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Abstract

We propose a new approach to efficiently estimate and analyze DSGE models sub-

ject to large shocks. The methodology is applied to study the macroeconomic effect

of these unusual shocks in a new Two-Sector model with heterogenous exposure to

the COVID-19 pandemic across sectors. We solve the model nonlinearly and pro-

pose a new nonlinear, non-Gaussian filter designed to handle large shocks and identify

their source and time location. Monte Carlo experiments show that the estimation

and identification of large shocks is feasible with a massively reduced running time.

Empirical results indicate that the pandemic-induced economic downturn can be rec-

onciled with a combination of large demand and supply shocks. Finally, we present

a set of counterfactual experiments to filter out potential demand and supply shock

complementarities, and perform a robustness exercise to check the sensitivity of the

model parameters to large shocks.
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1 Introduction

Modern economies are increasingly exposed to shocks of large magnitude that pose new

research challenges in the specification and estimation of macroeconomic models. The

presence of large unprecedented shocks is particularly evident in the case of the COVID-19

pandemic in 2020. The drastic measures taken have resulted in a sudden global economic

disruption, leading to one of the worst recessions since the Great Depression. The macroe-

conomic effects are unprecedented in nature and magnitude and require the development

of new economic models and methods, see Lenza and Primiceri (2022).

From a macroeconomic point of view, the COVID-19 pandemic raises questions about

its possible classification as a supply shock or demand shock, since production and con-

sumption are affected. Safety concerns hamper the production and consumption of goods

in contact-intensive sectors, leading to cascading effects on other sectors that increase

economic losses.

This paper contributes to the emerging literature on the economic effects of the pan-

demic by bridging a structural macroeconomic model with the data. In this respect, a key

contribution is to build and estimate a medium-scale New Keynesian dynamic stochastic

general equilibrium (NK-DSGE) model that features large shocks alongside nominal fric-

tions in prices and wages, real frictions on investment, variable capital utilization, habits

in consumption, and a zero-lower bound (ZLB) on the nominal interest rate.

The model is estimated using US time series, which include the COVID-19 periods. As

the economic impact of social distancing and containment policies is largely asymmetric

between industries, the model includes two sectors with different degrees of exposure to the

pandemic. In the data, we identify the US Leisure and Hospitality1 as the most affected

sector and the other sector as the rest of the economy (general sector).2

Although the leisure and hospitality sector represents only about 4% of the US econ-

omy, it contributes to a relevant share (around 2 percentage points) of the drop in GDP

from the pandemic (−9%), as its production has almost halved. The leisure and hospi-

tality industry is the sector hardest hit by abnormal shocks due to its contact-intensive

1According to the Bureau of Economic Analysis (BEA) and Bureau of Labor Statistics (BLS) industry
classification.

2A recent contribution by del Rio-Chanona et al. (2020) finds that the effects of the pandemic vary
greatly between different industries. Although there are no negative value-added effects for less contact-
intensive industries such as legal services, power generation, and distribution, or scientific research, the
expected value-added loss reaches the maximum for leisure and hospitality.
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nature, with a quarterly growth rate of −40% in employment and −45% in value added

during the second quarter of 2020.

To study the characteristics of the pandemic, our model considers large shocks in the

demand for pandemic-sensitive products and in the demand for the general sector. In ad-

dition, we study the large-scale shocks arising from labor supply and productivity in both

sectors and their joint effect on the macroeconomy. To account for the large movements

in the time series during the COVID-19 outbreak, we allow demand and supply shocks to

occasionally be drawn from various large shock components with inflated variability for

some of them. In this environment shocks can feedback on each other: for example, as

wages for work decline, there will be potentially larger second-order negative effects on de-

mand and the possibility of a self-reinforcing downward spiral in production, employment,

income and demand.

These features generate nonlinearity and non-Gaussianity in the model and, to make

inference, we propose a new nonlinear, non-Gaussian filter designed to handle and iden-

tify large pandemic shocks. The key contribution of our filter is to provide an estimate

of both the ex-ante and ex-post probabilities of a large shock, which are endogenously

estimated together with the DSGE parameters. Moreover, the proposed filter can distin-

guish between cases where shocks originate from a component with only one large shock,

a combination of some large shocks, or all large shocks.

The proposed inference strategy is a general methodology that may be used in time

series models in which the identification of large shocks must be done in a computationally

feasible way.

Our results show that the economic disruption caused by the pandemic can be ex-

plained by a combination of large demand and supply shocks. In the second quarter of

2020, the filter detects a large negative shock in the demand for all types of goods, to-

gether with a large negative shock in the demand for contact-intensive products. On the

supply side, we detect a large labor supply shock in the general sector and a large labor

productivity shock in the pandemic-sensitive sector.

Our paper links and contributes to three strands of the literature: the theoretical

analysis of the economic effects of the Coronavirus pandemic; the empirical literature that

fits time-series models with pandemic related data; and the methodological research on
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the use of nonlinear, non-Gaussian filters designed to deal with large shocks.

On the theoretical side, this paper is related to the literature that studies the role of

sectoral heterogeneity in the transmission of pandemic shocks. Guerrieri et al. (2020) use

a stylized production economy model to assess whether a negative labor supply shock can

cause a demand compression greater than the shock itself. These complementary shocks,

calledKeynesian supply shocks, can occur in a multisectoral model but not in a single sector

set-up. The role of complementarities is further explored by Baqaee and Farhi (2021) in the

framework of a rich input-output production network. Woodford (2020) shows that in a

multi-sectoral model with incomplete financial markets, the circular flow in the network of

payments can be altered as a result of supply disruptions, which are concentrated in some

sectors, leading to inefficient demand even without the assumption of complementarities

in preferences and technology. Our paper abstracts from complementarities in production

and imperfect financial markets but examines how preferences and rigidities affect the

transmission of shocks.

This paper is also connected to the literature that deals with the economic effects

of the pandemic by using calibrated DSGE models. Faria-e Castro (2021) uses a two-

sector DSGE model with borrowing constraints to analyze how a shock to the utility

of contact-intensive services propagates to other sectors and studies the subsequent fiscal

policy response. Fornaro and Wolf (2020, 2023) model the pandemic as a negative shock to

total factor productivity, which can generate long-term economic losses in a New Keynesian

DSGE set-up with endogenous growth. Unlike these authors, our specification of pandemic

shocks (see Section 3) allows for agnostic combinations of many economic forces, thus

providing a flexible decomposition of the shock into usual business cycle disturbances.

The previous papers allow only one type of pandemic-related shock, one at a time.

Unlike their set-up, our model allows the pandemic to generate different types of shocks

that together hit the economy and assess their relative importance. Differently from the

literature that focuses on Keynesian supply shocks, in our study, we consider reasonable

that the pandemic recession can depend both on productivity forces (production is in-

terrupted due to the closure of industrial activities) and on demand forces (consumption

is more difficult for the containment measures). Therefore, in our model preference and

productivity shocks coexist, and we estimate their relative importance.
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Following Abo-Zaid and Xuguang (2020), we build a New Keynesian model with two

sectors affected differently by the pandemic and extend the model in different directions.

First, we allow the pandemic to affect labor supply and labor productivity simultaneously.

Secondly, to fit the data, we enrich the model with these additional features: capital fric-

tions in the form of variable capital utilization; imperfect competition and wage rigidities

in labor markets; habits in consumption; and a zero-lower bound on the nominal interest

rate.

Another part of the literature focuses on epidemiological models see, among others,

Fernández-Villaverde and Jones (2022), Eichenbaum et al. (2022, 2021), Bodenstein et al.

(2020) and Kaplan et al. (2020). Instead, we consider the pandemic shocks to be exoge-

nous, as the optimal balance between health and economic activity is outside the scope

of this paper. The approach to analyzing the economic consequences of the COVID-19

pandemic without an integrated epidemiological model has also recently been explored by

Ferroni et al. (2022).

On the empirical side, this paper contributes to the literature that fits time series

models to pandemic data. Lenza and Primiceri (2022) estimate a Vector Autoregressive

model (VAR) without discarding the extreme movements of 2020. They allow for the

possibility of large shocks, consisting of a lifted standard deviation of innovations. The

strategy of Lenza and Primiceri (2022) has also been recently adopted by Cardani et al.

(2022), who estimate a DSGE model with pandemic shocks using data from the euro

area. We differ from Lenza and Primiceri (2022) by exploiting the structural nature of

our DSGE model to test the occurrence of just some combination of large shocks, rather

than necessarily all of them together (similarly to what was proposed more recently in the

VAR setting by Carriero et al., 2022).

Our paper is also related to the literature on fat-tailed shocks in DSGE models, such as

in Cúrdia et al. (2014) and Chib and Ramamurthy (2014). Due to the severity of the reces-

sion caused by the pandemic, we use different model assumptions for economic shocks than

those used for these contributions, as discussed in Section 3. From a methodological point

of view, this paper is related to the filtering and estimation of DSGE models. Among oth-

ers, Fernández-Villaverde and Rubio-Ramı́rez (2007), Fernández-Villaverde et al. (2011)

and Flury and Shephard (2011) apply the Particle Filter (PF) to DSGE estimation, while
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deterministic filters such as the Central Difference Kalman Filter (CDKF), the Unscented

Kalman Filter (UKF), and the Quadratic Kalman Filter (QKF) have been used by An-

dreasen (2012a, 2013), Ivashchenko (2014), Kollmann (2015), Noh (2020) and Benigno

et al. (2020).

The possibility of large shocks generates higher-order effects and interactions among

variables that requires a nonlinear solution. In this case, the standard Kalman Filter

(KF) cannot be applied, and nonlinear non-Gaussian filters, such as PFs, are needed to

approximate the likelihood and filter out the latent states. Unfortunately, PFs become

quickly computationally unfeasible due to the increasing number of state variables. More-

over, large shocks are an additional blow to the effectiveness of PFs, as they require a

huge number of particles to describe all the possible outcomes that can occur after a large

shock, see Pitt and Shephard (1999) and Amisano and Tristani (2011).

To solve this issue efficiently, we propose a new nonlinear, non-Gaussian filter that

is based on Mixtures of Mixtures of Cubature Kalman Filter (MM-CKF). The Cubature

Kalman Filter (CKF) of Arasaratnam and Haykin (2009), is a nonlinear filter that has been

used successfully in engineering applications. Although similar to the UKF (Wan and Van

Der Merwe, 2000) is more stable, accurate and allows for a square root solution that further

improves its stability, see Arasaratnam and Haykin (2009).3 The MM-CKF proposed in

this paper runs banks of CKFs in parallel and tests the location and plausibility of each

(possible) combination of large and ordinary shocks. To avoid an exponential growth in

the number of filtering components, a collapse procedure is proposed to retain only the

mixands with the largest weights. To our knowledge, the closest filter to ours is given in

Binning and Maih (2015). They use mixtures of Gaussian filters, including the CKF, in

a regime-switching DSGE model. Unlike our paper, they do not estimate the model and

only run an exercise with calibrated parameters.

Extensive Monte Carlo experiments show that MM-CKF allows to estimate DSGE

models with large shocks and identifies the type and time location of the shocks with a

significantly reduced running time (in this large shock environment, the running time of

the proposed procedure is around two orders of magnitude lower than that of competing

PFs). Model parameters are estimated using the Sequential Monte Carlo (SMC) sampler

3Both the UKF and the CKF use a weighted set of symmetric points, but they are chosen differently.
For a detailed description of the advantages of the CKF over the UKF, see Arasaratnam and Haykin
(2009).
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proposed by Creal (2007, 2012) and Herbst and Schorfheide (2014, 2015). This estimation

strategy has great advantages in parallelization, possible multimodality detection, and

online estimation, as pointed out by Herbst and Schorfheide (2014) and Cai et al. (2021).

Finally, we present a set of counterfactual experiments to filter out potential demand and

supply shock complementarities, and perform a robustness exercise to check the sensitivity

of the model parameters to large shocks.

The remainder of the paper is organized as follows. Section 2 describes the new Two-

Sector One-Agent model that features large shocks. Section 3 discusses the large shock

specification and the model solution. Section 4 discusses filtering problems in the presence

of large shocks. Section 6 presents the filtering algorithm and performs Monte Carlo

experiments. Section 7 estimates the model on US data. Finally, Section 8 concludes.

Derivations, data description, and further empirical results are reported in the Appendix.

2 Model Description

The economy consists of a representative household, wholesale and retail firms, unions,

and a central bank. Figure 1 shows that the household consumes two final goods, one

from the general sector and the other from the pandemic sensitive sector (Leisure and

Hospitality). They also supply labor and rent capital to wholesale firms in both sectors.

The wholesale firms operate the production technologies and sell the products to the

retail firms, which set prices in the monopolistic competitive final goods markets. The

unions act as intermediaries between the household and the wholesale firms and introduce

contractual wage stickiness in both sectors. Finally, the central bank is responsible for

conducting monetary policy. From now on, the general sector will be denoted as Sector 1

(S1), while the Leisure and Hospitality sector will be indicated as Sector 2 (S2).

