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Abstract

This paper provides a necessary and sufficient condition for asymptotic efficiency

of a nonparametric estimator of the generalized autocovariance function of a sta-

tionary random process. The generalized autocovariance function is the inverse

Fourier transform of a power transformation of the spectral density and encom-

passes the traditional and inverse autocovariance functions as particular cases. A

nonparametric estimator is based on the inverse discrete Fourier transform of the

power transformation of the pooled periodogram. The general result on the asymp-

totic efficiency is then applied to the class of Gaussian stationary ARMA processes

and its implications are discussed. Finally, we illustrate that for a class of contrast

functionals and spectral densities, the minimum contrast estimator of the spectral

density satisfies a Yule-Walker system of equations in the generalized autocovariance

estimator.
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1 Introduction

The autocovariance function and its Fourier transform, the spectral density function,
characterise the temporal dependence structure of a stationary stochastic process, and are
of fundamental importance in time series analysis and prediction. For Gaussian stationary
processes they provide, along with the mean, a complete characterization of the probability
distribution of the process as well as the basic ingredients for optimal (minimum mean
square) prediction, based on time series observations.

The autocovariance function is estimated nonparametrically by the sample autoco-
variance function. This estimator has a long tradition in time series analysis, and its
properties are demonstrated and discussed in time series textbooks, such as, for instance,
Brockwell and Davis (1991, ch. 7), where it is shown that under regularity conditions
it has an asymptotically normal distribution and that the elements of the asymptotic
covariance matrix are given by the celebrated Bartlett’s formula.

The literature has further addressed the important question as to what classes of
parametric linear processes admit the sample autocovariance as an asymptotically efficient
estimator, i.e., an estimator whose variance achieves the Cramèr-Rao lower bound.

This issue has been investigated by Porat (1987) for Gaussian autoregressive (AR)
moving average (MA) mixed processes, based on state-space representations and matrix
Lyapunov equation theory. For Gaussian ARMA(r , q) processes with r ≥ q the sample
autocovariances are asymptotically efficient only in a restricted number of cases, while
if q > r none of the sample autocovariances is asymptotically efficient. See also Walker
(1995) for an alternative derivation of this result. The result implies that the variance and
the first r autocovariances of a pure AR(r) process are efficiently estimated by the sample
autocovariances, while for a pure MA process none of the autocovariances is asymptoti-
cally efficient.

Kakizawa and Taniguchi (1994) derived in the frequency domain a necessary and
sufficient condition for asymptotic efficiency of the sample autocovariances that applies
to the more general class of Gaussian stationary processes. Kakizawa (1999) extended the
previous results to the case of vector processes. Boshnakov (2005) studied the efficiency
of the sample autocovariances for processes obtained by a finite linear transformation of
a pure autoregressive process.

The generalized autocovariance (GACV) function was defined in Proietti and Luati
(2015) as the inverse Fourier transform of the p-th power of the spectral density function.
It encompasses the traditional autocovariance function (p = 1) and the inverse autoco-
variance function (Cleveland, 1972), which is the sequence of the coefficients of the Fourier
expansion of the inverse spectrum (p = −1).

The aim of this paper is to study asymptotic efficiency of the nonparametric esti-
mator of the GACV considered in Proietti and Luati (2015). Following Hannan and
Nicholls (1977) and Luati et al. (2012), the estimator is based on the powers of the pooled
periodogram over m non-overlapping consecutive frequencies, where m is the pooling pa-
rameter. Proietti and Luati (2015) established consistency and asymptotic normality of
the estimator.

We establish a necessary and sufficient condition for asymptotic efficiency in terms of
the spectral density and its derivatives for general Gaussian stationary processes, which
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nests as a particular case the result of Kakizawa and Taniguchi (1994), which holds for
p = 1. The results also show that the the nonparametric estimator achieves the Cramèr-
Rao lower bound as m → ∞ for p = −1, i.e. it estimates efficiently the first q inverse
autocovariances when the true generating process is pure MA(q), thereby complementing
the results by Bhansali (1980) and Battaglia (1988). The inverse autocovariance function
is useful in interpolation problems and for the identification of ARMA models.

