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Abstract

Over the past decades, research effort in high income countries has substantially

increased. Meanwhile, the growth rates of per capita output have been rather stable.

The first goal of this paper is to investigate the reasons for such trends. The second

goal of the paper is to show that the occurrence of different phases in the economic

growth dynamics traces back to the interplay between complexity and specialization in

production. To do this we use data from a sample of OECD countries and estimate a

Hidden Markov Model, through which we identify four distinct growth regimes.
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“Rich countries specialize in complicated products”.

Kremer (1993), p. 563.

1 Introduction

Figures 1 and 2 provide some aggregate evidence, from a group of advanced economies

over the period 1983-2007, that deserves to be investigated. With the partial exception

of UK, no positive correlation seems to exist between long-run per capita real GDP

growth and innovation, captured by either research inputs (e.g. number of researchers

employed per million inhabitants) or research outputs (e.g. number of patent applica-

tions by residents). Data from other OECD countries would produce similar figures.

Of course, one may question the economic and statistical significance of this suggestive

evidence, since aggregate innovation is a broad phenomenon, only partially captured

by these two R&D related measures. Nonetheless, the increasing trends reported in

Table 1, in terms of patenting activity and researchers employed, have, at least, no cor-

responding increase in the long-run growth rates of per capita GDP. Long-run income

and productivity growth have rather declined over the last twenty years (apart from

the modest recovery immediately before the 2007-2008 global financial crisis).

Table 1: Four OECD countries, 1983-2007

Country 5Y-AVG. Real GDP growth Patent appl. by residentsa Researchersb

(% variation) (% variation) (% variation)
Germany +1.10 +51.45 +107.69
Japan -2.03 +11.63 +46.70
United Kingdom -1.10 -12.88 +83.10
United States -1.50 +253.28 +52.96

Note: Japanese data are referred to the period 1983-2006. Source: aWorld Bank, b(per mil. of inhab.) OECD.

The first goal of this paper is to investigate the reasons for such diverging trends.

In the spirit of Aghion and Howitt (1998), our explanation is based on the idea that

innovation makes production activities more complex and this requires the development

of appropriate skills and abilities to adapt to changing technological needs. More
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Figure 1: Real GDP growth and Research Input

Figure 2: Real GDP growth and Research Output
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formally, a larger number of intermediate-input varieties to be assembled in the same

manufacturing process triggers, at the same time, an increase in the cost, due to

the higher complexity, and new opportunities of gain, originating from specialization.

Complementarily, we explore the idea, in the spirit of Jones (1995) and Ha and Howitt

(2007), that innovation benefits from increasing research inputs but may be curtailed by

complexity effects pertaining to innovation activities (under the form of duplication,

difficulty and dilution effects), as the number of varieties of intermediates and the

amount of research inputs rise in the economy.

The second goal of the paper is to show that the occurrence of different phases in

the economic growth dynamics traces back to the interplay between complexity and

specialization in production. The tension between complexity (both in production

and innovation activities) and specialization relies on the mechanism through which

population growth and monopolistic markups rewarding prospective innovators may

simultaneously affect economic growth. To rationalize this mechanism, we propose a

simple extension of the canonical semi-endogenous growth model (Jones, 1995). To

allow for a variety of growth phases, we assume – in the econometric part of the paper

– that there exist different “states of nature”, in which growth behavior (captured by

some key structural parameters) differs for otherwise identical countries.1 To iden-

tify the growth regimes and the transition between them, we estimate our theoretical

growth equation using a Hidden Markov Model, which allows to deal with both ob-

served and unobserved (hidden) factors that affect long-run growth (Baum and Petrie,

1966; Baum and Eagon, 1967).2 For a sample of OECD countries, we find four dis-

tinct regimes, corresponding to four growth processes. These regimes capture different

1In this sense, the regime-varying parameters are reduced forms of the underlying processes generating
aggregate complexity. Hence, (possible) changes in these parameters may be interpreted as a change in the
complexity generated by these processes.

2A Hidden Markov Model is specified by the following components: i) a set of states (or regimes or
classes), ii) a transition probability matrix, iii) a sequence of observations, iv) a sequence of observation
likelihoods and v) an initial probability distribution over states. The main advantage of this econometric
technique is that it allows to make inference about an unobserved process based on the observed one. The
set of the unobserved factors which may affect a country’s growth path is potentially large and includes
institutional setting, political uncertainty, educational system, etc.
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balanced growth paths, with different long-run average growth and different growth

volatility. Importantly, our results are robust to several sensitivity checks and alter-

native estimation techniques. In particular, our growth regimes classification survives

when we employ an alternative theoretical specification in which we (partially) endo-

genize complexity by letting some of its determinants to be functions of the research

input (i.e., researchers/population).

From the theoretical standpoint, the paper closest to ours is Bucci, Carbonari and

Trovato (2019), who analyze how the degree of complexity in production may affect

not only the rate of economic growth, but also the correlation between the latter,

population growth and monopolistic markups. The model presented below extends

their R&D technology to simultaneously deal with difficulty, duplication and dilution

effects. Moreover, in the empirical part of the paper, we use the restrictions provided

by the model for an econometric exercise to understand how complexity affects the

transition between different phases of economic development and the membership to a

specific growth regime.

Other papers have recently dealt with the link between complexity and growth.

Using a radically different approach, Pintea and Thompson (2007) identify in the in-

creasing technological complexity, experienced during the second half of 20th century,

the main cause for the puzzling coexistence of secular increases in R&D expenditure

and educational attainment and no corresponding increase in per capita income growth.

Using trade data and the notion of “product space”, Hausmann and Klinger (2006)

develop a model offering a broad appraisal of the complexity effect. Along this line and

using a sample of 89 countries over the period 1990-2009, Ferrarini and Scaramozzino

(2012) support the idea that, especially for advanced countries, the productivity-gains

from more specialization are smaller than the associated productivity-losses due to

increased complexity in production. Unlike Ferrarini and Scaramozzino (2012), we

employ a different econometric technique and analyze how the balance between com-

plexity and specialization (induced by input proliferation) contributes to affect both
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the rate of economic growth and the growth regime in which a country may fall.

Finally, within the literature which reads economic growth as a sequence of tran-

sitions between distinct growth phases that countries visit with different frequencies,

two contributions deserve to be mentioned, namely Jerzmanowski (2006) and Kerekes

(2012). Both papers deliver purely empirical exercises: in particular, Jerzmanowski

(2006) studies 89 countries over the period 1962-1994 while Kerekes (2012) studies 84

countries over the period 1961-2003. They employ an econometric technique – namely,

a Markow switching model – similar to ours.3 Differently from us, in both papers

growth dynamics simply originates from an auto-regressive process and there is no

room for the implications of complexity in determining the long-run pattern of the real

per capita GDP.

The structure of the paper is the following: Section 2 develops our theoretical

model, Section 3 presents the econometric analysis and Section 4 concludes.