Households

Households choose the sequence of consumption for the two goods (c1,t and c2,t), the

sequence of hours worked in the two sectors (n1,t and n2,t), the amount of next period

capital in the two sectors (k1,t and k2,t), and the level of capital utilization in the production
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Household
Sector 1

Wholesale

Sector 2

Wholesale

Sector 1

Retail

Sector 2

Retail

Union 1 Union 2

Sector 1 = Rest of the economy

Sector 2 = Leisure and Hospitality

n2n1

n1 n2

k1 k2

Y1 Y2

c
1 c2

Figure 1: The flowchart of the economy. Note: The figure reports in black (continuous line) the general
sector and in red (dotted line) the pandemic sensitive sector. The arrows represent the flow of
the indicated variables. Y1 and Y2 are the goods produced in the two sectors; k1 and k2 represent
the capital stocks that are rented by the household to the two sectors; n1 and n2 are the hours of
work supplied by the household to the two sectors; c1 and c2 denotes the household’s consumption
of the goods supplied by the two sectors.

function in the two sectors (uk1,t and uk2,t) to maximize lifetime utility:

(1)

E0

∞
∑

t =0

βtaζ,t

[

1− h1
1− βh1

log (c1,t − h1c1,t−1) + aj,t
1− h2
1− βh2

log (c2,t − h2c2,t−1)− φ1,t
n1+ν1

1,t

1 + ν1

− φ2,t
n1+ν2

2,t

1 + ν2

]

.

Where h1 and h2 are the external habits parameters, aζ,t is the discount factor shock,

aj,t is the S2 good preference shock, which affects the relative utility of the two products,

and φ1,t and φ2,t are the labor supply shocks in the two sectors. These four shocks play

a relevant role as exogenous determinants of potential large unexpected economic losses

caused by the pandemic: the larger positive shocks to φ1,t and φ2,t reflect a significant

increase in labor disutility due to health reasons; a large negative shock to aj,t will reduce

the relative utility of consumption of goods from the pandemic-affected sector, S2; finally,

a large negative shock to aζ,t affects the general intertemporal preferences and reflects the

desire to postpone consumption of both goods.

The maximization is conducted subject to the sequence of budget constraints expressed

in real terms as:

(2)
c1,t + p2,tc2,t + k1,t + p2,tk2,t + bt =

(

Rt−1bt−1

π1,t

)

+

(

w1,tn1,t

Xw1,t

)

+

(

p2,t
w2,tn2,t

Xw2,t

)

+ k1,t−1 (1− δk1
+ uk1,trk1,t)

+ p2,tk2,t−1 (1− δk2
+ uk2,trk2,t) + Πt −Ψt.

In the budget constraint, the variables rk1,t and rk2,t are the rental rates of capital in S1

and S2, while w1,t and w2,t are the wage rates. The parameters δk1 and δk2 are the capital
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depreciation rates in the two sectors. The variable bt represents government bonds with

nominal gross return equal to Rt. The gross inflation rate of the numeraire, P1,t/P1,t−1,

is denoted by π1,t, while the relative price of the second final good in terms of the first,

P2,t/P1,t, by p2,t. The terms Xw1,t and Xw2,t are the wedge between the wage paid by

the wholesale firms and the wage received by the household, which are collected by labor

unions that are responsible for enforcing monopolistic competition in the labor market.

In the budget constraint, Πt collects all the profits from retailers and labor unions; these

profits enter as a lump sum in the household’s budget constraint, and their expression

is provided in Appendix A. The variable Ψt collects the capital adjustment costs and

utilization adjustment costs, see Appendix A. The first order conditions are standard and

reported in Appendix A.

Firms

Similarly to Bernanke et al. (1999), we distinguish between competitive wholesale firms

that produce intermediate goods and charge flexible wholesale prices, and retail firms that

differentiate the final goods. The wholesale firm rents capital from households and labor

from unions, taking the input prices as given to maximize the profit function expressed in

real terms:

max
Y1,t
X1,t

+ p2,t
Y2,t
X2,t

−
∑

i=1,2

[(

Pi,t

P1,t

)

wi,tni,t +

(

Pi,t

P1,t

)

rki,tuki,tki,t−1

]

,

subject to the production technologies:

Y1,t = (az1,tn1,t )
1−α1 (uk1,tk1,t−1 )

α1 , Y2,t = (az2,tn2,t )
1−α2 (uk2,tk2,t−1 )

α2 .

Above, X1,t =
P1,t

Pw
1,t

is the markup between the wholesale price Pw
1,t and the final goods

price P1,t and X2,t =
P2,t

Pw
2,t

is the markup between the wholesale price Pw
2,t and P2,t. The

variables az1,t and az2,t represent labor productivity of both sectors. Since a pandemic is

likely to impede the possibility of using labor to produce goods in a safe way, we allow

labor productivity to be subject to large shocks.

Retailers buy intermediate goods Y1,t and Y2,t from wholesale firms at prices Pw
1,t and

Pw
2,t and differentiate them at no cost into a continuum of varieties with constant elasticity
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of substitution equal to ǫπ1 and ǫπ2 , respectively. The resulting demand for each variety

j of final good is then given by Y1,t(j) =
(

P1,t(j)
P1,t

)−ǫπ1
Y1,t and Y2,t(j) =

(

P2,t(j)
P2,t

)−ǫπ2
Y2,t.

Retailers face quadratic adjustment costs à la Rotemberg in the retail prices P1,t(j) and

P2,t(j), and these adjustment costs depend on last quarter inflation (with relative weights

given by the indexation parameters ιπ1 and ιπ2). The adjustment costs (ACπ1,t and ACπ2,t)

generate price stickiness and are given by the following expression:

ACπi,t =
ηi
2

(

Pi,t(j)

Pi,t−1(j)
− π

ιπi
i,t−1

)2

,

which shows that deviations of the prices of individual varieties
(

Pi,t(j)
Pi,t−1(j)

)

from the the

aggregate inflation (π
ιπi
i,t−1) are penalized, depending on the rigidity parameters ηi. The

price setting problem is standard, so we report it in Appendix A.

Unions

Unions buy homogeneous labor services from the households and differentiate them at

no cost. Differentiated labor varieties are then aggregated back into CES composites

which are sold to the wholesale firms. Labor unions face the demand schedules ni,t(h) =
(

Wi,t(h)
Wi,t

)−ǫw
ni,t, i ∈ {1, 2} for each individual variety of labor h, and pay quadratic

adjustment costs à la Rotemberg for wage changes. The quadratic adjustment costs

depend on previous quarter inflation with weights given by the indexation parameters ιw1

and ιw2 . These adjustment costs (ACw1,t and ACw2,t) generate wage stickiness and are

given by the following expression:

ACwi,t =
ηwi

2

(

Wi,t(h)

Wi,t−1(h)
− π

ιwi

i,t−1

)2

,

where ηwi
is the degree of wage stickiness in sector i. The solution to this optimization

problem gives the wage Phillips curves for the two sectors; the complete derivations are

reported in Appendix A.

Monetary Policy

The central bank faces a ZLB constraint on the nominal interest rate rt. This is particularly

realistic in the context of the accommodating monetary policy reactions to the COVID-19
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induced shocks. Following Dewachter and Wouters (2014) and Benigno et al. (2020), to

combine the higher-order solution with the presence a ZLB, and to constrain the gross

nominal interest rate above unity, we assume that the central bank has the following rule:

Rt = c0 + c1Runc,t + c2R
2
unc,t. (3)

The coefficients c0, c1 and c2 are obtained by fitting the barrier polynomial (see Appendix

G) to the ideal piecewise linear function:

Rt = max {1, Runc,t} . (4)

where the unconstrained interest rate Runc,t is set by the Taylor rule:

Runc,t = RrR
unc,t−1R

1−rR
ss π

(1−rR)rπ
t

(

GDPt

GDPt−1

)(1−rR)rY
(

exp(εe,t)

as,t

)

. (5)

In the Taylor rule (5), as,t represents an autocorrelated term reflecting persistent changes

in the desired target of monetary policy, while εe,t captures temporary deviations.

Modeling the ZLB as described in Equation (3) and (4) preserves nonlinearity in the

model solution within the conventional and unconventional monetary policy regimes. The

alternative route is to use piecewise-linear approximations inside each of the two regimes.

Aggregation and Equilibrium

The aggregate inflation rate is given by the weighted average of the inflation rates in the

two sectors:

πt = π

(

Y1,t
Y1,t+p2,t Y2,t

)

1,t π

(

p2,tY2,t
Y1,t+p2,tY2,t

)

2,t .

Aggregate production is given by:

GDPt = Y1,t + p2,tY2,t.

The evolution of the relative price of S2 is linked to the inflation rates in the two sectors:

p2,t
p2,t−1

=
π2,t
π1,t

.
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The model is closed with the resource constraints for the two goods, which also include

all deadweight losses due to adjustment costs:

• Resource constraint for S1:

(6)
c1,t + k1,t − (1− δk1) k1,t−1 + p2,tk2,t + p2,t (1− δk2) k2,t−1

= Y1,t

[

1−
ηπ1

2

(

π1,t−π
ιπ1
1,t−1

)2
]

−
ηw1

2

(

ω1,t−π
ιw1
1,t−1

)2
w1,t n1,t−Ψt.

• Resource constraint for S2:

(7)c2,t = Y2,t

[

1−
ηπ2

2

(

π2,t − π
ιπ2
2,t−1

)2
]

−
ηw2

2

(

ω2,t − π
ιw2
2,t−1

)2
w2,tn2,t.

The two resource constraints (6) and (7) ensure that the amount of consumption, invest-

ment and adjustment costs are equal to production. Given that S2 is identified as the US

Leisure and Hospitality industry in the data, we postulate that investment goods are solely

obtained out of S1 production. By Walras’s law, the model can be formulated either with

the two resource constraints or with one resource constraint coupled with the household’s

budget constraint (2), producing the exactly equal results.

Exogenous Processes

The persistent exogenous processes are described by equations (8)-(9). The steady state

of the intratemporal utility shock to S2 consumption, jss, the steady state of the labor

supply shock to S1, φ
ss
1 , and the steady state of the labor supply shock to S2, φ

ss
2 are

calibrated as to match the ratios of hours worked in the two sectors and the relative price

of the two goods, precisely:

log (az1,t) = ρz1 log (az1,t−1) + εz1,t, (8)

log (az2,t) = ρz2 log (az2,t−1) + εz2,t,
log (aj,t) = (1− ρj) log(j

ss) + ρj log (aj,t−1) + εj,t,
log (as,t) = ρs log (as,t−1) + εs,t,
log (aζ,t) = ρζ log (aζ,t−1) + εζ,t,

log (φ1,t) = (1− ρφ1) log(φ
ss
1 ) + ρφ1 log (φ1,t−1) + εφ1,t,

log (φ2,t) = (1− ρφ2) log(φ
ss
2 ) + ρφ2 log (φ2,t−1) + εφ2,t. (9)

3 Large Shocks and Model Solution

The model described in Section 2 enriched with large shocks and ZLB becomes a non-

linear, non-Gaussian model. Subsection 3.1 introduces large shocks into the model, and
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Ordinary Shock0

σ

Large Shock0

χσ

Figure 2: The modelization of large shocks. Note: The upper panel reports the ordinary shock centered
at 0 and with a standard deviation equal to σ. The bottom panel reports the large shock with
an inflated standard deviation equal to χσ. The factor of increase in variability is calibrated to
χ = 10.

Subsection 3.2 discusses model solution and nonlinearity.

3.1 Non-Gaussianity

The model outlined in Section 2 represents a nonlinear system of rational expectations,

which is driven by the following vector of structural shocks:

εt = [εz1,t, εz2,t, εj,t, εζ,t, εφ1,t, εφ2,t, εs,t, εe,t]
′ . (10)

We allow the first six innovations to (possibly) display large shocks. To exclude extreme

policy rate movements that are not related to changes in prices and real activity, we

do not allow large shocks to occur for the two monetary policy innovations: εs,t (the

shock associated with a persistent deviation from the target policy rate), and εe,t (the

shock associated with a temporary deviation from the target policy rate). The modelling

of large shocks is a challenging task, as the rarity of the events involved prevents us

from observing large enough samples to estimate their characteristics.4 The strategy that

we adopt is agnostic and accommodates the possibility of very different scenarios. In

particular, we assume that each of the six shocks in our model can be drawn from either a

zero mean Normal distribution with ordinary standard deviation σi (ordinary component)

or a zero mean Normal distribution with an inflated standard deviation equal to χσi (large

shock component). A graphical representation is provided in Figure 2.

