Costs for Respiratory Hospitalizations.

Total Health Cost
(1) (2) (3) (4)

PM10

183.401 254.270 180.985 251.056
[48.496] [72.491] [52.397] [77.882]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 ur-
gent respiratory hospitalizations defined in the primary diag-
nosis, and to a population of 54,012,341 individuals distributed
across 111 municipalities over 1095 days. All estimates include
day-of-week, week-of-year, year and municipality fixed effects,
municipality specific time trends and region-year fixed effects.
Additional controls include dummies for school holidays and
public holidays as well as up to a second-order polynomial in
atmospheric temperature, precipitation and wind speed. Stan-
dard errors (in brackets) are clustered on municipalities. Esti-
mates are weighted by municipality population size.

Table 13: IV Estimates of the Effect of PM10 on Total Health Costs for Respiratory Hospitalizations
by Age Group.

Total Health Costs
(0-14) (15-24) (25-44) (45-64) (65-100)

PM10

105.324 466.401 163.171 162.645 846.114
[124.449] [194.565] [93.317] [101.921] [253.654]

N 121,545 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 urgent
respiratory hospitalizations defined in the primary diagnosis, and
to a population of 54,012,341 individuals distributed across 111
municipalities over 1095 days. All estimates include full controls:
day-of-week, week-of-year, year and municipality fixed effects, mu-
nicipality specific time trends and region-year fixed effects, dum-
mies for school holidays and public holidays as well as up to a
second-order polynomial in atmospheric temperature, precipita-
tion and wind speed. Standard errors (in brackets) are clustered
on municipalities. Estimates are weighted by municipality popu-
lation size.
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Table 14: IV Estimates of the Effect of PT Strike on Respiratory Hospitalizations in a
Multi-pollutant Model.

Respiratory Hospitalizations

(1) (2) (3) (4)

Panel A - Unbalanced panel:

PM10

0.064 0.051 0.063 0.051
[0.017] [0.019] [0.031] [0.021]

CO
0.498 0.495
[0.513] [0.586]

NO2

0.030 0.001
[0.064] [0.054]

F-stat. PM10 59.22 66.52 59.49 66.72
F-stat. CO 26.12 26.12
F-stat. NO2 3.49 3.27
N 92,447 74,184 94,991 73,845

Panel B - Balanced panel:

PM10

0.066 0.053 0.066 0.052
[0.023] [0.021] [0.026] [0.023]

CO
0.547 0.481
[0.525] [0.681]

NO2

0.023 0.009
[0.044] [0.051]

F-stat. PM10 72.18 72.18 72.85 72.92
F-stat. CO 26.15 26.16
F-stat. NO2 3.87 3.85
N 59,130 59,130 59,130 59,130

Notes: The coefficients indicate effects for 100,000 residents. The
numbers refer to urgent respiratory hospitalizations defined in the
primary diagnosis for the population of 54 municipalities over 1095
days. All estimates include full controls: day-of-week, week-of-year,
year and municipality fixed effects, municipality specific time trends
and region-year fixed effects, dummies for school holidays and public
holidays as well as up to a second-order polynomial in atmospheric
temperature, precipitation and wind speed. Standard errors (in brack-
ets) are clustered on municipalities. Estimates are weighted by mu-
nicipality population size.
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Appendix A For Online Publication

Additional Tables

Table A.1: Data Sources

Variable Source

Hospital urgent hospitalizations Hospital Discharge Data (SDO) - Italian Ministry of Health

Air pollution reanalysis data Copernicus Atmosphere Monitoring Service (CAMS)

Air pollution data from monitoring stations Airbase database of the European Environmental Agency

Weather data MARS-Agri4Cast - European Commission, Joint Research Center

Public Transport Strikes Italian Strike Comm. and Italian Min. of Infrastructure and Transport

Demand per capita of Public Transportation Italian National Institute of Statistics (ISTAT)

Local population Italian National Institute of Statistics (ISTAT)

Table A.2: OLS Estimates on the Effect of PM10 on Respiratory Hospitalizations.

Respiratory Hospitalizations
(1) (2) (3) (4)

PM10 -0.001 -0.001 -0.000 -0.001
[0.000] [0.000] [0.000] [0.000]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859
urgent respiratory hospitalizations defined in the primary di-
agnosis, and to a population of 54,012,341 individuals dis-
tributed across 111 municipalities over 1095 days. All es-
timates include day-of-week, week-of-year, year and munic-
ipality fixed effects, municipality specific time trends and
region-year fixed effects and age controls. Additional con-
trols include dummies for school holidays and public holidays
as well as up to a second-order polynomial in atmospheric
temperature, precipitation and wind speed. Standard errors
(in brackets) are clustered on municipalities. Estimates are
weighted by municipality population size.
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Table A.3: IV Estimates of the Effect of PM10 on AUC for Hospitalizations for Four Distinct
Respiratory Problems.