2 The Model

We build upon the R&D-driven growth model of Romer (1990) and the extensions of

this model provided, respectively, by Grossman and Helpman (1991) and Bucci, Car-

bonari and Trovato (2019). These are dynamic general-equilibrium endogenous growth

models where a homogeneous final (consumption) good is competitively produced us-

ing labor and a continuum of varieties of intermediate inputs. The latter are, in turn,

produced in a monopolistically-competitive sector using (one-to-one) solely labor. Po-

tential entrants into the intermediate-good sector devote labor to horizontal R&D, by

which they increase the measure of varieties of intermediate inputs. The economy is

populated by infinitely-lived (dynastic) households who consume and inelastically sup-

ply labor to firms in the final-good, the intermediate-good, and the R&D sectors. We

3The Hidden Markov models are a subclass of autoregressive models with Markov regime, for which the
conditional distribution of the depend variable does not depend on its lagged values but only on the regime.
For a discussion on the link between Markov-switching models and Hidden Markov models, see Junag and
Rabiner (1985) and Rabiner (1989).
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assume that the aggregate labor force equals total population,4 which increases at a

constant positive exogenous growth rate.

2.1 Production

The final good, Y , is produced at time t using, as private and rival inputs, both labor

and a continuum of intermediate goods,

Yt = L1−α
Y t

[
1

Nβ
t

∫ Nt

0
(xit)

1/mdi

]αm
, 0 < α < 1 and m > 1. (1)

In the equation above, LY t is the quantity of the labor input in final-good produc-

tion, xit is the quantity of the i-th variety of differentiated intermediate inputs with

i ∈ [0, Nt], α is a parameter that controls for the the labor share in final-good produc-

tion (this share is given by 1−α), and m is a parameter that controls for the elasticity

of substitution between any generic pair of varieties of intermediate goods (this elas-

ticity is given by m/(m − 1)). Following Ethier (1982) and Benassy (1996a, 1996b,

1998), the aggregate production function (1) allows to disentangle the optimal markup

on the marginal production cost in the intermediate-good sector (or, alternatively, the

measure of product market concentration in that sector), m, from the factor-shares

in final-good production, α and 1-α.5 Finally, parameter β controls for the complex-

ity effect on aggregate output induced by the expansion of varieties of intermediate

goods, as emphazised by, e.g., Aghion and Howitt (1998). In particular when positive,

β captures the detrimental effect on aggregate output of having a larger number of

intermediate-input varieties to be assembled in the same manufacturing process. This

4Under this assumption, per capita and per worker variables coincide.
5Since final output is produced competitively under constant returns to scale to rival inputs, LY and xi

are rewarded according to their marginal productivities at equilibrium. Hence, for a given N , 1 − α is the
share of Y going to labor and α is the share going to intermediate inputs. As we show below, a decrease in
m increases the substitutability between intermediate goods and, thus, leads to tougher competition across
intermediate-good firms and to lower prices. Therefore, m can be regarded as a (inverse) measure of the
degree of competition in the intermediate-good market. See, e.g., Bucci (2013) for a more exhaustive and
formal discussion on the relationship between the aggregate production function (1) and those employed in
Ethier (1982) and Benassy (1996a, 1996b, 1998).
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effect contrasts with the standard positive specialization effect which results from the

increasing availability of differentiated intermediate inputs in aggregate production and

which is reflected by the time-varying upper bound of the integral within the square

bracket of equation (1). Under symmetry, i.e., when xit ≡ xt > 0 ∀i ∈ [0, Nt], and with

LY t > 0 and Nt ∈ (0,∞), equation (1) indicates that an increase in N may have either

a net positive (if β < 1, i.e. the specialization effect is larger than the complexity ef-

fect), a net negative (if β > 1, i.e. the specialization effect is lower than the complexity

effect) or else a null net impact on aggregate output (if β = 1, i.e. the specialization

effect is offset by the complexity effect).6 Given perfect competition in the final-good

sector, producers take wages, wY t, and input prices, pit, as given and sell their output

at a price also taken as given (and which we normalize to unity).

Each intermediate good, xi, is produced in a monopolistically-competitive sector

using labor as the sole input. The sector uses the technology (see Grossman and

Helpman, 1991):

xit = lit, ∀i ∈ [0, Nt], Nt ∈ [0,∞), (2)

where lit is the amount of labor required to produce the i-th intermediate good. Given

this technology, the marginal cost of production is the wage rate wxt. For a given Nt,

equation (2) implies that the total amount of labor employed in the intermediate-good

sector at time t, Lxt, is given by
∫ Nt

0 xitdi =
∫ Nt

0 litdi = Lxt. Maximization of the

generic i-th firm’s instantaneous profit leads to the standard markup rule pit ≡ pt =

mwxt, ∀i ∈ [0;Nt].
7 Because of the symmetry of producers of intermediate goods, the

6Notice that β < 0 implies that there is no complexity effect (the expansion in variety of intermediate
goods would, in this case, amplify the standard specialization effect referred to above) whereas β = 0
trivially implies that only the standard specialization effect exists. Therefore, in order to model explicitly
a complexity effect arising from an increase in N , some positive β is needed in our model. However, we do
not make any ad hoc assumption on the sign and the magnitude of β.

7More precisely, we assume that each of these firms is so small to take
[

1

Nβ
t

∫ Nt

0
(xit)

1/mdi
]αm−1

as given,

hence ∂
∂xit

[
1

Nβ
t

∫ Nt

0
(xit)

1/mdi
]αm−1

= 0
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price is homogeneous across all intermediate goods i and equal to a constant markup,m,

on the marginal production cost, wxt. This then implies xit ≡ xt = Lxt/Nt, ∀i ∈ [0;Nt],

and, thus:

πit ≡ πt = α

(
m− 1

m

)(
LY t

Nt

)1−α(Lxt

Nt

)α

N
α[m(1−β)−1]
t , ∀i ∈ [0;Nt]. (3)

2.2 R&D activities

R&D is performed by (potential) entrants in the intermediate-good sector. A successful

innovation leads to a new blueprint pertaining to a new variety of intermediate good,

which is granted a perpetual patent. There is free entry, perfect competition, and

constant returns to scale in R&D activities. The R&D production function at the

aggregate level is:

Ṅt =
1

X
· Nt︸︷︷︸
knowledge spillover

·
1

Nχ1

t︸︷︷︸
difficulty effect

·
1

Lχ2

t︸︷︷︸
dilution effect

·
1

L1−λ
Nt︸ ︷︷ ︸

duplication effect

· LNt

=
1

X
·N1−χ1

t · L−χ2

t · Lλ
Nt, (4)

where Nt is the number of ideas already invented, LNt is the labor input allocated to

R&D activities, Lt is the total labor force in the economy (and which works as a scale

variable for the market dimension), and X > 0 is a parameter that controls for the

efficiency in R&D activities.

The component δ̄ ≡ 1
X ·N1−χ1

t ·L−χ2

t ·Lλ−1
Nt in equation (4) is external to each indi-

vidual R&D firm/researcher. Within this completely external component, Nt captures

(as in Romer, 1990) the presence of a positive intertemporal knowledge-spillover effect.