4Gourio (2012) and Andreasen (2012b) have both suggested using an ordinary component and a rare
shock component in the DSGE framework. The focus of their calibrated models is explaining how the risk
of rare disasters in technology can impact risk premia. Rather than assessing the risk of a rare shock’s
prospective realization, we are more interested in examining the event of a rare shock that has actually
occurred.
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The large shock scaling parameter χ is calibrated to provide a reasonable and agnostic

range for the magnitude of the shocks responsible for the pandemic-related disruption

(χ = 10). Since the first six shocks in equation (10) can have either an ordinary or an

inflated standard deviation, we must consider 26 combinations of possible ordinary/inflated

shocks.5 In each time period, we denote with ψt the probability that at least one large

shock occurs (ex-ante large shock probability). In this case the (standardized) vector of

shocks (ε̃t ≡
εt

σ
) can be represented as a Gaussian mixture:

p(ε̃t) =

(

1−
K
∑

k=1

ψk,t

)

N (0, I) +

K
∑

k=1

ψk,tN (0,Ωk), (11)

where K is the number of combinations with at least one large shock (K = 63); ψk,t is ex-

ante probability of the k-th combination realizing at time t; and Ωk is a diagonal covariance

matrix where each element is one
(

χ2
)

in correspondence with shocks that are ordinary

(large) in the k-th component.6 We assume a priori equiprobability for all the sixty-three

large shocks combinations, precisely, ψk,t = ψt/63, where ψt is the scalar time-varying ex-

ante large shock probability. We do not fix ψt, but we estimate it together with the DSGE

parameters assuming it is a step function, low before the pandemic and high afterward, see

Section 6. Our filter in Section 6 will exploit the representation of the Gaussian mixture in

equation (11) to obtain the ex-post probability of the realized combination of shocks given

the observed data. Similarly to Lenza and Primiceri (2022), we also show in Section 7.5

that to estimate the model parameters without bias, it is important to take into account

the inflated variance of the shocks during the pandemic. Unlike Lenza and Primiceri

(2022) who select a priori the quarters when large shocks occur and estimate the inflated

variability, we fix the inflated variability (χ) and estimate the quarters when the shocks

5We have 63 combinations where there are at least one large shock and one combination where all
shocks have the ordinary standard deviation.

6Alternatively, it is possible to express the distribution of the shocks by using an auxiliary random
vector St that determines the variance parameters of the shocks. St is a vector of indicator variables of
the same dimension of the structural shocks. Each entry Si,t in the vector St is equal to 0 (1) if the
corresponding shock is ordinary (large). This means that:

p(ε̃t|St) =

nε
∏

i=1

N
(

0, (1− Si,t) + Si,tχ
2)
,

and

p(St) =

{

(1−
∑K−1

k=1 ψk,t), if St = [0, ..., 0]′ .

ψk,t, otherwise.
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occur. In addition, our filter allows us to identify the combination of large shocks that

materialize and provide an economic interpretation of pandemic shocks.

Finally, Cúrdia et al. (2014) and Chib and Ramamurthy (2014) use a Student’s t

distribution to model large shocks. We could use their approach, but it would not be

optimal for several reasons. First, given the large realization of pandemic shocks, we need

a Student’s t with 2 degrees of freedom that could generate extreme shocks like the ones

experienced during the pandemic. In particular, Student’s t distribution with two degrees

of freedom (df = 2) could generate draws outside the 10 standard deviation interval with

a probability of 1%. In Section 7.5 and in Appendix E we show that this would lead to

an unbonded variance. Second, using the Student’s t distribution does not handle the

presence of multiple large shocks in the same quarter, something that is possible with the

mixture in formula (11). Finally, using a Gaussian Mixture allows us to use the Cubature

formula (see Arasaratnam and Haykin, 2009 and Section 4) which is not possible with a

Mixture of Student’s t.

3.2 Nonlinearity

To account for higher-order effects in the transmission of large shocks and the ZLB, the

optimality conditions of the model are approximated nonlinearly. Indeed, a first-order

approximation would neglect the interaction terms in the transmission of shocks, an un-

desirable feature in our large shock framework. Secondly, the smooth ZLB described in

Section 2 would be completely missed by a linear approximation, as shown in Figure 3.

To estimate the model in a reasonable amount of time, a fast solution method is needed,

0 10 20 30 40 50 60 70 80
0.96

0.98

1

1.02

First order approximation

Uncontrained rate Constrained rate

0 10 20 30 40 50 60 70 80

0.96

0.98

1

1.02

1.04
Second order approximation

Figure 3: First and second order approximation. Note: The figure reports a simulation of the unconstrained
and constrained interest rates using the smooth barrier polynomial, see Section 2, at the first and
second order, for a given sequence of shocks. The blue (circle) line is the unconstrained interest
rate, while the red (diamond) line is constrained rate. In the first order approximation the
constrained rate would be allowed to substantially cross the lower bound, whereas in the second
order approximation it is effectively constrained.
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therefore we follow Levintal (2017) and use a second-order perturbation. The solution is

computed around the non-stochastic steady state, which is derived in Appendix D.

The model solution gives:

xCt = g
(

xSt ; θ
)

,

xSt+1 = h
(

xSt ; θ
)

+R (θ) ε̃t+1,
(12)

where: xSt are the model states; xCt are the model controls; R is the matrix that links the

standardized shocks to the model states; and θ is the parameters vector. The nonlinearity

originates from the second-order polynomials in the economic states (g(·) and h(·)). 7

The model variables are linked to the observable data through the measurement equa-

tions:

yt = A+Bxt + ut, ut ∼ N (0,H ), (13)

where: yt are the observed series; xt =
[

xS
′

t x
C

′

t

]′

is the stacked vector of the economic

states and controls; and ut are the measurement errors. As Herbst and Schorfheide (2015)

describe when the number of series is greater than the number of structural shocks, we need

to add measurement erros to avoid stochastic singularity. In our empirical application, see

Section 7, we have 11 series and 8 structural shocks so we need to add the measurement

errors, ut. We assume that H is diagonal and that it has a standard deviation equal to

15% of the variability of the corresponding data series, see Aruoba et al. (2021). In this

calculation, we exclude the pandemic quarters to avoid over-inflating the measurement

errors variance.

4 Filtering the Nonlinear DSGE with large shocks

Given the model parameters θ, the state-space representation described in equations (12)

and (13) implicitly defines the transition and measurement densities p (xt|xt−1; θ) and

p (yt|xt; θ), from which the joint distribution of unobserved states and observations can

7The model solution by Levintal (2017) in equation (12) closely follows Schmitt-Grohé and Uribe
(2004) and is numerically equivalent to the one performed by Dynare, see Adjemian et al. (2022). Also
note that the model states (xSt+1) depend nonlinearly on the structural shocks (ε̃t) through the function
h(·).
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be constructed:

p (x1:T ,y1:T |θ) =
T
∏

t=1

p (xt|xt−1; θ) p (yt|xt; θ) . (14)

By recursively integrating the unobserved states from the joint density in (14), the likeli-

hood function can be computed by prediction error decomposition:

p (y1:T |θ) =
T
∏

t=1

p (yt|y1:t−1; θ) . (15)

In non-Gaussian nonlinear state-space models, the densities appearing in equations (14)

and (15) do not have closed-form solutions. To deal with this problem, approximation

methods such as deterministic integration filters (our choice) or simulation methods (PFs)

must be used.

Since the seminal paper of Gordon et al. (1993), PFs have been used in non-linear

DSGE models; see An and Schorfheide (2007), Fernández-Villaverde and Rubio-Ramı́rez

(2007), Fernández-Villaverde et al. (2011) and Flury and Shephard (2011).

Unfortunately, PFs suffer from the curse of dimensionality, as they require an expo-

nentially increasing number of particles, see Bengtsson et al. (2008). For this reason, PFs

entail a high computational burden, even for medium-sized models like ours. To overcome

this problem, different solutions have been proposed. Among others, Liu and Chen (1998)

propose the Conditionally Optimal Particle Filter (COPF), whose effectiveness in the con-

text of DSGE estimation has been shown by Herbst and Schorfheide (2015) and Aruoba

et al. (2021). Except for special cases (see Creal, 2017), closed-form expressions for the

conditionally optimal density used by the COPF are difficult to derive or not available. In

these cases, a possible alternative is the Approximate Conditionally Optimal Particle Fil-

ter (ACOPF), a PF that approximates the unknown optimal proposal density; an example

of the ACOPF is derived in Appendix F.

The presence of large shocks represents an additional blow to the effectiveness of PFs.

Large shocks require a huge number of particles to describe all possible outcomes that

can occur after a disaster even stronger than those generated after the 2008 crisis, see

Pitt and Shephard (1999) and Amisano and Tristani (2011). The problem associated

with outliers in the observations was also highlighted by Herbst and Schorfheide (2015),

who showed that data related to the Great Recession challenge the effectiveness of PFs
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in the estimation of DSGE models. In this respect, it is worth noticing that COVID-

19 has created unprecedented movements in the time series. Unlike the PFs, the Sigma

point filters (SPFs) assume a convenient parametric form for the density in the Bayesian

filtering recursion and replace the particles of simulation-based methods with a small set

of (deterministic) selected points that are used to calculate, recursively, the moments of

the density. A textbook treatment of the SPF can be found in Särkkä (2013). They have

also been applied to estimate of nonlinear DSGE, see among others Andreasen (2012a,

2013), Ivashchenko (2014), Kollmann (2015), Binning and Maih (2015), Noh (2020) and

Benigno et al. (2020). While these filters are approximated by construction, Andreasen

(2013) and Kollmann (2015) show that they can outperform PFs.

5 Mixture of Mixture of Cubature Kalman Filter

To deal efficiently with the nonlinear and non-Gaussian state-space models with (possibly)

large shocks, we propose a new filter, in the family of Gaussian Sum Filters (GSFs), that

tests all the possible large shocks and handles nonlinearity at the same time. Our filter

is a Mixture of Mixture of Cubature Kalman Filter (MM-CKF) that requires much less

computational time than the PFs. GSFs, also known as Gaussian mixture filters, were

first introduced in the signal processing literature by Sorenson and Alspach (1971) and

Alspach and Sorenson (1972). These filters represent the prediction and filtering densities

of unobserved states as Normal mixtures. In the case of filtering densities:

p (xt−1|y1:t−1) ≈

Gt−1
∑

g=1

p (xt−1|κ
g
t ,y1:t−1) p

(

κgt−1|y1:t−1

)

=

Gt−1
∑

g=1

N
(

mg
t−1|t−1, P

g
t−1|t−1

)

wg
t−1|t−1,

(16)

where Gt−1 is the number of the mixture components, κgt−1 is an indicator variable and

wg
t−1|t−1 are the corresponding weights at time t − 1. GSFs share the idea that any

probability density arising from, e.g. nonlinearity, can be approximated with arbitrary

precision by a weighted sum of Gaussian densities (Alspach and Sorenson, 1972). The

first two moments mg
t−1|t−1 and P g

t−1|t−1 of each component are recursively estimated

by filters running in parallel. Parallel Kalman filters, Extended Kalman filters, Particle
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filters, Unscented Kalman filters, Cubature Kalman filters have been used by Sorenson

and Alspach (1971), Alspach and Sorenson (1972), Kotecha and Djuric (2003), Faubel

et al. (2009) and Leong et al. (2013). In the prediction step, our filter has two mixtures,

the first for the nonlinearity generated by e.g. the ZLB, the second for the inflated error

variance according to equation (11). For each of the component in the filtering density in

equation (16), K predictions are formed:

p (xt|y1:t−1) ≈

Gt−1
∑

g=1

K
∑

k=1

p
(

xt|κ
g,k
t ,y1:t−1

)

p
(

κg,kt |y1:t−1

)

=

Gt−1
∑

g=1

K
∑

k=1

N
(

mg,k
t|t−1, P

g,k
t|t−1

)

wg,k
t|t−1,

where: the mixture over Gt−1 handles the nonlinearity in the policy function; the mix-

ture over K handles the different components of the over-inflated variance, see equation

(11); and wg,k
t|t−1 stands for wg

t−1|t−1ψk,t−1. To deal with nonlinearity and non-Gaussianity

contemporaneously, we have a splitting and a merging step. In the first, each of the Gt−1

filtering densities, that handle non-linearity, are divided into as many components as those

that make up the noise mixture p(ε̃t−1) =
∑K

k=1 ψk,t−1p
(

ε
k
t−1

)

. Since, for each of the Gt−1

components, new K filters are created, an exponentially increasing number of densities

arises. The merging step avoids this degeneration using a collapsing strategy that con-

stantly retains the components with the highest weights in each iteration t, as suggested

by Kotecha and Djuric (2003). In each iteration, our filter allows at most Ḡ components,

namely Gt ≤ Ḡ.8 Note that the proposed filter encompasses the CKF when Ḡ = 1 and

K = 1.

A sketch of the MM-CKF is provided below (Algorithm 1), while a detailed description

is reported in Appendix B.

8Precisely, Gt = min{Ḡ,Gt−1K}, except when some components have negligible weights and are
discarded, see Appendix B.
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Algorithm 1 Sketch of the MM-CKF filter.

1: for t = 1 to T do

2: The filtering density of unobserved states is approximated by p (xt−1|y1:t−1) =

∑Gt−1

g=1 N
(

mg
t−1|t−1, P

g
t−1|t−1

)

wg
t−1|t−1.