After characterizing a class of processes for which the nonparametric estimator is fully
efficient, we consider the case when the process is Gaussian ARMA(r , q), in which case
some numerical example illustrate the rate of convergence to the Cramèr-Rao bound.
The results obtained include, as a special case, the results for the sample autocovariance
function by and Porat (1987) and Kakizawa and Taniguchi (1994).

Finally, we illustrate that for a class of contrast functionals and spectral densities,
the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of
equations in the generalized autocovariance estimator.

The paper is organized as follows. Section 2 states the main assumptions concern-
ing the generating process, recalls the definition of the estimator of the GACV and the
Cramér-Rao lower bound. Section 3 contains the main result in the paper, establish-
ing a necessary and sufficient condition for asymptotic efficiency of the estimator, and
discussing its positioning in the literaure. The asymptotic efficiency when the series is
generated by a Gaussian ARMA processes is discussed in section 4, along with some nu-
merical illustrations. Section 5 discusses the the nonparametric GACV estimator as a
minimum contrast estimator (Taniguchi, 1987). Section 6 concludes the paper. Proofs
are deferred to the Appendix.

2 Basic definitions and assumptions

Let {Xt}t∈T , with T ∈ N a discrete time set, denote a zero mean stationary Gaussian
process with autocovariance function γk = E(XtXt−k), k ∈ Z, and spectral density fθ(ω) =
∑∞

k=−∞ γke
−ıωk, ω ∈ [−π, π], both depending on an s × 1 vector of parameters θ =

(θ1, . . . , θs)
′ ∈ R

s.
For p ∈ R we define the generalized autocovariances, denoted γpk, as the sequence of

Fourier coefficients of [2πfθ(ω)]
p, i.e.,

[2πfθ(ω)]
p =

∞
∑

k=−∞

γpke
−ıωk,

or, equivalently,

γpk =
1

2π

∫ π

−π

[2πfθ(ω)]
p cos(kω) dω. (1)

Obviously, γ1k = γk, while γ−1,k is the inverse autocovariance function, see Cleveland
(1972) and Battaglia (1983).

Throughout the paper we make the following assumptions.

Assumption 1. There exist two positive constants c and c such that
0 < c ≤ fθ(ω) ≤ c < ∞, for ω ∈ [−π, π].
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Assumption 2. The generalized autocovariances and their partial derivatives, ∂γpk/∂θj,
j = 1, . . . , s, satisfy the summability conditions

∑∞
k=1 k|γpk| < ∞,

∑∞
k=1 k|∂γpk/∂θj| < ∞.

Assumption 3. The s× s matrix

1

4π

∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′

dω

f 2
θ (ω)

is positive definite.

The first assumption restricts attention to short memory processes, ruling out long
memory and non-invertible models, see, e.g., Hassler (2018). Assumption 2 implies
that

∫ π

−π
[fθ(ω)]

p dω < ∞ and fθ(ω) is differentiable with respect to θj, and ∂fθ(ω)/∂θj is
continuous and differentiable with respect to ω, with continuous derivative.

Given a time series of N consecutive observations, {xt, t = 1, 2, . . . , N}, and their
sample mean x̄N = 1/N

∑N
t=1 xt, we define the periodogram

I(ωj) =
1

2πN









N
∑

t=1

(xt − x̄N) exp (−iωjt)









2

,

where ωj is the Fourier frequency ωj =
2πj
N

∈ (0, π), 1 ≤ j ≤ ⌊N−1
2

⌋, and ⌊·⌋ denotes the
integer part of the argument.

Based upon Hannan and Nicholls (1977) and Luati et al. (2012), Proietti and Luati
(2015) proposed the following nonparametric estimator of the generalized autocovariances
based on the inverse discrete Fourier transform of the p-th power of the corrected pooled
periodogram,

γ̂pk =
1

M

M−1
∑

j=0

Y
(p)
j cos(ω̄jk), (2)

where M = ⌊N−1
2m

⌋ and

Y
(p)
j = (2πĪj)

p Γ(m)

Γ(m+ p)
,

where

Īj =
m
∑

l=1

I(ωjm+l)

is the pooled periodogram over m ≥ 1 nonoverlapping consecutive frequencies and ω̄j =
ωjm+(m+1)/2 are mid range frequencies; m is the pooling parameter.