Unit Cost
(1) (2) (3) (4)

Panel A - Tot. respiratory

PM10

12.992 17.145 12.223 16.395
[13.867] [18.833] [14.528] [19.601]

Panel B - Asthma

PM10

128.219 182.424 137.034 193.842
[69.436] [101.150] [74.262] [107.509]

Panel C - Pneumonia

PM10

8.182 11.034 7.010 10.020
[27.396] [38.357] [29.593] [40.756]

Panel D - COPD

PM10

44.228 62.001 46.137 64.564
[21.298] [28.957] [22.815] [30.927]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 urgent respira-
tory hospitalizations defined in the primary diagnosis, and to a population
of 54,012,341 individuals distributed across 111 municipalities over 1095
days. All estimates include day-of-week, week-of-year, year and munici-
pality fixed effects, municipality specific time trends and region-year fixed
effects and age controls. Additional controls include dummies for school
holidays and public holidays as well as up to a second-order polynomial in
atmospheric temperature, precipitation and wind speed. Standard errors
(in brackets) are clustered on municipalities. Estimates are weighted by
municipality population size.
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Table A.4: IV Estimates of the Effect of PM10 on Total Health Costs for Respiratory Hospitalizations
by Age Group.

Total Cost
(1) (2) (3) (4)

Panel A: age below 14

PM10

62.186 91.275 69.400 105.324
[80.703] [118.714] [85.517] [124.449]

Panel B: age 15-24

PM10

319.682 453.598 333.761 466.401
[119.087] [178.563] [131.752] [194.565]

Panel C: age 25-44

PM10

107.649 157.093 112.759 163.171
[54.315] [86.697] [58.968] [93.317]

Panel D: age 45-64

PM10

121.364 169.763 117.960 162.645
[65.516] [96.684] [69.791] [101.921]

Panel E: age 65 and above

PM10

615.046 854.092 614.659 846.114
[176.774] [240.027] [187.970] [253.654]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 urgent respiratory
hospitalizations defined in the primary diagnosis, and to a population of
54,012,341 individuals distributed across 111 municipalities over 1095 days.
All estimates include day-of-week, week-of-year, year and municipality fixed
effects, municipality specific time trends and region-year fixed effects and
age controls. Additional controls include dummies for school holidays and
public holidays as well as up to a second-order polynomial in atmospheric
temperature, precipitation and wind speed. Standard errors (in brackets) are
clustered on municipalities. Estimates are weighted by municipality popu-
lation size.
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Table A.5: IV Estimates of the Effect of O3 on Respiratory Hospitalizations.

First stage

O3
(1) (2) (3) (4)

PTStrike
-0.151 -0.015 -0.147 0.025
[0.366] [0.506] [0.366] [0.502]

F-stat 0.170 0.001 0.161 0.002

Second Stage

Respiratory Hospitalizations
(1) (2) (3) (4)

O3

-0.450 -4.526 -0.427 2.446
[1.069] [157.049] [1.042] [49.090]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 ur-
gent respiratory hospitalizations defined in the primary diag-
nosis, and to a population of 54,012,341 individuals distributed
across 111 municipalities over 1095 days. All estimates in-
clude day-of-week, week-of-year, year and municipality fixed
effects, municipality specific time trends and region-year fixed
effects and age controls. Additional controls include dummies
for school holidays and public holidays as well as up to a
second-order polynomial in atmospheric temperature, precip-
itation and wind speed. Standard errors (in brackets) are clus-
tered on municipalities. Estimates are weighted by municipality
population size.
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Table A.6: IV Estimates of the Effect of PM10 on Placebo Diseases.

Nervous System Hospitalizations (ICD09 320-359)

(1) (2) (3) (4)

PM10

-0.004 -0.006 -0.007 -0.010
[0.012] [0.017] [0.013] [0.017]

Musculoskeletal Hospitalizations (ICD09 710-739)

PM10

-0.006 -0.009 -0.009 -0.012
[0.005] [0.007] [0.005] [0.005]

Endocrine Systems Hospitalizations (ICD09 240-279)

PM10

-0.008 -0.012 -0.010 -0.014
[0.009] [0.012] [0.009] [0.013]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to hospitalizations distributed
across 111 municipalities over 1095 days. All estimates in-
clude day-of-week, week-of-year, year and municipality fixed
effects, municipality specific time trends and region-year fixed
effects and age controls. Additional controls include dummies
for school holidays and public holidays as well as up to a
second-order polynomial in atmospheric temperature, precip-
itation and wind speed. Standard errors (in brackets) are
clustered on municipalities. Estimates are weighted by mu-
nicipality population size.

Table A.7: IV Estimates of the Effect of PM10 on Programmed Respiratory Hospitalizations.