When χ1 > 0, the term N−χ1

t accounts, instead, for the occurrence of a difficulty effect

in innovation (see, e.g., Jones, 1995 and Segerstrom, 1998, among others).8 When

8The difficulty effect in innovation captures the notion that ideas that are easier to discover tend to be
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χ2 > 0, the term L−χ2

t denotes the canonical R&D dilution-effect due to population

size (as, e.g., in Ha and Howitt, 2007)9. Finally, when 0 < λ ≤ 1, the term Lλ−1
Nt

describes (as in Jones, 1995) the possible duplication-effect related to the amount of

labor input employed in R&D. Equation (4) represents the main departure from Bucci,

Carbonari and Trovato (2019) who, in its place, employ an otherwise standard Jones

(1995)-type aggregate ideas production function.

The parameters χi, i = 1, 2, may be interpreted as (factor-specific) complexity

indices pertaining to R&D activity, as in Sequeira, Gil and Afonso (2018). Notice

that these complexity factors add to the complexity effect we consider in final-good

production, as captured by a positive value of β in equation (1).

When χ1 > 0, higher values of Nt imply that the same amount of R&D resources

(research labor, LNt) generates a lower rate of innovation, Ṅt/Nt, i.e., there exist

diminishing technological opportunities. The presence of the latter is key to the removal

of the strong scale effect on growth found in the first-generation of R&D-based growth

models (e.g., Jones, 1995): since the marginal impact of an individual researcher on

the growth rate of new ideas decreases with the stock of existing ideas, it is possible

to sustain a constant positive rate of innovation only by increasing (at a constant rate,

too) the number of researchers. This, in turn, is possible in long-run equilibrium solely

if population grows at a positive rate. On the other hand, χ2 = 1 also allows for

the removal of the strong scale effect, even if χ1 = 0. In this case, it is possible to

maintain a constant positive rate of innovation as long as the proportion of the number

of researchers in the population, LNt/Lt, is constant. In this scenario, a positive rate

of innovation does not require that population grows at a positive rate.

To sum up, the R&D function (4) features a general formulation in line with Ha and

Howitt (2007), and nests the following specific well-known cases: under χ1 = χ2 = 0

discovered first, making it harder to find new ideas subsequently.
9An economic interpretation of this effect is that “. . . a larger population increases the number of people

who can enter an industry with a new product, thus resulting in more horizontal innovations, which dilutes
R&D expenditure over a larger number of separate projects”(Ha and Howitt, 2007).
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(and λ = 1), we recover the fully endogenous growth model with strong scale effect by

Romer (1990); under χ1 > 0, and χ2 = 0 (and λ ≤ 1), we get the semi-endogenous

growth model without the strong scale effect by Jones (1995); under χ1 = 0, and

χ2 = λ, we get the fully endogenous growth model without the strong scale effect, as

e.g. in Dinopoulos and Thompson (1999, 2000).

Since the R&D sector is competitive, Nt is endogenously determined so that the

wage rate of one unit of research labor input satisfies the free-entry condition wNtLNt =

ṄtVNt. This condition suggests that entry into the R&D sector will cease when total

revenues from the discovery of new ideas (the RHS) equal total direct costs related

to ideas-production (the LHS), with VNt indicating the market value of any new idea

being discovered.

2.3 Households

The number of identical infinitely lived households is constant and normalized to unity.

Hence, the size of population/labor force coincides with the size of the single dynastic

family, L, which supplies labor inelastically to firms. Population and, thus, the labor

force, grows at a constant exogenous rate L̇t/Lt ≡ n > 0. In this model, as shown

above, labor is employed to produce final (consumption) goods (LY ), intermediate

goods (Lx), and ideas (LN ). Since labor is assumed to be homogeneous and perfectly

mobile, it will be rewarded according to a unique wage rate at equilibrium. Thus, the

following equalities must hold at equilibrium:

Lt = LY t + Lxt + LNt (5)

wY t = wxt = wNt ≡ wt (6)

The objective of the household is to maximize the discounted utility of per capita

consumption of all its members. With a constant-elasticity-of-substitution instanta-

neous utility function, the household solves:
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max
{ct,at}

∞

t=0

U ≡

∫ ∞

0

(
c1−θ
t − 1

1− θ

)
e−(ρ−n)tdt, (7)

subject to the usual flow budget contraint, ȧt = (rt − n)at +wt − ct, and a0 > 0 given,

where at ≡ At/Lt and ct ≡ Ct/Lt denote per capita asset holdings (taking the form

of ownership claims on firms) and per capita consumption, respectively. In equation

(7), θ > 0 is the inverse of the intertemporal elasticity of substitution in consumption,

ρ > 0 is the pure subjective discount rate and we have normalized population at time

0 to one, L0 = 1. The representative dynastic family chooses the optimal path of

per capita consumption and asset holdings, {ct, at}
∞
t=0, taking the real rate of return

on asset holdings (the real interest rate), rt, and the wage rate, wt, as given. . The

solution to this problem gives the well-known Ramsey-Keynes rule.

2.4 Equilibrium and Balanced-Growth Path

In this economy, an allocation is a set of time paths for per capita consumption and asset

holdings {ct, at}
∞
t=0, for the available number of intermediate-good varieties {Nt}

∞
t=0,

for prices and quantities of each intermediate good {pt, xt}
∞
t=0, and for the real interest

rate and wages {rt, wt}
∞
t=0. We define an equilibrium as an allocation in which: (i)

the time paths for consumption and asset holdings are consistent with the solutions of

the households’ problem (7); (ii) the time paths for prices and quantities of each inter-

mediate good maximize instantaneous profits (3); (iii) the time path for the number

of intermediate-good varieties is determined by the free-entry condition in the R&D

sector; and (iv) the time paths for the real interest rate and wages are consistent with

market clearing.

We can now characterize the Balanced-Growth Path (BGP) of this model. We

define a BGP equilibrium as follows (see Barro and Sala-i-Martin, 2004, and Strulik,

2005):
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Definition 1 A BGP equilibrium is an equilibrium path along which:

1. All variables depending on time grow at constant exponential rates;

2. The sectoral shares of labor employment (sj =
Ljt

Lt
, with j = Y, x,N) are constant.

Let χ1 6= 0. It can then be shown that the following results hold along a BGP

equilibrium:10

γN ≡
Ṅt

Nt
= Ψn (8)

γc ≡
ċt
ct

= γa ≡
ȧt
at

= γy ≡
ẏt
yt

= ΦΨn (9)

r = θΦΨn+ ρ (10)

where:

Φ ≡ α [m(1− β)− 1] R 0 (11)

and

Ψ ≡

(
λ− χ2

χ1

)
R 0 (12)

and with the transversality condition of the households’ optimisation problem satisfied

when ρ > n + (1 − θ)γy. Equation (8) gives the BGP equilibrium growth rate of the

number of varieties of intermediate goods in the economy. According to equation (9),

the per capita values of consumption, asset holdings, and income, y ≡ Y/L, grow at

the same constant rate in the BGP equilibrium. Equation (10) gives the BGP value of

the real rate of return on asset holdings.