Some constraints on m ensure the existence of the second moment of the pth power of
a Gamma random variable (Proietti and Luati, 2015): in particular, we need p > −m/2.

Let γp = [γp0, γp1, . . . , γpK ]
′ be the vector of the generalized autocovariance functions

up to lag K and γ̂p = [γ̂p0, γ̂p1, . . . , γ̂pK ]
′ the corresponding estimator. Under the stated

assumptions and additional assumptions on m and on the coefficients of the Wold repre-
sentation of the process, Proietti and Luati (2015) showed that:

√
N(γ̂p − γp) →

d
N(0,V ), (3)
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where V = {vkl, k, l = 1, . . . , K}, with

vkl = m (C(m; p, p)− 1)
1

π

∫ π

−π

[2πfθ(ω)]
2p cos(ωk) cos(ωl) dω, (4)

where

C(m; p, p) =
Γ(m+ 2p)Γ(m)

Γ2(m+ p)
,

and Γ(·) is the Gamma function.

Definition 1. The GACV estimator γ̂kp in (2) is efficient if its asymptotic variance, vkk
converges to the Cramér-Rao lower bound

CRB{γ̂pk} =
∂γpk
∂θ′

I
−1
N (θ)

∂γpk
∂θ

, (5)

with
∂γpk
∂θ

= (2π)p−1

∫ π

−π

∂[fθ(ω)]
p

∂θ
cos(kω) dω,

and IN(θ) is the Fisher information matrix associated with X1, . . . , XN ,

IN(θ) =
1

4π

∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′

1

f 2
θ (ω)

dω.

Under assumptions 1−3, by (3) and (4), vkk ≥ CRB{γ̂pk} gives the following inequal-
ity:

m(C(m; p, p)− 1)

p2

∫ π

−π

[fθ(ω)]
2p cos2 (ωk) dω ≥

{

∫ π

−π

[fθ(ω)]
p∂ ln fθ(ω)

∂θ′
cos(kω) dω

}

{

∫ π

−π

∂ ln fθ(ω)

∂θ

∂ ln fθ(ω)

∂θ′
dω

}−1{
∫ π

−π

[fθ(ω)]
p∂ ln fθ(ω)

∂θ′
cos(kω) dω

}′

. (6)

3 Asymptotic efficiency of the estimator of the GACV

The nonparametric estimator γ̂pk of the generalized autocovariance function γpk is asymp-
totically efficient if its asymptotic variance attains the Cramér-Rao bound, that is if, in
(6), equality holds. This requires a condition on the spectral density of the process and
on the limit behaviour of the quantity m(C(m; p, p) − 1)/p2, that will be stated in the
following theorem.

Theorem 1. Suppose that assumptions 1-3 are satisfied and that m and M are large
enough for asymptotics and m

M
is small enough for f to be constant over frequency intervals

of length 2πm
M

and m(C(m, p, p) − 1) → p2. Then, γ̂pk is asymptotically efficient if and
only if there exists an s-dimensional vector c, independent of ω, such that:

[fθ(ω)]
p+1 cos (kω) + c′

∂fθ(ω)

∂θ
= 0, (7)
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Proof. Proof: see Appendix A.

The above condition can also be stated as

[fθ(ω)]
p cos (kω) + c′

∂ ln fθ(ω)

∂θ
= 0.

The proof of Theorem 1 is based on a matrix-based integral inequality from Kakizawa and
Taniguchi (1994), generalizing the Cauchy-Schwarz inequality and Kholevo’s inequality
(Kholevo, 1969).

Theorem 1 provides a necessary and sufficient condition for asymptotic efficiency of
γ̂pk which is valid for general Gaussian stationary processes. It is expressed in terms
of the spectral density function, which makes it easy to check for various models. This
result embodies in a single equation the condition for asymptotic efficiency of the sample
autocovariance function (p = 1), of the estimator γ̂−1,k of the inverse autocovariance
function (p = −1), which at lag k = 0 provides the inverse of the interpolation error
variance, and of the estimator γ̂pk for general real powers p.