3: for g = 1 to Gt−1 do

4: for k = 1 to K do

5: Use the CKF to update mean mg,k
t|t , variance P g,k

t|t and weight wg,k
t|t of the

{gth, kth} mixand, assuming noise is coming from the kth component.

6: end for

7: end for

8: Reduce the number of mixands if Gt−1K > Ḡ or if some weight is negligible.

9: end for

In Algorithm 1, the last period filtered unobserved components (line 2):

p (xt−1|y1:t−1) =

Gt−1
∑

g=1

N
(

mg
t−1|t−1, P

g
t−1|t−1

)

wg
t−1|t−1,

provide estimates on the unobserved states. For each of the Gt−1 filtered components that

form the filtered density and for each of the K components that form the state noise, the

algorithm uses the CKF formulae (line 5). This allows us to compute the predicted mean

mg,k
t|t−1 and the covariance P g,k

t|t−1 for the unobserved states supposing that noise comes

from the kth component. The density of predicted unobserved states, for each shock

combination, is then approximated by:

p
(

xt|y1:t−1, κ
g,k
t

)

= N
(

mg,k
t|t−1, P

g,k
t|t−1

)

, g = 1, . . . , Gt, k = 1, . . . ,K.

The predicted unobserved states are approximated by the ensemble density:

p (xt|y1:t−1) =

Gt−1
∑

g=1

K
∑

k=1

N
(

mg,k
t|t−1, P

g,k
t|t−1

)

wg,k
t|t−1,

where the predicted weights for each component are given by wg,k
t|t−1 = wg

t−1|t−1ψk,t, for

k = 1, . . . ,K. For each of the predicted components Gt−1K, use the CKF formulas to

compute the predicted observations mean Yg,k
t|t−1, the predicted observations covariance
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Fg,k
t|t−1 and the predicted variance-covariance between unobserved states and observations

Pg,k,xy
t|t−1 . With these quantities, the CKF updating is performed using the new observation

yt in order to obtain the new filtered means mg,k
t|t and covariances P g,k

t|t for unobserved

states. Weights are then updated using the Bayes rule:

wg,k
t|t =

wg,k
t|t−1N

(

yt;Y
g,k
t|t−1,F

g,k
t|t−1

)

∑Gt−1

g=1

∑K
k=1w

g,k
t|t−1N

(

yt;Y
g,k
t|t−1,F

g,k
t|t−1

) .

To avoid an exponential proliferation of the number of components, a collapsing strategy is

performed for the number of mixands (line 8), as detailed in Appendix B. More specifically,

components with negligible weights are removed from the mixture, and if the number of

components exceeds the maximum of Ḡ, then the most significant components are retained.

Once these quantities have been computed, a new iteration of the filter can be run.

Our approach to non-Gaussianity is drawn from the engineering literature where a

similar decomposition is used for nonlinear state estimation; see, among others, Pei et al.

(2013) and Pei et al. (2014). Splitting rules based on Gaussian mixtures to treat large

measurement errors or system noise have been employed in disparate branches of signal

processing. In our specific case, the different components of the system noise originate

from the various possible large economic shocks to be tested. The splitting rule is the

direct translation, in the CKF framework, of the ones presented in Alspach and Sorenson

(1972) for KFs and Kotecha and Djuric (2003) for PFs.

Splitting the filter into the K mixture components at each time t is a computationally

costly operation that must be repeated over the millions of likelihood evaluations required

by the SMC. To speed up computational times, we avoid splitting the filter when it is

irrelevant. Indeed, a simple plot of the time series suggests that it is very unlikely to

observe disaster shocks (e.g. COVID-19 type shocks) before 2020. At the same time,

we do not want to completely exclude the possibility of detecting large shocks before the

pandemic quarters. The filter, by construction, does not split when the estimated ex-

ante probability of large shock ψt is too low (that is, ψt < ψ̄ = 10−3). We stress that

ψt is estimated endogenously together with the DSGE parameters and not fixed a priori.

Specifically, we model the time-varying ex-ante probability of large shock ψt to be equal to

ψpre before 2020 and equal to ψpost thereafter. Imposing a time-varying ex-ante probability
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Figure 4: Density kernel estimates for N = 100 log-likelihood evaluations. Note: The considered filters
are the Kalman Filter (KF), the Bootstrap Particle Filter (BPF), the Auxiliary Particle Filter
(APF), the Conditionally Optimal Particle Filter (COPF) and the Mixture of Mixture Cubature
Kalman Filter (MM-CKF). The vertical line reports the results for the KF (black vertical line)
and the MM-CKF (green dotted vertical line). The BPF (blue dashed-dot line), APF (red dashed
line), and COPF (purple dotted) have negative bias.

of large shock is crucial, as a fixed and relatively low one for the entire sample would

make the pandemic quarters extremely influential in driving the likelihood function, thus

biasing the estimates of the parameters to fit these observations (the predictive likelihood

increments would drop massively for these data points), see Appendix E. We then estimate

these two probabilities together with the structural parameters of the model by imposing

truncated normal priors on the unit interval for them, see Table 3. Note that the modelling

strategy of Lenza and Primiceri (2022) corresponds to the case in which the priors are

degenerate and fixed at 0 before 2020 and to 1 thereafter.

6 Monte Carlo Experiments

To show that our filter can correctly identify the source of the shock and outperform PFs

with a massively reduced running time (see also Andreasen, 2013 and Kollmann, 2015)

we perform three simulation experiments. In the first experiment, we simulate N = 100

times the model described in Section 2 and we apply a first-order approximation to obtain

a linear and Gaussian model. In this case, the KF is the optimal filter and gives an

exact log-likelihood. Figure 4 reports the Monte Carlo results and shows that MM-CKF

collapses to the exact KF while BPF, APF, and COPF have biased log-likelihoods (due

to Jensen’s inequality).

In the second experiment, we simulate N = 100 times the model in Section 2, we take a

second-order approximation and finally add a random large (state) shock. The resulting
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Table 1: RMSE of the Monte Carlo experiment for N = 100 replications of the Two-Sector model with
large shocks. Note: The Table reports the full name (Full Name) with the associated symbol
(Symbol). The filters are: Kalman filter (KF); Bootstrap Particle Filter with 40000 particles
(BPF); Auxiliary Particle Filter with 40000 particles (APF); the Approximate Optimal Particle
Filter with 400 and 4000 particles (ACOPF(400), ACOPF(4000)); and the Mixture of Mixture of
Cubature Kalman Filter (MM-CKF) with four components (Ḡ = 4).

Full Name Symbol KF BPF APF ACOPF(400) ACOPF(4000) MM-CKF

Hours S1 n1 0.39 0.44 0.46 0.48 0.39 0.20
Hours S2 n2 2.60 1.90 1.70 2.00 1.90 0.84
Production S1 Y1 3.40 0.93 1.10 1.10 1.10 1.00
Production S2 Y2 2.50 1.90 1.70 2.10 1.90 0.99
Consumption S1 c1 3.00 0.94 1.10 1.10 1.10 1.00
Consumption S2 c2 2.60 1.90 1.70 2.10 1.90 1.00
Capital S1 k1 4.30 1.10 1.30 1.40 1.20 1.10
Capital S2 k2 2.30 2.50 2.40 2.60 2.50 2.60
Relative price p2 5.20 1.30 1.50 1.60 1.40 1.20
Inflation π 0.04 0.04 0.04 0.02 0.01 0.01

Time in Seconds

KF BPF APF ACOPF(400) ACOPF(4000) MM-CKF

0.064 610 1100 400 3400 7.9

model is nonlinear and non-Gaussian and the exact expression for the likelihood is not

available. To compare the performances of MM-CKF with the other filters, we use the

RMSE of the filtered (estimated) and the (simulated) latent state:

RMSEi,f =

√

√

√

√

1

N

N
∑

j=1

T
∑

t=1

(

x̂f
i,t|t − xs

i,t

)2
.

where x̂f
i,t|t for i = 1, . . . , n and xs

i,t for i = 1, . . . , n are the filtered and the simulated

latent states, respectively. Table 1 reports a selection of the RMSE (the full table is in

Appendix G) and the computing time (in seconds) for the KF, BPF with 40000 particles,

APF with 40000 particle, ACOPF with 400 and 4000 particles, and the MM-CKF with

Ḡ = 4. Table 1 shows that the MM-CKF is much faster than BPF, APF and ACOPF.

The KF is the fastest filter, but gives biased results. Overall, the results show that the

MM-CKF is a valuable choice for filtering unknown latent states where computational

time and robustness to large shocks are crucial.

In the third Monte Carlo experiment, we study whether the MM-CKF provides a good

identification of large shocks. We simulate N = 500 times the model of Section 2 with the
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parameters obtained from our empirical application, see Section 7. We then add negative

(i.e., Realized Disaster as COVID-19 type shocks in 2020:Q2) and positive (i.e., Realized

Rebound as the one realizing in 2020:Q3) shocks of similar type and intensity as those

found in our empirical application. To simulate a sample close to the real data, the length

of the simulated series is equal to T = 148, with a simulated disaster in t = 142 (equivalent

to 2020:Q2) and a rebound in t = 143 (equivalent to 2020:Q3). Based on the number of

observations (T = 148) and the number of simulations (N = 500) there are a total of 74000

data points. By design, we have 73000 normal observations, 500 realized disaster, and 500

realized rebound, which occur sequentially. Table 2 reports the Monte Carlo results and

shows that the MM-CKF correctly detects the type and location of large shocks. The

MM-CKF correctly selects ordinary shocks 99% of time, the location and combination of

the disaster shock 95% of time, the location and combination of the rebound 97% of time,

and finally the location and combination of both 92% of time.

In addition, in Figure 5 we report the log-likelihood contributions of each quarter, for

three of the K = 64 shock combinations, zoomed around the disaster and rebound events.

The three combinations are: the ordinary component (without large shocks); the realized

disaster component in period t = 142; and the realized rebound component in period

t = 143. As shown in the figure, the ordinary component (blue line) is the one with the

highest probability before and after the disaster periods. In such quarters, the disaster and

rebound components are correctly identified, with the highest likelihood of the realized

disaster (red squared line) in t = 142 and the highest likelihood of the realized rebound

(black circle line) in t = 143. For illustration, the figure also shows the component with a

single labor supply shock (represented by the green diamond line), which consistently has

a lower likelihood compared to the others.

We conclude this experiment with Figure 6, which provides a closer look at the disaster

and rebound quarters, and shows the likelihood of all possible combinations (K = 64) in

t = 142 and in t = 143. The realized disaster and rebound combinations are selected

as those with the highest likelihood. The figure also reports the likelihood ratio of the

realized disaster and rebound, showing that one combination has the highest weight, while

the others have smaller or null weights.
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Table 2: Shock type and location Monte Carlo results for T = 148 and N = 500 replications. Note: The
table reports: the shock type (Shock type); the number of times it is present in the simulated
dataset (Occurred); the number of times it is detected (Detected); and the results in percentage
(Percentage). The possible outcome of the experiment are: normal observations (Ordinary), real-
ized disaster (Disaster); realized rebound (Rebound), and realized disaster and rebound that occur
sequentially (Dis. + Reb.)

Shock type Occurred Detected Percentage

Ordinary 73000 72962 99%
Disaster 500 475 95%
Rebound 500 486 97%
Dis. + Reb. 500 462 92%
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Figure 5: The log-likelihood contributions of each quarter in a sample with simulated large shocks. The
Figure reports the log-likelihood contributions associated with four components among the K = 64
possible ones: the ordinary component (No large shock, blue continuous line); the component
number two corresponding to a large shock to labor supply in S1 alone (Labor supply shock in
S1, green diamond line); the component corresponding to the simulated realized disaster at time
t = 142 (Realized Disaster, red squared line); the component corresponding to the simulated
realized rebound at time t = 143 (Realized Rebound, black circle line).
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Figure 6: Log-likelihood and likelihood ratio for each of the possible K = 64 combinations at realized disaster
(t = 142, upper plots) and realized rebound (t = 143, lower plots). Note: The left plots report
the log-likelihood for all K = 64 possible combinations in the realized disaster (top left plot) and
realized rebound (bottom left plot). The top right plot reports the ratio of the highest component
with respect to the remaining components of the disaster shock. The lower right plot reports the
ratio of the highest component with respect to the remaining ones for the rebound shock.
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7 Empirical Analysis

7.1 Data

We estimate the model on US quarterly data from 1985:Q1 to 2021:Q4. Eleven model

variables are linked to the data series: value-added in the general sector; value-added in

the Leisure and Hospitality sector; aggregate investment; aggregate consumption; hours

worked in the general sector; hours worked in the Leisure and Hospitality sector; price

inflation in the general sector; price inflation in the Leisure and Hospitality sector; wage

inflation in the general sector; wage inflation in the Leisure and Hospitality sector; and

the Federal Funds Rate. Value-added, investment, consumption and hours worked in both

sectors are in per capita terms and in demeaned growth rates; price and wage inflation

are demeaned; the Federal Funds Rate is in level. A detailed description of the sources

and construction of the data is provided in Appendix C. The sectoral value-added and

inflation, retrieved from the Bureau of Economic Analysis (BEA), are available at annual

frequencies before 2005 and quarterly frequencies after.9

7.2 Prior Specification

Following Del Negro and Schorfheide (2008), we divide the model parameters into three

categories: steady-state parameters, Θ(ss); parameters related to the law of motions of

endogenous variables, Θ(endo); and parameters associated with the law of motion of exoge-

nous variables, Θ(exo):

Θ(ss) = [β, α1, α2, δk1 , δk2 , ǫπ1 , ǫπ2 , ǫw1 , ǫw2 , j
ss, φss1 , φ

ss
2 , ν1, ν2]

′ ,

Θ(endo) = [rR, rY , rπ, ιπ1 , ιπ2 , ιw1 , ιw2 , h1, h2, ηπ1 , ηπ2 , ηw1 , ηw2 , ηu1

ηu2 , ηk1 , ηk2 ]
′,

Θ(exo) = [ρz1 , ρz2 , ρj , ρφ1 , ρφ2 , ρζ , ρs, σz1 , σz2 , σj , σφ1 , σφ2 , σζ , σs, σe, ψpre, ψpost]
′ .