As in any canonical R&D-based growth model, the BGP growth rate of per capita

income is strictly related to the BGP innovation rate: γy = ΦγN . In turn, as in the

basic semi-endogenous growth model (Jones, 1995), and provided that χ1 6= 0, the

innovation rate (γN ) depends only on the parameters of the innovation technology (λ,

10The derivations are available from the authors upon request.
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χ1, and χ2) and the exogenous population growth rate (n), and is independent of the

markup (m) and the parameter measuring the degree of complexity in final output

production due to input proliferation (β).11

Notice that the BGP growth rate γN may display a positive, null, or negative

relationship with the growth rate of the population, n, depending on the sign and

magnitude of the parameters of the innovation technology. Unlike γN , through Φ, γy

depends instead on m and β. This implies that the degree of market power, the overall

level of complexity in the economy, and the interactions between these two variables

do ultimately matter for the rate of economic growth and for the sign of the correlation

between population and economic growth rates in the long-run.

From equations (8)-(10), it is evident that although γN is positive if Ψ > 0, r is

positive if ΦΨ is sufficiently large, i.e. ΦΨ > − ρ
θn . Instead, for γy to be positive, ΦΨ

needs to be strictly greater than zero. In what follows, we present the results of our

model in their most general possible form without imposing any ex ante restriction on

the magnitude of the upper bound of β.12

The following proposition summarizes our results.

Proposition 1 Along the BGP:

1. Sign(γy) = Sign(ΦΨ);

2. Sign
(
∂γy
∂n

)
= Sign(ΦΨ);

3. Real per capita income growth is equal to zero in the absence of any population

change (i.e., when n = 0);

4. Sign
(
∂γy
∂m

)
depends simultaneously on Sign(Ψ) and on whether β is greater,

11Although m and β do not affect γN in the BGP equilibrium, they do have an impact, respectively, on the
market value of any generic idea (through πi), and on the wage accruing to one unit of research labor wN .
As a consequence, m and β are ultimately able, by means of wage equalization, to influence the allocation
of the available labor input across sectors (see equations (5) and (6)).

12Notice that in our regressions we deal with negative GDP growth rates, as well (see Table A9). In
terms of our model, this is explained by the fact that in certain circumstances/countries, following the
proliferation of varieties of the same employed intermediate input, the resulting productivity-losses due to
increased complexity in production are sufficiently large.
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smaller, or else equal to one.

Proof. The proof of the first part of the proposition is immediate when one takes into

account that, in the model, n > 0. The proof of the second part is also immediate by

observing that:
∂γy
∂n = ΨΦ. To prove the third result, we notice that, in equation (9),

γy = 0 if n = 0. Regarding the proof of the fourth result, notice that equation (9) also

implies that:

∂γy
∂m

=





Ψn [α(1− β)] > 0 if (Ψ > 0 andβ < 1) or (Ψ < 0 andβ > 1)

Ψn [α(1− β)] = 0 if Ψ = 0 orβ = 1

Ψn [α(1− β)] < 0 if (Ψ < 0 andβ < 1) or (Ψ > 0 andβ > 1)

�

Using the definition of Φ and equation (9), we finally observe that several combinations

of the signs of γy,
∂γy
∂n , and

∂γy
∂m may occur when Ψ > 0 (say because χ1 > 0 and λ > χ2

in equation (4)):

- if 0 < β < m−1
m , then: Φ > 0, γy > 0,

∂γy
∂n > 0 and

∂γy
∂m > 0;

- if β = m−1
m , then: Φ = 0, γy = 0,

∂γy
∂n = 0 and

∂γy
∂m = 0;

- if m−1
m < β < 1, then: Φ < 0, γy < 0,

∂γy
∂n < 0 and

∂γy
∂m > 0;

- if β = 1, then: Φ < 0, γy < 0,
∂γy
∂n < 0 and

∂γy
∂m = 0;

- if β > 1, then: Φ < 0, γy < 0,
∂γy
∂n < 0 and

∂γy
∂m < 0.

Proposition 1 suggests that the sign of (1−β), by determining the sign of ∂Φ/∂m, is a

key determinant of the impact of the intermediate sector’s markup on real per capita

growth. In more detail, if β < 1, the specialization gains obtained from an expansion

in intermediate-input variety are larger than the possible losses due to more complexity

in production and, thus, ∂Φ
∂m > 0. If β > 1 , the specialization gains are smaller than

the possible losses due to more complexity in production and ∂Φ
∂m < 0. Finally, when

β = 1, the specialization gains are offset by the possible losses due to more complexity
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in production and ∂Φ
∂m = 0. These results, combined with the sign of Ψ, determine the

sign of
∂γy
∂m , as shown in Proposition 1. The sign of Ψ depends, in turn, on the sign

of (λ − χ2), that is, on the balance between dilution and duplication effects in R&D

activities, as shown by equation (4). Therefore, conditional on the sign of Ψ, a decrease

in m, by increasing the elasticity of substitution across intermediate inputs and, hence,

the toughness of competition in this industry, can imply a lower, or a higher, or else no

effect at all on per capita income growth (i.e., the degree of competition in the product

market and the economic growth are ambiguously correlated).

The result that, in the absence of demographic change, there is no growth in real per

capita income is a distinctive characteristic of any basic semi-endogenous growth model

(see Jones, 1995). Our setting, however, includes additional features that cannot be

found in canonical semi-endogenous growth theory. In particular, the relation between

γN and γy is mediated, in our case, by the term Φ ≡ α [m(1− β)− 1], unlike Jones

(1995), where γN = γy = γ, with γ being a definitely positive function of n. Thus,

while in Jones (1995), β = 0 and, hence, Φ ≡ α(m − 1) > 0, in our model Φ can

also be negative. This occurs, for any given m > 1, when β is sufficiently large, β >

(m−1)/m ∈ (0, 1), i.e. when the complexity effect (in final-good production) is strong

enough. When this is true (Φ < 0), innovation output and long-run growth may exhibit

diverging patterns, as in the suggestive evidence provided at the beginning of the paper.

In this case, it is also possible that an increase in the rate of population growth would

yield (unlike Jones, 1995) a negative impact on per capita income growth. This happens

whenever Ψ > 0, as n affects positively γN in such a case.13 Finally, unlike Jones (1995),

in our model Ψ ≡
(
λ−χ2

χ1

)
R 0, because of our explicit and simultaneous consideration

of a dilution, a difficulty, and a duplication effect in R&D activity. Depending on

13There is another trait that makes our model different from Jones (1995): in equation (9) the growth rate
of the economy depends not only on n and, among others, the parameters χ1, χ1, λ and β, but also on m.
This specific difference with respect to Jones (1995) can be ascribed to the fact that in our model we have:
(i) postulated that intermediate firms produce with labor (rather than forgone consumption) and, more
importantly, (ii) disentangled the intermediate firms’ gross markup of price over the marginal production
cost from the factor-input shares in GDP. It can be easily demonstrated that, using exactly the Jones’
assumptions, our model is able to reproduce the same BGP growth rate of the Jones’ economy.
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the combined sign of Ψ and Φ, innovation (physical) inputs and economic growth may

exhibit diverging patterns, also as in the suggestive evidence presented at the beginning

of the paper.