Corollary 1. Consider the process with spectral density function fθ(ω) =
1
2π

[

1
θ(ω)

]
1

p , with

θ(ω) the trigonometric polynomial θ(ω) = θ0 + 2
∑K

j=1 θj cos (ωj), so that ∂θ(ω)
∂θ

= q(ω) =

[1, 2 cos (ω), 2 cos (2ω), . . . , 2 cos (ωK)]
′

. Then,

∂fθ(ω)

∂θ
= −(2π)p

1

p
[fθ(ω)]

p+1q(ω).

Condition (7) in Theorem 1 becomes

[fθ(ω)]
p+1

{

cos (kω)− (2π)p

p
c′q(ω)

}

= 0,

which is satisfied if c =
[

0, 0, . . . , p
2(2π)p

, 0, . . . , 0
]′

. This implies that for p = −1 the
process is moving-average of order K and the first K inverse autocovariances γ−1,K =
[γ−1,1, . . . , γ−1,K ]

′

and γ−1,0 can be efficiently estimated as N → ∞ by the estimator of the
GACV γ̂−1,K with large m.

Remark 1. The estimator (2) can be viewed in the wider context of estimation of func-
tionals of the spectral density, which are related to many important quantities in sta-
tionary time series. Setting m = 1, for p > 0, Y p

j is the inverse Laplace transform

of [2πf(ωj)]
−(p+1) evaluated at 2πI(ωj), proposed by Taniguchi (1980) for estimating

[2πf(ωj)]
p. Asymptotic efficiency of this estimator is studied in Taniguchi (1981), who

establishes that this estimator is asymptotically efficient if p = 1 and the spectral density
is constant over [−π, π]. The nonparametric estimator of γ̂pk further generalizes these re-
sults to any real power transform, including negative p. Furthermore, the introduction of
the pooling parameter m allows asymptotically efficient estimates also for p 6= 1.
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Remark 2. By setting the power p and the pooling parameter m to 1, inequality (6)
reduces to the asymptotic Cramér-Rao inequality for the sample estimator of the autoco-
variance function analysed by Kakizawa and Taniguchi (1994). Note also that for p = 1,
by the properties of the Gamma function, the constant m(C(m; p, p)−1) does not depend
on the pooling parameter m: m(C(m; , 1, 1) − 1) = 1. Hence, if we consider estimation
of the traditional autocovariance function, the asymptotic variance of the nonparametric
estimator γ̂1k does not depend on the pooling parameter m. Indeed, γ̂1k is the Riemannian
sum approximation over the Fourier frequencies of the sample autocovariance at lag k,
denoted by γ̃k:

lim
N→∞

1

⌊(N − 1)/2⌋

⌊(N−1)/2⌋
∑

j=1

2πI(ωj) cos (ωjk) =

∫ π

−π

I(ω) cos(ωk) dω = γ̃k,

with I(ω) = 1
2π

∑

|h|<N γ̃h cos (ωh). Hence limN→∞ γ̂1k = γ̃k, and their asymptotic vari-
ances, as N → ∞, are equivalent. As a matter of fact, by setting p = 1, Theorem 1 pro-
vides the condition for asymptotic efficiency of the sample autocovariances by Kakizawa
and Taniguchi (1994).

4 Numerical illustrations

Some specific cases of ARMA processes are considered and the performance of the non-
parametric estimator of interest is related to the Cramér-Rao lower bound.

Let us consider a stationary AR(1) process {Xt}t∈T , |φ| < 1, with spectral density
function

fθ(ω) =
σ2

2π

1

1− 2φ cosω + φ2

The parameter vector is θ = (φ, σ2)′. We denote the asymptotic variance of γ̂pk by

AV {γ̂pk} = m(C(m; p, p)− 1)
σ2p

π

∫ π

−π

( 1

1− 2φ cosω + φ2

)2p

cos2 (kω) dω.