Following standard practice in the literature on DSGE models (see, among others, Smets

and Wouters, 2007), we fix a subset of the parameters to well-established values based

on economic theory (all the parameters belonging to Θ(ss) are calibrated except the labor

9In case of data available at annual frequencies, we assume that we observe just one quarter per year,
and the other three are missing. The missing values are handled as unobserved variables by MM-CKF,
similarly to Durbin and Koopman (2012).
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elasticity parameters ν1 and ν2, which are estimated). We set β = 0.991 to obtain a real

annual interest rate of 3 percent in steady state. The elasticity of substitution for the two

final goods and the labor varieties is set equal to ǫπ1 = ǫπ2 = ǫw1 = ǫw2 = 1/0.15 + 1 to

imply steady-state markups of 15 percent. The quarterly capital depreciation rates are set

at δk1 = δk2 = 0.025, to induce a steady-state investment to output ratio of 22 percent.

Capital share parameters in technology are equal to α1 = α2 = 0.35, to match a labor

share of income of 65 percent. We normalize the hours worked in sector S1 as n1 = 1 and

set the steady state of hours worked in sector S2 as n2 = 0.07, to reflect the mean ratio

of the hours worked in the two sectors as observed in the sample (see Appendix C for

the data sources). We also target the mean relative price between sector S2 and the rest

of the economy by imposing p2 = 0.78 in the steady state.10 These steady-state targets

jointly imply fixing the steady state of intratemporal utility and labor supply shocks to

jss = 0.0715 (which is the ratio between households’ expenditure on S2 goods over S1

goods, see Appendix D), φss1 = 0.643 and φss2 = 1.896, respectively. Details on derivations

of the steady state are provided in Appendix D. In addition to steady-state parameters,

as in Iacoviello and Neri (2010), we also fix the autocorrelation of the monetary policy

shock to ρs = 0.975. The values of the calibrated parameters are reported in Appendix G.

Overall, the number of estimated parameters is 35, and the calibrated parameters are 13.

The parameters that determine the rigidity of prices and wages through the adjust-

ment costs à la Rotemberg (ηπ1 , ηπ2 , ηw1 and ηw2) are unbounded and lack economic

interpretability. We then map these parameters to the fractions of firms and unions that

cannot reset prices and wages in an equivalent setting à la Calvo, see Richter and Throck-

morton (2016). These fractions are respectively denoted by θπ1 , θπ2 , θw1 and θw2 (the

complete optimization problems of retailers and labor unions are presented in Appendix

A):

ηi =
θi(ǫi − 1)

(βθi − 1)(θi − 1)
, i = π1, π2, w1, w2.

The priors closely follow Smets and Wouters (2007). For the price and wage stick-

iness parameters, we specify the priors in terms of the Calvo-related parameter θi, i ∈

10This normalization has been chosen by taking the average ratio of the chain price indexes of the two
sectors, provided by U.S. Bureau of Economic Analysis, see Appendix C.
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{π1, π2, w1, w2}, which can be linked to ηi according to:

ηi =
θi(ǫi − 1)

(βθi − 1)(θi − 1)
.

This provides a more direct interpretation of the parameter than the adjustment cost slope

(ηi), and allows the use of standard priors. Priors and posteriors are summarized in Table

3. The priors reflect moderate consumption habits, moderate price and wage rigidities in

the two sectors, substantial monetary policy inertia, moderate concern of the monetary

authority for output stabilization, but a stronger concern for inflation. For all parameters,

we impose symmetric priors across the two sectors and allow the likelihood to drive the

sectoral differences found in the posterior density. For the autoregressive coefficients, the

priors are loosely centered around 0.50.

7.3 Inference Strategy

The estimation is carried out using SMC already used in DSGE framework by Creal (2007,

2012) and Herbst and Schorfheide (2014, 2015). The SMC requires a likelihood tempering

approach, which targets a sequence of tempered posterior densities [p (y1:T |θ)]
φn p(θ), with

a tempering parameter φn ↑ 1, to gradually add to the prior the information from the

likelihood, without incurring sample degeneracy and impoverishment problems. Moreover,

the SMC algorithm can be parallelized on multiple processors, reducing computational

time. In our estimation, we use a tempering schedule consisting of Nφ = 250 bridge

densities that determine the tempering schedule φn =
(

n−1
Nφ−1

)

. The number of particles

used in each bridge density is 80000, resulting in a total of 20 million likelihood evaluations.

Following Durham and Geweke (2014), we assess convergence by running the algorithm

multiple times and checking that the parameter estimates do not change.11

7.4 Estimation Results

Table 3 shows the posterior means and standard deviations of the parameters. The results

suggest a high degree of habit formation, especially in the S2 sector, and a high degree of

11To avoid particle degeneracy the SMC requires a mutation step, that, according to Herbst and
Schorfheide (2014) is a random walk with an adaptive covariance matrix based on the information con-
tained in the previous draws and with an adaptive scaling factor that targets an acceptance probability of
25%.
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stickiness in prices and wages in the S1 sector. Higher values of the indexation parameters

in the general sector indicate significant levels of price and wage inertia. The small values of

ν1 and ν2 are consistent with the large values of Frisch elasticity estimated in macro models.

The capital adjustment and capacity utilization parameters point to higher degrees of real

rigidity in S1. Taylor rule parameters indicate inertia in the policy rate and a higher weight

associated with output stabilization than inflation control, in line with monetary policy

evidence in the US. Finally, the posterior of the autoregressive parameters moves away

from their diffuse priors, generally pointing to high degrees of persistence, particularly in

the general sector.

Given the posterior estimates of parameters in Section 7, we run the MM-CKF up

to 2021:Q4 and report the resulting filtered standardized shocks in Figure 7. As the

figure shows, the shocks for the first quarter of the pandemic have a scale of orders of

magnitude above the ordinary level defined in the range ±3, similar to the results in Lenza

and Primiceri (2022). For 2020:Q2 the filter detects large negative shocks to: (i) labor

productivity in S2 (εz2,t); (ii) labor supply in S1 (εφ1,t); (iii) demand in consumption of

both goods (εζ,t); (iv) utility of consumption in S2 (εj,t); (v) labor productivity in S1 (εz1,t).

For 2020:Q3 the figure shows the partial recovery of the US economy. The filter detects

a combination of large shocks: (i) a large positive rebound shock to intertemporal utility

(εζ); (ii) a rebound shock that reduces the disutility of working in S1 (εφ1,t); (iii) a large

positive shock to labor productivity in S1 (εz1,t). There are no large shocks in the contact

intensive sector, in labor productivity in S2 (εz2,t) and in the utility of consumption from

S2 (εj,t). From 2020:Q4 to 2021:Q2 the real economy still suffers from the protracted Covid

downturn. In 2020:Q4 we observe another contractionary shock to labor productivity in

S2, a negative demand shock in both sectors, and a positive labor supply shock to the

general sector, for quarters 2021:Q1 and 2021:Q2 we do not find large shocks. Finally, in

2021:Q3 and 2021:Q4 following the massive Covid vaccination campaign and the general

reopenings in all sectors, we find large positive shocks in labor productivity in S2 for

2021:Q3 and 2021:Q4 and another reboud demand shock in the contact intensive sector

S2 for 2021:Q3.

Similarly to Primiceri and Tambalotti (2020) and Lenza and Primiceri (2022), we

consider only unanticipated shocks and their transmission. We think that assuming un-
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Table 3: Estimation Results. Note: The table reports the parameter’s name (Full Name) with the associate
symbol (Symbol). The table also reports the prior shape (Prior), prior mean and standard deviation
(Mean, St. Dev), and the posterior mean (Post. Mean) and standard deviation (Post. St. Dev)
for the estimated parameters. B is the Beta distribution; N is the Normal distribution; G is
the Gamma distribution; IG is the Inverse-Gamma distribution; T N is the Truncated Normal
distribution on the interval (0, 1).

Structural parameters

Full Name Symbol Prior (Mean, St. Dev.) Posterior Mean Posterior St. Dev

Habits S1 h1 B (0.70, 0.10) 0.79 0.02
Habits S2 h2 B (0.70, 0.10) 0.91 0.01
Price rigidity S1 θ1 B (0.50, 0.10) 0.70 0.02
Price rigidity S2 θ2 B (0.50, 0.10) 0.57 0.02
Inverse Frish el. S1 ν1 G (0.50, 0.10) 0.25 0.05
Inverse Frish el. S2 ν2 G (0.50, 0.10) 0.34 0.05
Taylor rule inertia rR B (0.75, 0.10) 0.70 0.02
Taylor rule output reaction rY N (0.12, 0.05) 0.14 0.04
Taylor rule inflation reaction rπ N (2.00, 0.15) 1.99 0.02
Price indexation S1 ιπ1

B (0.50, 0.15) 0.82 0.05
Price indexation S2 ιπ2

B (0.50, 0.15) 0.82 0.05
Persistence Prod. S1 ρz1 B (0.50, 0.20) 0.99 0.00
Persistence Prod. S2 ρz2 B (0.50, 0,20) 0.18 0.07
Persistence Intratemp. ρj B (0.50, 0.20) 0.35 0.08
Persistence Lab. Supply S1 ρφ1

B (0.50, 0.20) 0.73 0.03
Persistence Lab. Supply S2 ρφ2

B (0.50, 0.20) 0.15 0.06
Persistence Intertemp. ρζ B (0.50, 0.20) 0.67 0.03
Wage rigidity S1 θw1

B (0.50, 0.10) 0.84 0.01
Wage rigidity S2 θw2

B (0.50, 0.10) 0.68 0.02
Wage indexation S1 ιw1

B (0.50, 0.15) 0.88 0.05
Wage indexation S2 ιw2

B (0.50, 0.15) 0.77 0.11
Uiliz. adj.cost S1 ηu,1 B (0.50, 0.15) 0.92 0.04
Uiliz. adj.cost S2 ηu,2 B (0.50, 0.15) 0.22 0.06
Cap. adj.cost S1 ηk1

G (10.00, 2.50) 13.38 0.96
Cap. adj.cost S2 ηk2

G (10.00, 2.50) 12.10 2.38

Shock parameters

Full Name Symbol Prior (Mean, St. Dev.) Posterior Mean Posterior St. Dev

St. Dev. Prod. S1 100× σz1 IG (1.00, ∞) 0.74 0.05
St. Dev. Temp. Mon. Policy 100× σe IG (1.00, ∞) 0.29 0.02
St. Dev. Prod. S2 100× σz2 IG (1.00, ∞) 1.39 0.12
St. Dev. Intratemp. 100× σj IG (1.00, ∞) 10.98 0.76
St. Dev. Pers. Mon. Policy 100× σs IG (1.00, ∞) 5.42 0.44
St. Dev. Lab. Supply S1 100× σφ1

IG (1.00, ∞) 6.14 0.34
St. Dev. Lab. Supply S2 100× σφ2

IG (1.00, ∞) 73.51 3.33
St. Dev. Pref. 100× σζ IG (1.00, ∞) 2.97 0.25
Prepandemic Dis. Prob. 1000× ψpre T N (0.01, 0.10) 0.57 0.23
Postpandemic Dis. Prob. 100× ψpost T N (99.00, 1.00) 99.10 0.45

expected rebound innovations is a reasonable choice. A rapid recovery like the one that

actually occurred in 2020:Q3 can be considered unexpected given the information avail-

able in 2020:Q2, as also suggested by the forecasts presented in Primiceri and Tambalotti

(2020) and Lenza and Primiceri (2022). In the baseline scenario of Primiceri and Tam-

balotti (2020), macroeconomic variables such as employment, consumption, and industrial
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Figure 7: Filtered standardized shocks over time. Note: Bands represent one standard deviation resulting
from parameter uncertainty. εz2 : labor productivity shock to S2. εφ1

: labor supply shock to S1.
εζ : demand shocks to both sectors. εj : demand shock to S2 services. εz1 : labor productivity
shock to S1. εe: temporary monetary policy shock. εφ2