Programmed Respiratory Hospitalizations
(1) (2) (3) (4)

PM10

-0.015 -0.021 -0.020 -0.028
[0.016] [0.021] [0.015] [0.020]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to hospitalizations distributed across
111 municipalities over 1095 days. All estimates include day-of-
week, week-of-year, year and municipality fixed effects, municipal-
ity specific time trends and region-year fixed effects and age con-
trols. Additional controls include dummies for school holidays and
public holidays as well as up to a second-order polynomial in at-
mospheric temperature, precipitation and wind speed. Standard
errors (in brackets) are clustered on municipalities. Estimates are
weighted by municipality population size.
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Table A.8: IV Estimates of the Effect of PM10 on Respiratory Hospitalizations in Non-Affected Cities.

First stage

PM10

(1) (2) (3) (4)

FakePTStrike
0.478 0.257 0.498 0.272
[0.646] [0.644] [0.652] [0.650]

F-stat. 0.424 0.149 0.462 0.166

Second Stage

Respiratory Hospitalizations
(1) (2) (3) (4)

PM10

-0.047 -0.086 -0.041 -0.074
[0.208] [0.446] [0.195] [0.404]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859
urgent respiratory hospitalizations defined in the primary di-
agnosis, and to a population of 54,012,341 individuals dis-
tributed across 111 municipalities over 1095 days. All es-
timates include day-of-week, week-of-year, year and munic-
ipality fixed effects, municipality specific time trends and
region-year fixed effects and age controls. Additional con-
trols include dummies for school holidays and public holidays
as well as up to a second-order polynomial in atmospheric
temperature, precipitation and wind speed. Standard errors
(in brackets) are clustered on municipalities. Estimates are
weighted by municipality population size.
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Table A.9: IV Estimates of the Effect of PM10 on Respiratory Hospitalizations with Multi-Day Strike.

First stage

PM10

(1) (2) (3) (4)

Multi − DayPTStrike
1.026 0.603 0.920 0.537
[0.195] [0.177] [0.194] [0.176]

F-stat. 27.762 10.279 22.538 9.301

Second Stage

Respiratory Hospitalizations
(1) (2) (3) (4)

PM10

0.064 0.106 0.066 0.111
[0.014] [0.034] [0.016] [0.040]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 121,545 121,545 121,545 121,545

Notes: The numbers refer to an initial sample of 403,859 urgent
respiratory hospitalizations defined in the primary diagnosis, and to
a population of 54,012,341 individuals distributed across 111 munic-
ipalities over 1095 days. All estimates include day-of-week, week-of-
year, year and municipality fixed effects, municipality specific time
trends and region-year fixed effects and age controls. Additional
controls include dummies for school holidays and public holidays as
well as up to a second-order polynomial in atmospheric tempera-
ture, precipitation and wind speed. Standard errors (in brackets)
are clustered on municipalities. Estimates are weighted by munici-
pality population size.
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Table A.10: IV Estimates of the Effect of PM10 on All Italian Municipalities.

First stage

PM10

(1) (2) (3) (4)

PTStrike
1.181 0.866 1.101 0.826
[0.308] [0.300] [0.310] [0.301]

Second Stage

Respiratory Hospitalizations
(1) (2) (3) (4)

PM10

0.049 0.067 0.048 0.064
[0.015] [0.025] [0.016] [0.025]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 8,858,550 8,858,550 8,858,550 8,858,550

Notes: The numbers refer to an initial sample of 1,267,367 urgent
respiratory hospitalizations defined in the primary diagnosis and to a
population of 54,012,341 individuals distributed across 8,090 munic-
ipalities over 1095 days. All estimates include day-of-week, week-of-
year, year and municipality fixed effects, municipality specific time
trends and region-year fixed effects and age controls. Additional
controls include dummies for school holidays and public holidays
as well as up to a second-order polynomial in atmospheric tempera-
ture, precipitation and wind speed. Standard errors (in brackets) are
clustered on municipalities. Estimates are weighted by municipality
population size.

67



Table A.11: IV Estimates of the Effect of PM10 on Respiratory Hospitalizations Using Monitoring
Station Data.

First stage

PM10

(1) (2) (3) (4)

PTStrike
1.606 1.008 1.499 1.290
[0.770] [0.699] [0.752] [0.774 ]

F-stat 16.583 7.883 14.459 12.62

Second Stage

Respiratory Hospitalizations
(1) (2) (3) (4)

PM10

0.037 0.057 0.036 0.056
[0.014] [0.034] [0.015] [0.027]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 72,270 72,270 72,270 72,270

Notes: The numbers refer to an initial sample of 316,109
urgent respiratory hospitalizations defined in the primary
diagnosis and to a population of 41,852,702 individuals
distributed across 66 municipalities over 1095 days. All
estimates include day-of-week, week-of-year, year and mu-
nicipality fixed effects, municipality specific time trends
and region-year fixed effects and age controls. Additional
controls include dummies for school holidays and public
holidays as well as up to a second-order polynomial in
atmospheric temperature, precipitation and wind speed.
Standard errors (in brackets) are clustered on municipal-
ities. Estimates are weighted by municipality population
size.
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Table A.12: IV Estimates of the Effect of PM10 on Respiratory Hospitalizations Using CAMS Data.