Table 1 refers to a stationary AR(1) process with parameters φ = 0.8 and σ2 = 1. It
displays the values of AV {γ̂pk}, CRB{γ̂pk} and their ratio for different values of m and p.
Recall that for Gaussian processes it must be m > −2p. Values greater than one measure
the inefficiency of the estimator (2). As we know, the sample autocovariance function γ̂1k
is asymptotically efficient for k = 0, 1. Except for this case, exact equality between the
asymptotic variance and Cramér-Rao bound of γ̂pk never holds, but it is approximated as
m increases.

7



Table 1: Asymptotic efficiency of γ̂pk for an AR(1) model with φ = 0.8 and σ2 = 1.

k p m AV/CRB k AV/CRB k

2
1 1.36 1.38

1 2 1.26 2 1.29
30 1.10 1.12

4 2
30 1.21

5
1.28

7
1.53

50 1.20 1.27 1.52

We focus on the case when p = 2, which is of interest when applied to autoregressive
functions as positive powers emphasise peaks in the spectral density function. Examples of
spectral density functions showing a peak are those associated with processes that exhibit
cyclical behavior, often represented by AR(2) or ARMA(2,1) processes. For positive
values of p, no constraint on the pooling parameter is required, so we let m = 1, 2, 30, 50
for k = 1, 2, 4, 5, 7, to show the effect of pooling. As it is shown in Table 1, pooling has a
positive effect on the asymptotic efficiency of the estimator, as a value of m = 30 reduces
its asymptotic variance by 18.7%.

0 5 10 15

5
1
0

1
5

k

A
V
/C
R
B

p=1

p=3/2

Figure 1: Plot of AV/CRB against k for p = 1.5 (dotted line) and p = 1 (line),
with m = 30, for an AR(1) process with σ2 = 1, φ = 0.8.

A comparison with the sample autocovariance evidences that the ratios AV/CRB
relative to γ̂pk and γ̂1k both increase as k increases, and the difference between them
also becomes larger in favour of the estimator of the GACV for several values of p. This
emerges froom the plot, in Figure 1, of the ratio AV/CRB against k, where the red dashed
line refers to the estimator of the GACV for p = 3/2 and the black solid line refers to the
sample autocorerlation.

We now move to estimation of the inverse autocorrelation when moving average pro-
cesses or ARMA(r, q) processes are considered, with q > r. Table 2 reports the asymptotic
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efficiency of γ̂pk for p = −1: the theoretical results are confirmed and very good efficiency
results are obtained for increasing m, when, in general, the results for p = 1 are ineffi-
cient. Indeed, the ratio AV/CRB for the estimator of the inverse autocovariance function
(p = −1) with k = 1 is 1.08 for m = 25 and 1.04 with m = 50, very close to unity, while
the same ratio for for p = 1 and k = 1 is equal to 2.47.

Table 2: Asymptotic efficiency of γ̂pk for an MA(1) model with θ = 0.7, σ2 = 1.

k p m AV/CRB k AV/CRB k AV/CRB

1 -1

3 3.00

2

3.18

3

3.72
5 1.66 1.76 2.06
10 1.25 1.32 1.55
25 1.08 1.15 1.34
50 1.04 1.10 1.29

4 -1

3 4.80

5

6.73
5 2.66 3.73
10 2.00 2.80
25 1.73 2.43
50 1.66 2.33

Table 3 shows a further example concerning an ARMA(1,2) model. In accordance
with the previous tables, results get worse for larger k. These results also confirm that
asymptotic efficiency of the estimator γ̂−1,k of the inverse autocovariance function at each
lag k strongly improves as m increases. This is apparent if comparing the ratio AV/CRB
when m = 3 to that with m = 50.