: labor supply shock to S2. εs: persistent
monetary policy shock. The horizontal red dashed lines represent the values +3 and -3, as
descriptive references for the reader.

production were expected to reach their trough in August 2020, rather than showing a

large rebound. Also in Lenza and Primiceri (2022) the forecast of macroeconomic variables

based on data until June 2020 shows a massive uncertainty.12

12Overall, after COVID-19 outbreak in 2020:Q2, the development of the Pandemic was highly uncertain
depending on the different scenarios about reinfections, vaccinations, and new waves of contagion, and very
different prospects for the recovery were put forward, as shown by various simulations obtained from using
calibrated epidemiological models, see Eichenbaum et al. (2021), Bodenstein et al. (2020) and Kaplan et al.
(2020).
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7.5 Counterfactual and Robusness experiments

In our structural model, demand and supply shocks coexist, and their effects are jointly

interdependent throughout the economy. We consider it reasonable that both production

and preferences are affected by pandemic shocks. This point is also stressed by Guerrieri

et al. (2020) with an emphasis on supply-side shocks that can be transmitted to the

economy with demand-driven characteristics.13

To identify the contribution of each shock, without the potential spurious effect induced

by demand and supply shock complementarities, we provide a counterfactual exercise. We

evaluate the relative importance of the shocks by adding counterfactual variables (y∗
t and

x∗
t ) in the state space presented in Section 3 (equations 12 and 13). These variables

track the scenarios in which some shocks are switched off. The counterfactual state space

representation is as follows:

y∗
t = A+Bx∗

t + ut, x∗
t = f

(

xSt−1 +R∗
ε̃t

)

. (17)

For notational convenience state and control variables of the model are collapsed into

the same vector xt =
[

xC
′

t xS
′

t

]′

and the composite function f(·) =
[

g(h(·))
′

h(·)
′

]′

com-

bines g(·) and h(·) of equations (12). In Equation (17), the matrix R∗ is constructed

by equating to zero the columns of R in correspondence with the shocks set to zero, to

test what happens when they do not occur. The object of interest in the counterfactual

analysis is represented by the filtered counterfactual observables (y∗
t ).

Figure 8 reports the counterfactual experiment for 2020:Q2. The bars represent the

predicted response of the variables corresponding to the indicated shock, with the others

set to zero. The red dashed line represents the actual observations in the data, and the blue

solid line represents the case where all shocks are set to zero. The interaction of shocks

identified by our method is not negligible, and the sum of all individual contributions

is not equal to the observed series. The 8% decline in production in S1 (∆Y1) depends

mainly on the large shocks to labor supply (εφ1) and labor productivity (εz1) in S1, and

the decomposition of hours worked (∆n1) is similar. On the contrary, the large negative

13It should be noted that the overall effect on the economy can be mixed, as both supply and demand
shocks can be dampened or amplified by frictions and complementarities, as shown by Baqaee and Farhi
(2021).
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discount factor shock (εζ) reduces aggregate consumption (∆C) and increases aggregate

investment (∆I). The negative impact of the discount factor shock on consumption and

investment is the same as in Smets and Wouters (2003), as this shock induces households

to postpone consumption and therefore increase saving and capital investment. Since con-

sumption and investment appear together in the resource constraint of the general sector

(Equation 6), the overall effect of the discount factor shock on production is muted. Con-

cerning sector S2, the decrease in production depends only on the intratemporal demand

shock on consumption (εj) as production in this sector does not involve investment goods

(Equation 7).14 Looking at the dynamics of employment in S2 (∆n2), the large reduc-

tion in productivity in S2 (εz2) also has the effect of crowding out the use of capital in

production in favor of labor, with a net negative effect due to the dominance of the in-

tertemporal preference shock (εj). With respect to prices (π1 and π2), the decomposition

shows counteracting effects. Indeed, the limited response of prices compared to the large

fall in quantities is a stark feature of the COVID-19 economic disruption, suggesting the

coexistence of supply and demand forces. For example, in S1, the negative labor supply

shock (εφ1) coexists with the negative discount factor (εζ) shock which generates a milder

deflation than we would observe if only demand shocks dominate.

Also in S2, inflation (π2) has a similar decomposition; the graph shows that the neg-

ative labor productivity shock (εz2) outweighs the negative sector-specific demand (εj)

shock. This produces a mild positive inflation of around 1%. The bars illustrate that

if the demand and supply shocks had occurred alone, considerably more extreme defla-

tionary (-5.0%) or inflationary (+5.5%) outcomes would have occurred. Regarding wage

inflation rates (ω1 and ω2), similar counteracting dynamics between demand and supply

shocks emerge, with negative labor supply shocks providing a positive contribution to

wage inflation in the related sector and negative demand shocks providing a negative con-

tribution. Finally, supply shocks in the absence of demand shocks would have required a

monetary tightening, as the central bank’s price stability mandate would have outweighed

the output stabilization goal. In general, as in Brinca et al. (2020) and Baqaee and Farhi

(2021), among others, the estimates of the relative effects of supply and demand shocks

suggest a combination of the two.

14The large shock to εj is not emphasized in Figure 7 because it is standardized. Given the large
estimate of its standard deviation in Table 3, the non-standardized shock is large.
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Figure 8: Contribution of individual shocks to the observed series for 2020:Q2. Note: Each bar corre-
sponds to the counterfactual in which only the reported shock is switched on. The counterfactual
simulations are obtained from the pruned state-space. The red dotted line represents the realized
values. The blue solid line represents the counterfactual in which all shocks are switched off.
Individual contributions do not add up to the observed series because of nonlinearity. The shocks
are: demand shocks to both sectors (εζ); labor supply shock to S1 (εφ1

); labor productivity shock
to S2 (εz2); labor productivity shock to S1 (εz1); demand shock to S2 services (εj); labor supply
shock to S2 (εφ2

); temporary monetary policy shock (εe) and persistent monetary policy shock
(εs). The variables are: production in S1 (∆Y data

1 ); production in S2 (∆Y data
2 ); hours in S1

(∆ndata
1 ); hours in S2 (∆ndata

2 ); inflation in S1 (πdata
1 ); inflation in S2 (πdata

2 ); wage inflation in
S1 (ωdata

1 ); wage inflation in S2 (ωdata
2 ); aggregate consumption (∆Cdata); aggregate investment

(∆Idata) and the interest rate (Rdata).
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7.6 Robustness

We now provide a robustness exercise. Given that a large part of the complications arise

from inference on parameters with pandemic data, a more naive approach would be to

stop the estimation before 2020 and identify the large shocks occurring in 2020 using the

previously estimated parameters. This approach has been applied in the VAR setting by

Brinca et al. (2020). The drawback of this strategy is that it implies treating the pandemic

observations as missing and neglecting their information content for the model parameters,

even if these outliers will remain in the sample forever. We estimate the parameters of

the model in a sample that ends before the pandemic (2019:Q4) and run the filter. These

parameter estimates are reported in Appendix E. Figure 9 shows the comparison of this

naive approach with the one proposed in the paper. The model parameters remain stable

when pandemic quarters are excluded. Consequently, in Figure 9 the filtered shocks do

not change much using this strategy (No pandemic column) from the baseline estimation

that applies our method (Baseline Sample column). It is visible, though, that the iden-

tified shocks from the pre-pandemic estimation display larger uncertainty. To show that

our modelization of large shocks is important, we estimate the model on the full sample

without imposing non-Gaussian shocks. These parameter estimates are also reported in

Appendix E. In this case, the parameter estimates change substantially given the large in-

fluence of the pandemic quarters. Consequently, in Figure 9 also the filtered shocks change

considerably using this strategy (No LS column) from the baseline estimation (Baseline

Sample column).

8 Conclusion

This paper builds and estimates a two-sector medium-scale new Keynesian model to study

the type, magnitude, and direction of economic shocks during the pandemic. The model

includes the standard real and nominal frictions used in the empirical literature and allows

heterogeneous exposure to the COVID-19 pandemic across sectors.

We solve the model nonlinearly and, to make inferences, we propose a new nonlinear,

non-Gaussian filter designed to handle and identify large shocks. Monte Carlo experiments

show that our filter can correctly identify the source and time location of shocks and

outperform particle filters with a massively reduced running time, allowing us to estimate
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Figure 9: Filtered standardized shocks during and after the pandemic. Note: The panels in the left column
refer to the Baseline estimation, the ones in the middle refer to the No-Pandemic estimation,
while the ones in the right column refer to the No Large shocks specification. The bands represent
one standard deviation resulting from parameter uncertainty. εz2 : labor productivity shock to
S2. εφ1

: labor supply shock to S1. εζ : demand shocks to both sectors. εj : demand shock to
S2 services. εz1 : labor productivity shock to S1. εe: temporary monetary policy shock. εφ2

:
labor supply shock to S2. εs: persistent monetary policy shock. The horizontal red dashed lines
represent the values +3 and -3, as descriptive references for the reader.

the model efficiently using the Sequential Monte Carlo sampler recently proposed by Herbst

and Schorfheide (2014).

The empirical results indicate that economic disruption is caused by a combination of

demand and supply shocks rather than supply or demand shocks alone. In 2020:Q2, we

identify a large negative shock in the demand for goods produced by the general sector,

together with a large negative shock in the demand for contact-intensive products. On

the supply side, we detected a large labor supply shock in the general sector and a large

labor productivity shock in the pandemic-sensitive sector.

We analyze the effects of these shocks by performing a set of counterfactual experi-
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ments. We find that if only demand and supply shocks were in action, the responses of

the model variables would have differed substantially from what is observed in the data.

In the robustness part, we also show that our modellization of large shocks allows us to

estimate model parameters that are stable compared to estimation on prepandemic data

and that the absence of this modellization would lead to unstable results.
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A The Model Equations

Households

The functional forms of the investment and capacity utilization costs appearing in the

household’s budget constraint (eq. 2) are the following:

Ψk1,t =
ηk1
2

(

k1,t
k1,t−1

− 1

)2

k1,t−1, Ψk2,t =
ηk2
2

(

k2,t
k2,t−1

− 1

)2

k2,t−1,

Ψu1,t =

(

1

β
− (1− δk1)

)





(

ηu1
1−ηu1

)

2
+

(

ηu1
1−ηu1

)

2
u2k1,t + uk1,t

(

1−
ηu1

1− ηu1

)

− 1



 ,

Ψu2,t =

(

1

β
− (1− δk2)

)





(

ηu2
1−ηu2

)

2
+

(

ηu2
1−ηu2

)

2
u2k2,t +

(

1−
ηu2

1− ηu2

)

uk2,t − 1



 .

The term Ψt in the household’s budget constraint (eq. 2) is then given by:

Ψt = Ψk1,t + p2,tΨk2,t +Ψu1,tk1,t−1 + p2,tΨu2,tk2,t−1.

The household’s optimization leads to the following first-order conditions:

• Euler equation:

uc1,t = βRtEt

(

uc1,t+1

π1,t+1

)

. (18)

• Intratemporal consumption condition:

uc2,t
p2,t

= uc1,t. (19)

• Labor supply to S1 and S2:

aζ,tφ1,tn
ν1
1,t =

w1,tuc1,t
Xw1,t

, aζ,tφ2,tn
ν2
2,t =

w2,tuc2,t
Xw2,t

. (20)

• Capital supply to S1:

uc1,t

[

1 + ηk1

(

k1,t
k1,t−1

− 1

)]

=βEtuc1,t+1

[

1− δk1 + rk1,t+1uk1,t+1 +
ηk1
2

(

k21,t+1

k21,t
− 1

)]

.

(21)
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• Capital supply to S2:

p2,tuc1,t

[

1 + ηk2

(

k2,t
k2,t−1

− 1

)]

= βEtp2,t+1uc1,t+1

[

1− δk2 + rk2,t+1uk2,t+1 +
ηk2
2

(

k22,t+1

k22,t
− 1

)]

.

(22)

• Capacity utilization in S1 condition:

rk1,t
1
β − (1− δk1)

= 1−
ηu,1

1− ηu,1
+

ηu,1
1− ηu,1

uk1,t. (23)

• Capacity utilization in S2 condition:

rk2,t
1
β − (1− δk2)

= 1−
ηu,2

1− ηu,2
+

(

ηu,2
1− ηu,2

)

uk2,t. (24)

where the marginal utilities of consumption are defined by:

uc1,t =
1− h1
1− βh1

(

aζ,t
c1,t − h1c1,t−1

− Et
h1βaζ,t+1

c1,t+1 − h1c1,t

)

,

uc2,t =
1− h2
1− βh2

[

aζ,taj,t
c2,t − h2c2,t−1

− Et

(

h2βaζ,t+1aj,t+1

c2,t+1 − h2c2,t

)]

.

Eq. (18) is the Euler equation with respect to the first good, eq. (19) is the intratemporal

condition between the two goods, eqs. (20) are the labor supply conditions, (21) and (22)

pin down capital supply, while (23) and (24) are the capacity utilization conditions.