3 Quantitative analysis

The theory developed above rests on a precise notion of complexity, which emerges as a

consequence of the interaction between the entire labor force and the aggregate research

effort, i.e. the number of new ideas and of researchers at work. The combination

between “complexity parameters”(χ1, χ2, λ and β), “technological parameters”(α and

m) and the exogenous population growth rate (n) determines the long-run growth

rate of a country’s per capita income. We now confront the theoretical predictions

with OECD data, by allowing that these fundamental parameters may vary over time

and across countries. To do this, we employ a Hidden Markov Model. Using our

theoretical model as a guidance, the parameter estimates for population growth and

the interaction between “complexity parameters” and “technological parameters” let

us infer which effect is predominant, between complexity and specialization. Notably,

this econometric approach provides a classification of our countries’ long-run growth

rates, in which the growth-regime membership depends on changes in our theoretical

growth determinants.

3.1 Econometric strategy

Our econometric strategy is articulated in two steps. In the first step, in order to

obtain country specific estimates for χ1, χ2 and λ, we take logs on both sides of

equation (4) and regress the growth rate of patents (by residents) on the number of

patents, population and number of researchers, for each country i, with i = 1, . . . , I:

(
Ṅ

N

)

t

= α0 + α1Nt + α2Lt + λLNt + ǫt (13)
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where χ̂j = −α̂j , with j = 1, 2, and ǫit ∼ i.i.d N(0, σt). For each country i, then, we

use the OLS estimates λ̂, χ̂1 and χ̂2 to compute the theoretical variable γN,i, according

to equations (8) and (12).

In the second step, we exploit the longitudinal nature of our data set and explore the

transitions from phases of low (and even negative) growth to phases of high growth and

vice versa, by taking into account the unobserved heterogeneity. In this perspective,

the real GDP (RGDP, hereafter) growth is interpreted as a result of countries switching

between distinct growth regimes (as in Kerekes, 2012). Let {Γit; i = 1, ..., I, t = 1, ..., T}

denote sequences of multivariate longitudinal observations for the real GDP growth rate

recorded on I countries and T year, where Γit = (γit1, ..., γitP )
T ∈ R

P , and let {Sit}

be a first-order Markov chain defined on the state space {1, ..., k, ...,K}. A Hidden

Markov Model (HMM, hereafter) is a stochastic process consisting of two parts: the

underlying unobserved process {Sit}, fulfilling the Markov property, i.e.

Pr(Sit = sit|Si1 = si1,Si2 = si2, . . . ,Sit−1 = sit−1) = Pr(Sit = sit|Sit−1 = sit−1)

and the state-dependent observation process {Γit} for which the conditional indepen-

dence property holds:

f (Γit = γit|Γi1 = γi1, . . . ,Γit−1 = γit−1,Si1 = si1, . . . ,Sit = sit) = f (Γit = γit|Sit = sit)

where f(·) is a generic probability density function (Maruotti and Punzo, 2017). The

distribution of Γit depends only on sit, i.e. Γit is conditionally independent given the sit.

In our baseline specification, we assume that the state-dependent distributions come

from a parametric family of continuous or discrete distributions. Thus, the unknown

parameters in the HMM involve both the hidden Markov chain and the state-dependent

distributions of the random variable Γit. The hidden Markov chain has K states with
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initial probabilities πik = Pr(Si1 = k), k = 1, . . . ,K, and transition probabilities

πi,k|j = Pr(Sit = k|St−1 = j)

with t = 2, . . . , T and j, k = 1, . . . ,K. For sake of simplicity, we will consider a

homogeneous HMM in which common transition and initial probabilities are assumed,

i.e. πi,k|j = πk|j and πik = πk, for i = 1, . . . , I. The transition probabilities are

constant over time and among individuals.14. The initial probabilities are collected in

the K-dimensional vector π, while the time-homogeneous transition probabilities are

collected in the K ×K transition matrix Π.

The empirical counterpart of the equation for the BGP growth rate of real per

capita GDP (9) can be written as:

E(γit|Γi,t−1, sit;mit,nit) = ω0,si +mT

i ω1,si + nT

i ω2,si (14)

where, for each country i and time t, γi,t is the RGDP growth rate, mT

i is the vector of

the annual products of intermediate sector’s markup and γN and nT

i is the vector of the

annual observations of γN .15 The parameters ω2,si and ω1,si capture the state-specific

unobserved factors that affect RGDP growth, through γN and its interaction with the

intermediate sector’s markup, respectively.

3.2 The data

Our final dataset merges information drawn from four different sources. First, we get

data on real GDP growth, population growth, human capital and exchange rate (to

convert all the monetary values in constant 2005 US$) from the Penn World Table

14This assumption can be easily relaxed to include covariates and/or unit-specific random effects (see, e.g.,
Maruotti and Rocci, 2012).

15In this section, for notational simplicity, we omit the subscript y on GDP growth rate γ.
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database (PWT, hereafter).16

Second, in order to construct a measure for the markup in the intermediate sec-

tor17, we use the EUKLEMS database, which collects data on output, productivity,

employment (skilled and unskilled), physical capital at industry level, for all Euro-

pean Union member states and for five of the high developed countries (US, Japan,

Korea, Canada and Australia) from 1970 to 2007.18 At the lowest level of aggrega-

tion, data are collected for 72 industries according to the European NACE revision 1

classification. We proxy the intermediate sector with the sum of the following indus-

tries: basic metals and fabricated metal; electrical and optical equipment; electricity;

gas and water supply; machinery; other non-metallic mineral; rubber and plastics; tex-

tile, leather and footwear; transport and storage; transport equipment; wood and cork.

Following Griffith, Harrison and Macartney (2006), we compute the markup index for

the intermediate sector, of country i at time t, as follows:19

mit =
Value Addedit

Total Labor Costsit + Total Capital Costsit
(15)

where all variables are in nominal prices and are provided by EUKLEMS.20 In our

baseline regressions, m is an index set equal to 1 in the base year 1995.21 Third,

the “number of ideas already invented”, i.e., a country’s stock of knowledge, has been

measured through the patent applications by residents, collected by the World Bank.22

Finally, OECD provides data on the number of researchers at work.23

Our final dataset consists of a sample that includes 18 OECD countries, with a time

span ranging from 1983 to 2007. Table A8 presents summary statistics. On average,

16Time span: 1983-2007, 2005 as reference year. For more information on the PWT see: http://www.

rug.nl/ggdc/productivity/pwt/.
17There exist several methods to measure markups. See Nekarda and Ramey (2013) for a review.
18For more information on the EUKLEMS database see: http://www.euklems.net/.
19Griffith, Harrison and Macartney (2006) point out that this approach is equivalent to that proposed by

Roeger (1995). See Klette (1999) for a discussion.
20For details see Timmer et al. (2007).
21Results with alternative measures for sector profitability are discussed in section 3.5.
22Data are available at the web page: https://data.worldbank.org/indicator/ip.pat.resd.
23Data are available at the web page: https://data.oecd.org/rd/researchers.htm.
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our data seem reject the hypothesis of strong scale effect, i.e. χ̂1 > 0.24 Table A9

shows that all countries in the sample experienced a positive average RGDP growth

rate along the period under observation. Since we are dealing with OECD countries,

this is not surprising. Notice finally that the sample also contains observations in which

the 5-year average per capita RGDP growth rate is negative.