Table 3: Asymptotic efficiency of γ̂pk for an ARMA(1,2) model with θ1 = −0.7,
θ2 = 0.1, φ = 0.6, σ2 = 1.

k p m AV/CRB k AV/CRB k AV/CRB

1 -1

3 3.00

2

3.44

3

7.33
5 1.66 1.91 4.07
10 1.25 1.43 3.05
25 1.08 1.24 2.65
50 1.04 1.19 2.54

4 -1

3 8.18

5

9.31
5 4.54 5.17
10 3.41 3.88
25 2.96 3.37
50 2.84 3.23
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5 Minimum contrast estimation

As in Corollary 1, let us consider the process with spectral density function

[2πfθ(ω)]
p = [θ(ω)]−1, (8)

where θ(ω) > 0 is the trigonometric polynomial θ0 + 2
∑K

k=1 θk cos(ωk). Writing θ(ω) =

θ0|φ(e−ıω)|2, φ(e−ıω) = 1 −
∑K

j=1 φje
−ıωj, such that θk = θ0

∑K−k
j=1 φjφj+k, and setting

σ2 = θ−1
0 , it can be seen, by integrating both sides of (8) over ω ∈ [−π, π], that γpk is the

autocovariance function of the AR(K) process Ut =
∑s

j=1 φjUt−j + σǫt, ǫt ∼ i.i.d. N(0, 1).
Following Taniguchi (1987), let us consider minimum contrast (MC) estimation of the

spectral density fθ(ω) using the contrast functional

K(z; p) = ln(zp) +
1

zp
,

applied to fθ(ω)/gN(ω), where gN(ω) is the corrected pooled periodogram, gN(ω) =
Ī(ω) p

√

Γ(m)/Γ(m+ p) such that E{[gN(ω)]p} = [fθ(ω)]
p.

Define

Y (ω) =
1

2π

M−1
∑

−M+1

γ̂pke
−ıωk, ω ∈ [−π, π],

so that γ̂pk =
∫ π

−π
Y (ω)eıωkdω, and gN(ω) = [Y (ω)]1/p.

The MC estimator of (φ1, . . . , φK , σ
2)′ is the minimizer of

∫ π

−π

K

(

fθ(ω)

gN(ω)
, p

)

dω =

∫ π

−π

{

ln σ2 − ln |φ(e−ıω)|2 − lnY (ω) +
1

σ2
Y (ω)|φ(e−ıω)|2

}

dω.

The MC estimator of σ2 is σ̂2 = 1
2π

∫ π

−π
Y (ω)|φ̂(e−ıω)|2dω. Replacing in the contrast

function (and noticing
∫ π

−π
|φ̂(e−ıω)|2dω = 0), the MC estimator of φ = (φ1, . . . , φs)

′ is the
minimizer of the criterion function

Q(φ) =

∫ π

−π

Y (ω)|φ(e−ıω)|2dω.

Writing
|φ(e−ıω)|2 = 1− 2φ′b(ω) + φ′B(ω)φ

where b(ω) = [cosω, cos(2ω), . . . , cos(ωK)]′ andB(ω) = {cos(ω(h−k)), h, k = 1, 2, . . . , s},
differentiating with respect to φ and setting the derivatives equal to zero yields

∂Q

∂φ
=

∫ π

−π

Y (ω)(b(ω)−B(ω)φ)dω ≡ 0,

which is the generalized Yule-Walker system of equations:

γ̂pk =
K
∑

j=1

φ̂j γ̂p,k−j, k = 1, 2, . . . , K.

Hence, an asymptotically efficient estimator of (φ, σ2), and thus of θ, can be obtained
by solving a generalized Yule-Walker system based on the GACV estimator (2).
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6 Concluding remarks

The paper has established a necessary and sufficient condition in the frequency domain for
asymptotic efficiency of the nonparametric estimator of the GACV proposed by Proietti
and Luati (2015). The result generalizes the condition for asymptotic efficiency of the
sample autocovariances provided by Kakizawa and Taniguchi (1994), and applies to non-
parametric estimation of the inverse autocovariance function and of the Fourier coefficients
of general power transformations. The condition derived is easy to check for various mod-
els.

References

Battaglia, F. (1983). Inverse autocovariances and a measure of linear determinism for a
stationary process. Journal of Time Series Analysis , 4 (2), 79–87.