First stage

PM10

(1) (2) (3) (4)

PTStrike
1.222 0.819 1.141 0.774
[0.244] [0.209] [0.250] [0.216]

F-stat 25.185 15.290 20.837 12.836

Second Stage

Respiratory Hospitalizations
(1) (2) (3) (4)

PM10

0.048 0.070 0.048 0.068
[0.011] [0.021] [0.013] [0.024]

Weather YES YES
Holidays YES YES
Time FE YES YES YES YES
Municipality FE YES YES YES YES
Region×year FE YES YES YES YES
N 72,270 72,270 72,270 72,270

Notes: The numbers refer to an initial sample of 316,109
urgent respiratory hospitalizations defined in the primary
diagnosis and to a population of 41,852,702 individuals
distributed across 66 municipalities over 1095 days. All
estimates include day-of-week, week-of-year, year and mu-
nicipality fixed effects, municipality specific time trends
and region-year fixed effects and age controls. Additional
controls include dummies for school holidays and public
holidays as well as up to a second-order polynomial in
atmospheric temperature, precipitation and wind speed.
Standard errors (in brackets) are clustered on municipal-
ities. Estimates are weighted by municipality population
size.

69



 

RECENT PUBLICATIONS BY CEIS Tor Vergata 
�

�

�

�

��������	��
��
�����������������������������
������
���
����������	������������

�����
������������
Luca Pellerano, Eleonora Porreca and Furio C. Rosati 

CEIS Research Paper, 466, August 2019�

��������������������

�������������������������������
���������������������
� !���

������
Marcella Alsan, Vincenzo Atella, Jay Bhattacharya, Valentina Conti, Ivàn Mejìa-

Guevara and Grant Miller 

CEIS Research Paper, 465, July 2019�

"����������������������������������#�����$����	�
����������
Alessandro Palma, Inna Petrunyk and Daniela Vuri 

CEIS Research Paper, 464, July 2019�

����%��������
�
����%������������
Andrea Attar, Thomas Mariotti and François Salanié 

CEIS Research Paper, 463, July 2019�

&��'�����

��	���������������
(���
����%�����
����&��������)����
������*� 
����

����������+������������
��%,����
�
Federico Belotti and Giancarlo Ferrara 

CEIS Research Paper, 462, July 2019�

��������������	�
�������
�
-�

"�������������	�������"����
�
����.���
��������
��������������	���/�0112 0134�
Anatole Cheysson and Nicolò Fraccaroli 

CEIS Research Paper, 461, June 2019�

��	�������)������
	
�����&��(�������	
���*��
'�	���
�
Andrea Attar, Eloisa Campioni, Thomas Mariotti and Gwenael Piaser 

CEIS Research Paper, 460, June 2019�



��	���������%�����
����&�������������������)����
�*����%��������������������
Federico Belotti, Giuseppe Ilardi and Andrea Piano Mortari 

CEIS Research Paper, 459, May 2019�

���������
/����	������������������
�����
���������"��������������
Stefano Gagliarducci, M. Daniele Paserman and Eleonora Patacchini 

CEIS Research Paper, 458, May 2019�

��	����������������������������������������)�����������������
�����5�
�����������

������
Carlo Ciccarelli, Matteo Gomellini and Paolo Sestito 

CEIS Research Paper, 457, May 2019�



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISTRIBUTION 

Our publications are available online at www.ceistorvergata.it  

DISCLAIMER 

The opinions expressed in these publications are the authors’ alone and therefore do 

not necessarily reflect the opinions of the supporters, staff, or boards of CEIS Tor 

Vergata. 

COPYRIGHT 

Copyright © 2020 by authors. All rights reserved. No part of this publication may be 

reproduced in any manner whatsoever without written permission except in the case 

of brief passages quoted in critical articles and reviews. 

MEDIA INQUIRIES AND INFORMATION 

For media inquiries, please contact Barbara Piazzi at +39 06 72595652/01 or by e-

mail at piazzi@ceis.uniroma2.it. Our web site, www.ceistorvergata.it, contains more 

information about Center’s events, publications, and staff.�

DEVELOPMENT AND SUPPORT 

For information about contributing to CEIS Tor Vergata, please contact at +39 06 

72595601 or by e-mail at segr.ceis@economia.uniroma2.it  