3.3 Results

Our initial state distribution assigns equal probability to all regimes and we let the

number of regimes vary between zero (that is a homogenous time dependent process)

and five. To determine the number of regimes we use the Bayesian Information Cri-

terion (BIC), which rejects a model without clustering in favor of a model containing

four regimes, as in Jerzmanowski (2006) and Kerekes (2012) (see Table A10). On the

basis of the 5-years average per capita RGDP growth rate, we label the regimes as

follows: slow growth, steady growth, sustained growth and miracle growth.

Table 2: Growth regression, equation (14)

Constant γN m× γN Cluster standard 5-year avg. per capita

deviation RGDP growth rate (%)
OLS FE 0.028*** 0.023 -0.011
HMM:
1–Slow growth 0.821*** 0.032*** 0.031*** 0.712*** 1.134
2–Steady growth 2.531*** 0.029*** 0.007*** 0.414*** 2.676
3–Sustained growth 3.936*** 0.027*** 0.006*** 0.561*** 4.163
4–Miracle growth 5.794*** -0.001*** 0.092*** 0.997*** 6.615

Significance levels:* : 10% **: 5% ***: 1%.

Table 2 presents our main results. The first line presents the OLS fixed effects

estimates of the growth equation while the rest of the table reports the regime-specific

parameter estimates; the last column of the table provides the implied long-run growth

rates of each regime. The slow growth regime is the cluster with the lowest growth rate

of RGDP (1.134%, standard deviation of 0.712). This regime captures the long lasting

24Hungary presents an extremely high value for χ2 (160.182). When we exclude Hungary from the sample,
the sample mean becomes -2.594 while the standard deviation declines to 2.496. Our estimates are robust
to the exclusion of this outlier.
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stagnation of the Japanese economy, but also the severe downturns in economic activity

experienced in France over the period 1998-2006 (see Cette, Fernald and Mojon, 2016),

Spain at the end of the 80s (see Blanchard and Jimeno, 1995) and Sweden in the mid-

90s as a consequence of the second OPEC crisis (see Jonung and Hagberg, 2005). The

steady growth regime is characterized by a moderate growth rate of RGDP (2.676%) and

variability (with a standard deviation of 0.414, this cluster presents the lowest level of

variability). This regime captures, for instance, the growth experience of countries like

Germany, Australia, Belgium, Canada, Denmark and US. Interestingly, these countries

spent most of the time within this regime: this means that, despite cyclical fluctuations,

no persistent changes has been found – along the period under observation – in their

growth trajectories. The sustained growth regime is characterized by higher long-

run growth rate (4.163%) and variability (0.561): Austria (continuously from 1989 to

2000) and Spain (continuously from 1993 to 2002) are are the most frequent countries

within this regime. Finally, the miracle growth regime features the highest long-run

growth rate (6.615%) and standard deviation (0.997). This regime takes account of

the spectacular growth performance of the Irish economy (which continuously stays

within this cluster, from 1990 to 2005) but also of the growth successes of Japan (from

1988-1993), Portugal (in the mid-90s) and Spain (in the first decade of 2000s). Table

3 presents our classification.

The annual growth rate of population is a key ingredient of our theory. In our

data, its impact on per capita RGDP growth is found to be generally positive. In

the OLS fixed effects model, dγ/dn=0.115 (p-value=0.081), while in the HMM we

obtain: dγ/dn=0.389 (p-value=0.000) in the slow growth regime, dγ/dn=−0.269 (p-

value=0.000) in the steady growth regime, dγ/dn=0.485 (p-value=0.000) in the sus-

tained growth regime and dγ/dn=0.083 (p-value=0.000) in the miracle growth regime.

We pointed out in Section 2 that, depending on the sign of Φ, the losses due to

complexity may be larger or smaller than the gains due to specialization.25 We also

25See the discussion at the end of Paragraph 2.2.
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Table 3: Classification

Country Regime 1 Regime 2 Regime 3 Regime 4
Slow growth Steady growth Sustained growth Miracle growth

Australia 4 14 4 0
Austria 4 6 12 0
Belgium 3 14 4 0
Canada 7 12 0 0
Denmark 7 12 3 0
France 12 7 3 0
Germany 1 16 5 0
Hungary 2 6 5 0
Ireland 0 0 4 16
Italy 7 8 7 0
Japan 10 3 2 6
Poland 1 6 0 0
Portugal 3 4 8 4
Slovenia 0 7 2 0
Spain 2 6 10 4
Sweden 5 8 9 0
United Kingdom 9 8 5 0
United States 5 12 0 0

showed that, depending on the sign and magnitude of Φ, innovation and long-run

growth may exhibit a weak or even negative correlation, in line with the suggestive

evidence provided in Section 1. Notice that the theoretical growth equation (9) and

the empirical equation (14) differ because of the presence in the latter of a random

intercept, to account for omitted covariates or country-specific heterogeneity, which

are not captured by the observed covariates. Thus, in order to obtain an estimate

of Φ more directly linkable to the theoretical model, we use the estimates of (14)

with ω0,si = 0 to get the regime-specific Φ̂si = ω̂1,simsi + ω̂2,si with i = 1, . . . , 4,

where msi is the regime-mean of the intermediate sector markup.26 We find that Φ̂ is

positively correlated with the long-run RGDP growth rate, being 0.072 (p-value=0.000)

in the slow growth regime, 0.090 (p-value=0.000) in the steady growth regime, 0.278 (p-

value=0.000) in the sustained growth regime and 0.495 (p-value=0.000) in the miracle

growth regime. Our theory predicts that a higher Φ implies a stronger positive impact

of the proliferation of “new ideas”on the long-run per capita real GDP dynamics.

The switch between different growth regimes, therefore, implies at the same time the

26To consider the model without intercept in a logitudinal setting, we estimate ω1,si and ω2,si by Maximum
Likelihood.
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transition from phases in which complexity hampers more the GDP growth (lower Φ)

to phases in which complexity hampers it less (higher Φ), and vice-versa.27

Table 4: Transition matrix

From Regime
To Regime

1–Slow growth 2–Steady growth 3–Sustained growth 4–Miracle growth

1–Slow growth 0.488 0.402 0.085 0.024
2–Steady growth 0.245 0.565 0.163 0.027
3–Sustained growth 0.060 0.386 0.530 0.024
4–Miracle growth 0.000 0.000 0.267 0.733

Note: the entry in row j, column i should be interpreted as pij = P (st = j|st−1 = i).