Wholesale Firms

First-order conditions of the wholesale firms consist in the following equations:

• Labor demand by S1 and S2:

(1− α1)Y1,t
X1,t

= w1,tn1,t,
(1− α2)Y2,t

X2,t
= w2,tn2,t. (25)

• Capital demand by S1 and S2:

α1Y1,t
X1,t

= rk1,tuk1,t k1,t−1,
α2Y2,t
X2,t

= rk2,tuk2,t k2,t−1. (26)

2



Eqs. (25) are the labor demand conditions, while eqs. (26) govern capital demand.

Retail Firms

Retailers face quadratic adjustment costs à la Rotemberg in changes in retail prices (P1,t(j)

and P2,t(j)). Adjustment costs depend on last quarter’s inflation, with weights given by

the indexation parameters ιπ1 and ιπ2 . The retail firm problem is therefore (for sectors

i = 1, 2) to set Pi,t(j) to maximize:

E0

∞
∑

t=0

βt

{

uc1,t
uc1,0

[

Pi,t(j)

Pi,t
Yi,t(j)−

1

Xi,t
Yi,t(j)−

ηi
2

(

Pi,t(j)

Pi,t−1(j)
− π

ιπi
i,t−1

)2

Yi,t

]}

, (27)

subject to:

Yi,t(j) =

(

Pi,t(j)

Pi,t

)−ǫπi
Yi,t.

This optimization problem shows that deviations of the prices of individual varieties
(

Pi,t(j)
Pi,t−1(j)

)

from the aggregate inflation (π
ιπi
i,t−1) are penalized, depending on the rigid-

ity parameters ηi. Moreover, as visible from eq. (27), at each time t the profits of retailers

are weighted by the stochastic discount rate
(

βt
uc1,t

uc1,0

)

, which depends on the marginal

utility of consumption at time t. In the case of fully flexible prices (ηπ = 0), the markup

is set at its steady-state value Xi =
ǫπi

ǫπi−1 . The price-setting problem of retail firms gives

the two Phillips curves:

• Price Phillips curve for S1:

1− π1,tηπ1

(

π1,t − π
ιπ1
1,t−1

)

+ βηπ1Et

[

π1,t+1
uc1,t+1

uc1,t

(

π1,t+1 − π
ιπ1
1,t
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]

=

(
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1
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)

ǫπ1 .

• Price Phillips curve for S2:
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(
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ιπ2
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)

+ βηπ2Et

[

π2,t+1
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(
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ιπ2
2,t
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Y2,t

]

=

(

1−
1

X2,t

)

ǫπ2 .

3



Retailers’ profits are finally equal to:

Πr1,t =

(

1−
1

X1,t

)

Y1,t −
ηπ1

2

(

π1,t − π
ιπ1
1,t−1

)2
Y1,t,

Πr2,t =

(

1−
1

X2,t

)

Y2,t −
ηπ2

2

(

π2,t − π
ιπ2
2,t−1

)2
Y2,t.

Unions

Unions buy homogeneous labor services from households and differentiate them at no

cost. Differentiated labor varieties are then aggregated back into CES aggregates by

labor packers in homogeneous compounds, which are sold to the wholesale firm. The

enforcement of wage rigidities through labor unions is in line with Smets and Wouters

(2007) and Iacoviello and Neri (2010), among others, and similarly to final goods price, it

results from the presence of adjustment costs à la Rotemberg (with indexation parameters

ιw1 and ιw2). Labor unions face the demand schedule ni,t(h) =
(

Wi,t(h)
Wi,t

)−ǫwi
ni,t, i = 1, 2,

and maximize:

E0

∞
∑

t=0

βt

{

uc1,t
uc1,0

[

Wi,t(h)

Pi,t
ni,t(h)−

ηwi

2

(

Wi,t(h)

Wi,t−1(h)
− π

ιwi

i,t−1

)2 Wi,t

Pi,t

]

−
aζ,tφi,tni,t(h)

1+νi

1 + νi

}

.

The maximization of labor unions’ profits gives the two wage Phillips curves:

• Wage Phillips curve for S1:

(28)
ηw1ω1,t

(

ω1,t − π
ιw1
1,t−1

)

= βηw1Et
uc1,t+1

uc1,t

(
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) ω2
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)

.

• Wage Phillips curve for S2:

(29)
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= βηw2Et
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.
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Above, ω1,t and ω2,t are nominal wage inflation, namely ωi,t =
Wi,t

Wi,t−1
=

Pi,twi,t

Pi,t−1wi,t−1
=

πi,t
wi,t

wi,t−1
. Unions’ profits are finally given by margins minus adjustment costs:

Πu1,t =

(

1−
1

Xw1,t

)

w1,t n1,t −
ηw1

2

(

ω1,t − π
ιw1
1,t−1

)2
w1,tn1,t,

Πu2,t =

(

1−
1

Xw2,t

)

w2,t n2,t −
ηw2

2

(

ω2,t − π
ιw2
2,t−1

)2
w2,t n2,t.

The term Πt, appearing in the household’s budget constraint (eq. 2) is then given by:

Πt = Πu1,t + p2,tΠu2,t +Πr1,t + p2,tΠr2,t.

B Derivation of the Mixture of Mixture Cubature Kalman

Filter

This Appendix describes in detail the derivation of the Mixture of Mixture of Cubature

Kalman Filter (MM-CKF). The MM-CKF is based on the Cubature Kalman Filter (CKF)

of Arasaratnam and Haykin (2009). The CKF falls into the category of Gauss-Hermite

transformation filters, where the moments’ propagation and updating are based on nu-

merical integration rules. Differently from the Gauss–Hermite Kalman filter (GHKF) of

Ito and Xiong (2000) and the Quadrature Kalman filter (QKF) of Arasaratnam et al.

(2007), the number of sigma points scales linearly in the integration dimensions, by the

use of symmetric spherical-radial cubature rule. This provides a tool against the curse of

dimensionality. The spherical radial cubature rule in Arasaratnam and Haykin (2009) is

exact up to order three, meaning that the first moments will be propagated exactly for

state-space functions consisting in polynomials up to order three (or well approximated

by polynomials up to order three). As pointed out by Särkkä (2013), indeed, the integra-

tions involving second moments will be exact just for state-space functions consisting of

polynomials up to order one. It is possible to specify high order Cubature Kalman filters

(Jia et al., 2013), but the number of cubature points would scale polynomially in the state

dimension. Moreover, some weights may turn negative, possibly giving rise to numerical

instability.
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Cubature Kalman Filter

The algorithm of the CKF is the following: Assuming p(xS0 |y1:0) = N (m0|0, P0|0) the

initial distribution of the states, for t = 1 to T perform the following steps:

1) Prediction

(a) From time t−1 posterior density function p(xSt−1|y1:t−1) = N (mt−1|t−1, Pt−1|t−1)

form the augmented filtered cubature points:







X S(i)

t−1|t−1

E
(i)
t−1|t−1






=







mt−1|t−1

E(εt)






+

√

√

√

√

√

√







Pt−1|t−1 0

0 V(εt)






ξ(i)

i = 1, . . . , 2(nSx + nε),

where the cubature points (ξ(i)) are derived from the spherical-radial rule

(Arasaratnam and Haykin, 2009)

ξ(i) =











√

nSx + nεei, i = 1, . . . , nSx + nε,

−
√

nSx + nεei−nS
x−nε

, i = nSx + nε + 1, . . . , 2(nSx + nε),

and where the ei’s are the vectors forming the standard basis of R(nS
x+nε).

(b) Propagate states cubature points using the second equation in (12):

X S(i)

t|t−1 = h(X S(i)

t−1|t−1) +RE
(i)
t−1|t−1, i = 1, . . . , 2(nSx + nε).

(c) Obtain predicted controls cubature points using the first equation in (12):

XC(i)

t|t−1 = g
(

X S(i)

t|t−1

)

, i = 1, . . . , 2
(

nSx + nε
)

.

(d) Compute predicted means and covariances for states and controls

m∗
t|t−1 ≡







mS
t|t−1

mC
t|t−1






=

1

2(nSx + nε)

2(nS
x+nε)
∑

i=1







X S(i)

t|t−1

XC(i)

t|t−1






,

6



P ∗
t|t−1 =

1

2 (nSx + nε)

2(nS
x+nε)
∑

i=1






















X S(i)

t|t−1

XC(i)

t|t−1






−







mS
t|t−1

mC
t|t−1

























X S(i)

t|t−1

XC(i)

t|t−1






−







mS
t|t−1

mC
t|t−1























′

.

2) Updating

(a) Form the predicted states and controls cubature points:

X
∗(i)
t|t−1 = m∗

t|t−1 +
√

P ∗
t|t−1ζ

(i), i = 1, . . . , 2(nSx + nCx ).

(b) Obtain predicted observations cubature points through the measurement equa-

tion (13):

Y
(i)
t|t−1 = A+BX

∗(i)
t|t−1, i = 1, . . . , 2

(

nSx + nCx
)

.

(c) Compute predicted observables mean, covariance and cross-covariance between

the states and observables:

Ȳt|t−1 =
1

2 (nSx + nCx )

2(nS
x+nC

x )
∑

i=1

Y
(i)
t|t−1,

Ft|t−1 =
1

2 (nSx + nCx )

2(nS
x+nC

x )
∑

i=1

(

Y
(i)
t|t−1 − Ȳt|t−1

)(

Y
(i)
t|t−1 − Ȳt|t−1

)′

+ V(ut),

Pxy
t|t−1 =

1

2(nSx + nCx )

2(nS
x+nC

x )
∑

i=1

(

X
∗(i)
t|t−1 −m∗

t|t−1

)(

Y
(i)
t|t−1 − Ȳt|t−1

)′

.

(d) Compute Kalman gain to obtain the new filtered mean and covariance for states

and controls:

Kt = Pxy
t|t−1

(

Ft|t−1

)−1
,

m∗
t|t = m∗

t|t−1 +Kt(yt − Ȳt|t−1),

P ∗
t|t = P ∗

t|t−1 − Pxy
t|t−1

(

Ft|t−1

)−1
(

Pxy
t|t−1

)′

.

From m∗
t|t and P

∗
t|t the n

S
x states entries are retained to have mt|t and Pt|t to be

7



used in the following iteration.

Mixture of Mixture of Cubature Kalman Filter

The MM-CKF described in Section V is based on the CKF. This mixture of structural

errors allows us to disentangle the structural shock that experiences the large negative

(positive) impulse. We now explain in detail the MM-CKF.

Assume p
(

xS0 |y1:0

)

= N
(

m0|0, P0|0

)

as the initial distribution of the states, and G0 =

1. For t = 1, . . . , T and for each filtered component g = 1, . . . , Gt−1 in

p (xt−1|y1:t−1) =

Gt−1
∑

g=1

p
(

xt−1|κ
g
t−1,y1:t−1

)

p
(

κgt−1|y1:t−1

)

=

Gt−1
∑

g=1

N
(

mg
t−1|t−1, P

g
t−1|t−1

)

wg
t−1|t−1.

perform the following steps:

1) Prediction

(a) Split each filter g in K densities with predicted weights w̃g,k
t|t−1 = wg

t−1|t−1ψk,t,

k = 1, . . . ,K, assuming noise from component εkt .

(b) For each shock component k = 1, . . . ,K form the augmented filtered cubature

points:







X g,k,S(i)

t−1|t−1

E
g,k,(i)
t−1|t−1






=







mg
t−1|t−1

E(εkt )






+

√

√

√

√

√

√







P g
t−1|t−1 0

0 V(εkt )






ξ(i)

i = 1, . . . , 2(nSx + nε).

(c) Propagate states cubature points using Equation (12):

X g,k,S(i)

t|t−1 = h
(

X g,k,S(i)

t−1|t−1

)

+RE
g,k,(i)
t−1|t−1, i = 1, . . . , 2(nSx + nε).

(d) Obtain predicted controls cubature points using Equation (12):

X g,k,C(i)

t|t−1 = g
(

X g,k,S(i)

t|t−1

)

, i = 1, . . . , 2(nSx + nε).
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(e) Compute predicted means and covariances for states and controls:

m∗,g,k
t|t−1 ≡







mg,k,S
t|t−1

mg,k,C
t|t−1






=

1

2 (nSx + nε)

2(nS
x+nε)
∑

i=1







X g,k,S(i)

t|t−1

X g,k,C(i)

t|t−1






,

P ∗,g,k
t|t−1 =

1

2 (nSx + nε)

2(nS
x+nε)
∑

i=1






















X g,k,S(i)

t|t−1

X g,k,C(i)

t|t−1






−







mg,k,S
t|t−1

mg,k,C
t|t−1

























X S(i)

t|t−1

XC(i)

t|t−1






−







mg,k,S
t|t−1

mg,k,C
t|t−1























′

.

2) Updating

(a) For each component {g, k} form the predicted states and controls cubature

points:

X
∗,g,k,(i)
t|t−1 = m∗,g,k

t|t−1 +
√

P ∗,g,k
t|t−1ζ

(i), i = 1, . . . , 2(nSx + nCx ).

(b) Obtain predicted observables cubature points through the measurement equa-

tion (13):

Y
g,k,(i)
t|t−1 = A+BX

∗,g,k,(i)
t|t−1 , i = 1, . . . , 2(nSx + nCx ).