Battaglia, F. (1988). On the estimation of the inverse correlation function. Journal of
Time Series Analysis , 9 (1), 1–10.

Bhansali, R. (1980). Autoregressive and window estimates of the inverse correlation
function. Biometrika, 67 (3), 551–566.

Boshnakov, G. N. (2005). On the asymptotic properties of multivariate sample autoco-
variances. Journal of multivariate analysis , 92 (1), 42–52.

Brockwell, P. J., and Davis, R. A. (1991). Time series: theory and methods. Springer
Series in Statistics.

Cleveland, W. S. (1972). The inverse autocorrelations of a time series and their applica-
tions. Technometrics , 14 (2), 277–293.
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A Proof of Theorem 1

We first recall the following Lemma by Kakizawa and Taniguchi (1994), which allows us
to compare the asymptotic variance of γ̂pk and its Cramèr-Rao lower bound:

Lemma 1. Let A(ω) and B(ω) be r × s, t × s matrices, respectively, and let g(ω) be a
function such that g(ω) > 0 almost everywhere (a.e.) on [−π, π]. If the matrix

{

∫ π

−π

B(ω)B(ω)′
g(ω)

dω

}−1

exists, then

∫ π

−π

A(ω)A(ω)′g(ω) dω ≥
{

∫ π

−π

A(ω)B(ω)′ dω
}{

∫ π

−π

B(ω)B(ω)′
g(ω)

dω

}−1{
∫ π

−π

A(ω)B(ω)′ dω
}′

where ≥ means the left-hand side minus the right-hand side is positive semi-definite. Here
the equality holds if there exists an r × t matrix C which is independent of ω such that:

g(ω)A(ω) + CB(ω) = 0.

Asymptotic efficiency of γ̂pk occurs when vkk achieves the CRB on the right hand side
of (6). The latter can be rewritten as

K

∫ π

−π

A(ω)A(ω)′g(ω) dω ≥
{

∫ π

−π

A(ω)B(ω)′ dω
}{

∫ π

−π

B(ω)B(ω)′
g(ω)

dω

}−1{
∫ π

−π

A(ω)B(ω)′ dω
}′

,

with A(ω) = cos (kω)[fθ(ω)]
p−1, B(ω) = ∂fθ(ω)

∂θ
, g(ω) = f 2

θ (ω), and K = m(C(m;p,p)−1)
p2

.

The attainment of the CRB thus depends also on the term m(C(m;p,p)−1)
p2

, involving
both the power p and the pooling parameter m.

It is possible to show that K → 1 as m → ∞. We start by using a result about the
approximation of a quotient of two Gamma functions, obtained by the use of the Stirling’s
series (Erdélyi et al., 1954):

Γ(z + α)

Γ(z + β)
= zα−β

[

1 +
(α− β)(α + β − 1)

2z
+O(|z|−2)

]

,

as z → ∞, where α and β are bounded. By using this approximation we can rewrite

Γ(m)Γ(m+2p)
[Γ(m+p)][Γ(m+p)]

≈ m−p
[

1 + (−p)(p−1)
2m

]

mp
[

1 + p(3p−1)
2m

]

= 4m2+4mp2−3p4+4p3−p2

4m2 ,

By a change of variable and the De L’Hôpital theorem we find that m(C(m; p, p)−1) → p2

as m → ∞.
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Hence, in the cases p = 1 or p 6= 1 and m → ∞, the Cramér-Rao inequality (6)
becomes:

∫ π

−π

f 2
θ (ω)[fθ(ω)]

2(p−1) cos2 (ωk) dω ≥
{

∫ π

−π

[fθ(ω)]
p−1∂fθ(ω)

∂θ′
cos(kω) dω

}

{

∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′

1

f 2
θ (ω)

dω

}−1{
∫ π

−π

[fθ(ω)]
p−1∂fθ(ω)

∂θ′
cos(kω) dω

}′

.

Applying Lemma 1 by setting:

A(ω) = cos (kω)[fθ(ω)]
p−1, B(ω) = ∂fθ(ω)

∂θ
, g(ω) = f 2

θ (ω),

proves Theorem 1. �
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