Table 4 presents the cluster-specific transition probability matrix, which indicates

the probability of moving from the column regime to the row regime. The highest

persistency is found in the miracle growth: when a country (namely, Ireland, Japan,

Portugal and Spain) spends a year in this regime, it continues to growth at a so

terrific rate in the subsequent year with a probability equal to 0.733; otherwise it

moves into the sustained growth regime. The steady growth and the sustained growth

regimes also show a high persistency: when a country finds itself in one of the two

regimes, the probabilities of remaining there in the subsequent year are 0.565 and

0.530, respectively. At the same time, it is more likely that a country in the sustained

growth regime slowdowns, moving towards the steady growth one (0.386), rather than

the opposite occurs (0.163). Finally, a country in the slow growth regime will improve

its conditions, moving into the steady growth regime with a probability of 0.402, the

probability of moving into regimes characterized by faster growth being 0.109.

For a better comprehension of our results, Table 5 reports the conditional means

for our theoretical growth determinants, whereas Table 6 reports conditional means for

a list of other structural factors which have been not explicitly taken into account in

our theoretical framework. A rich relation emerges between growth and the theoretical

growth determinants across the four growth regimes. Not surprisingly, since we are

dealing with a sample of OECD countries, we do not observe significant differences in

27With exclusive reference to the countries in Figures 1 and 2, we find a Φ̂=0.186 (p-value=0.000).
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growth fundamentals across clusters. According to our theory, a higher growth rate of

patents is found associated with a faster long-run RGDP growth, which is also positively

correlated with the saving rate and gross capital formation. Interestingly, five non-

monotonic relationships with RGDP growth rate emerge: the annual population growth

rate shows an U-shaped effect on it while the effects of intermediate sector’s markup

and also λ, χ1 and χ2 present an inverted U-shaped pattern. Thus, our evidence

suggests that the duplication, difficulty and dilution effects, defined in equation (4),

also relate non-linearly with long-run growth. These non-linearities may explain why

the underlying positive relationship between patents or researchers and the long-run

RGDP growth is not clearly found in the aggregate data, although it is predicted by

the theory.

Table 5: Key growth-affecting factors, conditional means

Regime m λ̂ χ̂1 χ̂2 Ṅ/N n
1–Slow growth 1.061 0.011 0.250 -0.520 6.073 0.531
2–Steady growth 1.193 0.011 0.273 4.413 10.442 0.517
3–Sustained growth 1.127 0.184 0.264 -2.917 11.868 0.398
4–Miracle growth 1.051 -0.157 0.248 -4.193 12.496 0.659

Table 6: Other growth-affecting factors, conditional means

Regime saving rate investment share public spending share
1–Slow growth 0.424 0.253 0.170
2–Steady growth 0.423 0.259 0.168
3–Sustained growth 0.423 0.277 0.169
4–Miracle growth 0.484 0.280 0.143

3.4 Other growth fundamentals

Finally, we estimate several specifications of the Multinomial Logit Model (MNL) to

assess the role of the other potential long-run growth fundamentals in affecting a coun-

try cluster’s membership. In this exercise, we take the slow growth regime as reference.
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Therefore, the multinomial logistic regression evaluates the relative probability of being

in one of the remaining growth regimes against the reference, using a linear combination

of predictors. The obtained MLE-estimated coefficients represent the effects of every

predictor variable in the log-odds of being in any other regime versus the reference

regime. As predictor variable we employ the human capital index (hc) provided by

PWT. Results are reported in Table 7. Ceteris paribus, a unit increase in the human

capital index increases the probability of being in the steady growth regime, relative to

the slow growth regime, by a multiplicative factor of exp(0.191)=1.210, i.e. increasing

it by 21% (p-value=0.000). This confirms that, even for high income countries, human

capital is one of the underlying factors that lead to the transition from stagnation

to growth. The increase in educational level measured by the human capital index,

however, does not explain the take-off toward regimes characterized by higher growth

rates, being this ultimately related to R&D intensity and specialization.

Table 7: MNL Model for regime membership
From slow growth to. . . Coef. Std.Err.
. . . steady growth

hc index 0.191*** 0.014
constant 0.132 1.658

. . . sustained growth

hc index -1.741*** 0.111
constant 5.424*** 1.661

. . .miracle growth

hc index -2.879*** 0.143
constant 7.647*** 1.961

3.5 Robustness checks

In this paragraph, we briefly discuss how estimates and classification behave in re-

sponse to changes in the econometric specification and/or in the way we measure some

explanatory variables.28

Ψ̂. First, we check the robustness of our results using an alternative estimate of

28As our results survive various robustness checks, for the sake of brevity we do not present and discuss
in detail all the parameter estimates, which are available upon request.
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Ψ. For each country i, with i = 1, . . . , I, we regress the growth rate of patents (by

residents) on the demographic growth rate, according to (8):

(
Ṅ

N

)

t

= Ψnt + ǫt (16)

with ǫit ∼ i.i.dN(0, σt). For each country, then, we use the OLS estimates Ψ̂ to compute

the theoretical variable γN,i. Despite some modifications occur in the composition of

the clusters, we still identify four growth regime. The regressions, however, result in

less significant estimates and lower explanatory power.

χ̂1 and χ̂2. The HMM rests on the fact that the growth regime transition proba-

bilities are time dependent. A theoretical explanation for having (at least some) time

dependent parameter in our model, can be found in the possible interplay between N

and LN . To take this into account, we modify equation (4) as follows:

Ṅt =
1

X
·N

1−χ1(Nt)
t · L

−χ2(Nt)
t · Lλ

Nt, (5’)

The exponents χi(N), i = 1, 2, are now intended as (factor-specific) complexity indices

pertaining to R&D activity and depend positively on N , in line with Sequeira, Gil and

Afonso (2018). As the number of varieties of specialized (intermediate) goods rises,

the economy becomes more complex because there is an increase in the diversity (and

maybe redundancy) of the different components (i.e., intermediate goods) that need to

be assembled for producing the final output. This, in turn has two effects. Concerning

χ1(Nt), we postulate that a proliferation of Nt amplifies the difficulty with which new

ideas are discovered starting from the oldest ones. Similarly, as for χ2(Nt), we maintain

that the same increase in Nt strengthens the effect by which a rise in population size

ultimately leads to a dilution of the total amount of R&D expenditures over a larger

number of (more) dispersed research projects. However, we also assume that the indices

will eventually level off, i.e., χi(Nt) → χi, i = 1, 2, despite the continuous increase in

the number of varieties, reflecting the fact that part of the modern innovations (leading
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to new varieties of goods) have a stabilizing role in the complexity of the economies.29

The empirical counterpart of equation (5’) is given by the following reduced form

equation:

(
Ṅ

N

)

t

= α0 + α1Nt + α2NtLt + λLNt + ǫt (17)

where χ̂j = −α̂j , with j = 1, 2, and ǫit ∼ i.i.d N(0, σt).The results of the HMM model

obtained using these alternative χ̂1, χ̂2 and λ̂ are in line with those presented above.

We still identify four growth regimes: slow growth (with 5-years average growth rate

of 0.994%), steady growth (2.654%), sustained growth (3.826%) and miracle growth

(6.371%). Clusters’ standard deviations follow the same pattern of those in the base-

line model and only slight modifications occurs in clusters’ composition. Estimates,

however, are less accurate (see Table A11).

m . Several robustness checks are carried out for the intermediate sector’s markup.

As usual, when dealing with index numbers, results can be dependent on the base

year. We use an alternative base year, the 1985, and we don’t find any significant

change in our estimates. We also apply the procedure proposed by Roeger (1995) to

tackle the issue of the empirical measurement of the markups. In particular, assuming

the markup constant over the period under observation, for each country, we run the

following regression:

SRt − SRPt =

(
1−

1

m̃

)
[(∆pt +∆Qt − ut) + (∆rt +∆Kt − vt)] (18)

where: (SRt − SRPt) is the difference between the Solow residual and the price-based

Solow residual, m̃ is the intermediate sector’s markup, (∆pt +∆Qt) is the nominal

29Sequeira, Gil and Afonso (2019, p. 107) point out that, at least in modern economies, “some inventions
have reduced or attenuated the effect of complexity either directly or indirectly. Computers have allowed
calculation of things and analysis of data and models in ways impossible before, while, as an indirect effect,
one could argue that the development of machinery that replaces humans (e.g., earth-moving equipment)
have allowed more humans to spend their time managing complexity and its effects”. Their empirical results
indeed suggest a stabilization of complexity over the long-run.
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output growth, (∆rt +∆Kt) is the growth of capital cost. Both capital costs and

nominal output are measured with error, with vt ∼ i.i.d.(0, σv) and ut ∼ i.i.d.(0, σu).
30

Estimates for m̃ are presented in Table A12. Because of the lack of time variability of

m̃, using this estimated markup, rather than the index computed using equation (15),

implies less accurate estimates.

Human capital. Following Bucci (2015), we estimate a version of the model in

which the growth rate of the human capital (measured by the hc index provided by

PWT) replaces the growth rate of population. Let ñ denote the rate of change of

the human capital index. In the OLS fixed effects model we get that dγ/dñ=0.089

(p-value=0.001) while no significative changes are observed in the HHM.

4 Concluding remarks

In this paper, we advance an explanation for a cross-country evidence which is incon-

sistent with most endogenous growth models: the coexistence of increasing trends in

aggregate research effort and the no corresponding increases in long-run per capita in-

come growth. Building on Jones (1995), we develop a model in which long-run growth

is determined by the interplay between “complexity parameters”, “technological pa-

rameters”and the (exogenous) population growth rate. In this setting, the coexistence

of stagnant per capita income growth and the proliferation of “new ideas”is shown to

be the equilibrium response to greater complexity. Using the theoretical model as a

guidance, we estimate a regime-switching model of growth (namely, a Hidden Markow

Model), which allows for an endogenous classification mechanism, using a sample of

OECD countries. We find four different regime for the long-run per capita real GDP

growth. Each country’s growth pattern is the result of transitions between distinct

growth regimes. The transitions are determined by regime-specific transition probabil-

ities. In light of our classification, we further establish several facts about the transition

30Christopoulou and Vermeulen (2012) apply the same empirical strategy to estimate price-marginal cost
ratios for 50 sectors in eight Euro area countries and the US over the period 1981-2004.
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between different growth regimes. We find that growth accelerations, in high income

countries, are strongly associated with patenting activity, i.e. the annual growth rate

of patent applications (by residents); growth failures meanwhile are characterized by

a weaker degree of specialization, i.e. a lower average estimated value for Φ. In this

situation, in which complexity in production is more harmful for long-run growth, our

theory suggests that increases in the population growth rate allow to achieve faster

growth. An alternative way-out, which our model can easily be extended to account

for, is to increase the investment in education: using a Multinomial Logit Model, we

find that the level of human capital – here proxied by the hc index provided by PWT

– positively affects the transition from a regime with modest growth towards a regime

of faster growth.
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Appendix

Table A8: Summary statistics

Variable Description Obs. Mean Std. dev. Min Max
γy 5-year avg. per capita RGDP growth rate 344 3.011 1.695 -0.938 9.045
m intermediate sector’s markup index (1995=1) 344 1.133 0.503 0.719 4.794
n annual population growth rate 344 0.504 0.488 -0.290 2.205
N number of patents by residents 344 14,177.910 23,380.950 6.000 12,8152.200
LN number of researchers 344 12,745.67 14,257.49 251 61800

λ̂ country-by-country OLS estimate for λ 344 0.038 0.845 -0.979 3.865
χ̂1 country-by-country OLS estimate for χ1 344 0.263 0.237 0.061 1.332
χ̂2 country-by-country OLS estimate for χ2 344 0.718 23.148 -9.271 160.182

Table A9: Descriptive statistics on 5-year average per capita RGDP growth rate

Country Min Mean Max
Australia 0.942 2.526 3.560
Austria 1.579 3.250 5.114
Belgium -0.938 2.617 5.633
Canada -0.228 1.943 3.395
Denmark 1.485 2.590 3.888
France -0.275 1.987 4.242
Germany 1.358 3.022 5.414
Hungary 1.084 2.949 5.015
Ireland 3.569 6.534 9.045
Italy -0.338 2.401 4.938
Japan -0.419 2.968 7.747
Poland 1.590 3.354 6.361
Portugal 0.580 4.015 7.325
Slovenia 2.046 2.719 3.894
Spain -0.828 3.762 6.349
Sweden -0.445 2.643 4.410
United Kingdom 1.311 2.767 4.955
United States 1.248 2.310 3.474
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Table A10: Information criteria

2 regimes 3 regimes 4 regimes 5 regimes
Log-likelihood -566.69 -501.56 -463.24 -439.53
AIC 1155.4 1043.1 988.48 967.07
BIC 1197.6 1119.9 1107.5 1136.1

Table A11: Robustness check – growth regression, using equation (17) to get χ̂1, χ̂2 and λ̂

Constant γN m× γN Cluster standard 5-year avg. per capita

deviation RGDP growth rate (%)
OLS FE 0.031*** 1.025*** -0.561***
HMM:
1–Slow growth 1.060*** 0.925 -0.886 0.741 0.994
2–Steady growth 2.608*** 0.256 -0.257 0.493 2.654
3–Sustained growth 4.095*** 0.942 -0.454 0.590 3.826
4–Miracle growth 5.651*** 1.467** 5.106** 1.091 6.371

Significance levels:* : 10% **: 5% ***: 1%.

Table A12: Estimated intermediate sector’s markup

Country m̃
Australia 1.665
Austria 1.510
Belgium 1.650
Canada 1.755
Denmark 1.572
France 1.569
Germany 1.665
Hungary 1620
Ireland 1.518
Italy 1.599
Japan 1.540
Poland 1.596
Portugal 1.683
Slovenia 1.906
Spain 1.608
Sweden 1.538
United Kingdom 1.686
United States 1.713
mean 1.635

Note: all parameters are significant at 1%.
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