(c) Compute predicted observables mean, covariance and cross-covariance between

states and observables:

Ȳg,k
t|t−1 =

1

2(nSx + nCx )

2(nS
x+nC

x )
∑

i=1

Y
g,k,(i)
t|t−1 ,

Fg,k
t|t−1 =

1

2 (nSx + nCx )

2(nS
x+nC

x )
∑

i=1

(

Y
g,k,(i)
t|t−1 − Ȳg,k

t|t−1

)(

Y
g,k,(i)
t|t−1 − Ȳg,k

t|t−1

)′
+ V(ut),

Pg,k,xy
t|t−1 =

1

2 (nSx + nCx )

2(nS
x+nC

x )
∑

i=1

(

X
∗,g,k,(i)
t|t−1 −m∗,g,k

t|t−1

)(

Y
(i)
t|t−1 − Ȳg,k

t|t−1

)′

.

(d) Compute Kalman gain to obtain new filtered mean and covariance for states

and controls:

Kg,k
t = Pg,k,xy

t|t−1

(

Fg,k
t|t−1

)−1
,
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m∗,g,k
t|t = m∗,g,k

t|t−1 +Kg,k
t

(

yt − Ȳg,k
t|t−1

)

,

P ∗,g,k
t|t = P ∗,g,k

t|t−1 − Pg,k,xy
t|t−1

(

Fg,k
t|t−1

)−1 (

Pg,k,xy
t|t−1

)′

.

From m∗,g,k
t|t and P g,k,∗

t|t the nSx states entries are retained to have mg,k
t|t and P g,k

t|t .

3) Weights updating

(a) Weights are updated using Bayes’ rule:

w̃g,k
t|t =

w̃g,k
t|t−1N

(

yt; Ȳ
g,k
t|t−1,F

g,k
t|t−1

)

∑Gt−1

g=1

∑K
k=1 w̃

g,k
t|t−1N

(

yt; Ȳ
g,k
t|t−1,F

g,k
t|t−1

) .

4) Collapsing (only if Gt−1K > Ḡ)

(a) Components weights w̃g,k
t|t are sorted in descending order.

(b) The first Ḡ components and their respective means and covariances mg,k
t|t and

P g,k
t|t are retained and their indices {g, k} are relabeled with 1, . . . , Ḡ.

(c) If the smallest retained weight w̃Ḡ
t|t < w̃threshold resampling is conducted from

the Ḡ retained mixands using probabilities proportional to w̃g
t|t, g = 1, . . . , Ḡ.

Weights are then set to 1
Ḡ

and identical mixands are collapsed.

(d) Next period filtering weights are finally obtained by normalization:

wg
t|t =

w̃g
t|t

∑Gt

g=1 w̃
g
t|t

.

The likelihood function is then approximated by:

p (y1:T |θ) =
T
∏

t=1

p (yt|y1:t−1; θ) ≈
T
∏

t=1

N
(

yt; Ȳt|t−1,Ft|t−1

)

,

where Ȳt|t−1 =
∑Gt−1

g=1

∑K
k=1 w̃

g,k
t|t−1Ȳ

g,k
t|t−1 and:

Ft|t−1 =

Gt−1
∑

g=1

K
∑

k=1

w̃g,k
t|t−1

[

Fg,k
t|t−1 +

(

Ȳg,k
t|t−1 − Ȳt|t−1

)(

Ȳg,k
t|t−1 − Ȳt|t−1

)′
]

.
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C Data Construction

Value added

To obtain the series of value added in the two sectors, we take the total real value added

(i.e., Gross Domestic Product), and the shares of the two sectors. Gross Domestic Product

(GDP) is retrieved from the U.S. Bureau of Economic Analysis series GDPC1. The series

is seasonally adjusted and is expressed as billions of chained 2012 dollars. The GDP

is divided by the Civilian Noninstitutional Population (series CNP16OV from the U.S.

Bureau of Labor Statistics) to transform it in per capita terms.

Sectoral shares data is obtained from the GDP-by-industry accounts from the U.S. Bureau

of Economic Analysis. The share of the general sector is obtained by summing the shares

of:

• Agriculture, forestry, fishing, and hunting; Mining; Utilities; Construction; Manu-

facturing; Wholesale trade; Retail trade; Transportation and warehousing; Informa-

tion; Finance, insurance, real estate, rental, and leasing; Professional and business

services; Educational services, health care, and social assistance; Other services,

except government; Federal government; State and local government.

The share of the Leisure and Hospitality sector is equal to the share of the following

sectors:

• Arts, entertainment, recreation, accommodation, and food services.

The value added in the two sectors is finally obtained by multiplying the total value added

by these shares. Data is available annually until 2005:Q1 and at quarterly frequencies

afterward. The missing quarters are handled as missing data by the MM-CKF, setting to

zero the corresponding Kalman gain entries. The data spans from 1985:Q1 to 2021:Q4.

Inflation

Sectoral data on prices are collected by the U.S. Bureau of Economic Analysis in the GDP-

by-industry accounts. For each sector, chain-type price indexes are collected, with 2012

being the reference year. As for value-added by sectors, quarterly data is only available

starting from 2005:Q1. Only one out of four quarterly inflation rates are therefore assumed
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to be observed for each year before 2005 and it is assumed to be equal to the yearly rate

divided by four. The other observations are treated as missing. The data spans from

1985:Q1 to 2021:Q4.

Consumption

Aggregate real consumption in billions of chained 2012 dollars is provided by the U.S.

Bureau of Economic Analysis in the PCECC96 series. The series is seasonally adjusted

and it spans from 1985:Q1 to 2021:Q4. The series is divided by the Population Level

(CNP16OV) to get per capita consumption.

Investment

Real Gross Private Domestic Investment is retrieved from the U.S. Bureau of Economic

Analysis series GPDIC1. It is seasonally adjusted and measured in billions of chained 2012

dollars and it spans from 1985:Q1 to 2021:Q4. The series is divided by the Population

Level (CNP16OV) to get per capita investment.

Hours worked

Data on hours worked across industries is obtained from the U.S. Bureau of Labor Statis-

tics’s Current Employment Statistics (Establishment Survey). In Table B-7, the average

weekly hours and overtime of production and nonsupervisory employees on private non-

farm payrolls is collected, while the number of employees on nonfarm payrolls for each

industry is found in Table B-1. The original monthly series are filtered to the quarterly

frequency by applying the arithmetic mean. All series are seasonally adjusted. The per

capita weekly hours worked in each sector are obtained by multiplying the average hours

by employment and dividing them by the Population Level (CNP16OV). The data spans

from 1985:Q1 to 2021:Q4.

Wages

Data on sectoral nominal wages is retrieved from the Current Employment Statistics

(Establishment Survey) provided by U.S. Bureau of Labor Statistics. Average hourly

earnings of production and nonsupervisory employees for the various industries are found
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in Table B-8. Monthly seasonally adjusted data is averaged to obtain quarterly figures.

Nominal wages for aggregate subsets of sectors is obtained as a weighted average of wages

with respect to hours worked in that sectors. We differentiate logged data to get nominal

wage inflation. The data spans from 1985:Q1 to 2021:Q4.

Interest rate

The nominal short-term interest rate is measured as the 3-Month Treasury Bill yield in

the secondary market. The daily measurements are averaged and divided by four to get

the quarterly interest rate. The data spans from 1985:Q1 to 2021:Q4.

D Steady State

Here we derive the steady state of the model. Variables without the time subscript denote

steady-state values. The model is solved around a steady state with zero inflation. Uti-

lization rates are normalized to one at the steady state and all adjustment costs are zero.

Moreover, markups are equal to their flexible-price value, namely:

π1 = 1, π2 = 1, uk1 = 1, uk2 = 1,

Ψk1 = 0, Ψk2 = 0, Ψu1 = 0, Ψu2 = 0,

X1 =
ǫπ1

ǫπ1 − 1
, X2 =

ǫπ2

ǫπ2 − 1
, Xw1 =

ǫw1

ǫw1 − 1
, Xw2 =

ǫw2

ǫw2 − 1
.

The parameter Rss, appearing in the Taylor rule and pinning down the steady state for

the unconstrained interest rate Runc, is calibrated to be the root of the barrier polynomial

R = c0 + c1Runc + c2R
2
unc (the economically admissible one of the two), so that:

Runc = Rss,

and

R =
1

β
.

The auxiliary variables ζ0, ζ1, ζ2 and ζ3 are defined for the sake of convenience. The

variables ζ0 and ζ1 are respectively equal to k1
Y1

and k2
Y2
, while ζ2 and ζ3 stand for c1

Y1
and
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c2
Y2
, respectively. It holds that:

ζ0 =
α1β

X1(1− β(1− δk1))
, ζ1 =

α2β

X2(1− β(1− δk2))
, ζ3 = 1,

n2 =

(

1− α2

X2Xw2

1

ζ3

jss

φss2

) 1
1+ν2

, Y2 = n2ζ
α2

1−α2
1 , k2 = ζ1Y2, c2 = ζ3Y2.

The ratio between c1 and p2 can be easily found as:

c1/p2 =
c2
jss

.

Then, by the market clearing for Sector S1,

Y1/p2 =
c1/p2 + δk2k2
1− δk1ζ0

,

so that

ζ2 =
c1/p2
Y1/p2

, n1 =

(

1− α1

X1Xw1

1

ζ2

1

φss1

) 1
1+ν1

, Y1 = n1ζ
α1

1−α1
0 , k1 = ζ0Y1,

c1 = ζ2Y1, uc1 =
1

c1
, uc2 =

jss

c2
, w1 = φss1 n

ν1
1

Xw1

uc1
,

w2 = φss2 n
ν2
2

Xw2

uc2
, p2 =

uc2
uc1

, Πr1 =

(

1−
1

X1

)

Y1, Πr2 =

(

1−
1

X2

)

Y2,

Πu1 =

(

1−
1

Xw1

)

w1n1, Πu2 =

(

1−
1

Xw2

)

w2n2, π = π1

(

Y1
Y1+p2Y2

)

π2

(

p2Y2
Y1+p2Y2

)

= 1,

az1 = 1, az2 = 1, aj = jss, as = 1, φ1 = φss1 , φ2 = φss2 .
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E Alternative strategies

Stability of parameters

In this Appendix we show that ignoring the modellization of large shocks during the pan-

demic quarters biases the estimation of the model parameters; differently, we show that

including large shocks makes inference on parameters feasible. To do so, we re-estimate

the model on a pre-pandemic dataset that starts from 1985:Q1 and ends in 2019:Q4, before

the outbreak of the pandemic in the US. This exercise is conducted using the same prior

specification of the baseline estimation presented in the paper.

As shown in Table 4, our modellization of large shocks (Baseline) gives parameter esti-

mates that remain stable with respect to the pre-pandemic estimation (No-Pandemic).

The values at the posterior mean in these two cases report small movements, with minor

differences given by the information carried by the pandemic quarters. Furthermore, we

run an estimation (No Large Shocks) that ignores the presence of large shocks, meaning

that all the shocks are always assumed to come from the ordinary component. In this

case the parameters at the posterior mean are greatly affected by the last pandemic ob-

servations, and they move substantially from the pre-pandemic values. As visible from

the No Large Shocks column in Table 4 ignoring large shocks biases upward the standard

deviations of the shocks, drives down the parameters related to habits in consumption (h1

and h2), shrinks the utilization cost parameters (ηu,1 and ηu,2) towards zero and revises

upward the estimates for the capital adjustment costs (ηk,1 and ηk,2). Also the exogenous

persistence parameters change dramatically.

Table 4: Estimation Results with alternative specifications. Note: The table reports the parameter’s name
(Full Name) with the associated symbol (Symbol). The table then reports the posterior mean for
the estimated parameters in case of the baseline estimation (Baseline), the estimation that ends at
2019:Q4 (No-Pandemic), the estimation that goes up to 2021:Q4 but does not model large shocks
(No Large Shocks).

Full Name Symbol Baseline No-Pandemic No Large Shocks

Habits S1 h1 0.79 0.79 0.42

Habits S2 h2 0.91 0.87 0.90

Price rigidity S1 θ1 0.70 0.71 0.71

Price rigidity S2 θ2 0.57 0.51 0.52

Inverse Frisch el. S1 ν1 0.25 0.36 0.30
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Table 4 – Continued from previous page

Full Name Symbol Baseline No-Pandemic No Large Shocks

Inverse Frisch el. S2 ν2 0.34 0.40 0.26

Taylor rule inertia rR 0.70 0.66 0.66

Taylor rule output rY 0.14 0.14 0.06

Taylor rule inflation rπ 1.99 1.94 2.08

Price indexation S1 ιπ1
0.82 0.80 0.67

Price indexation S2 ιπ2
0.82 0.80 0.74

Persistence Prod. S1 ρz1 0.99 0.99 0.93

Persistence Prod. S2 ρz2 0.18 0.29 0.38

Persistence Intratemp. ρj 0.35 0.32 0.22

Persistence Lab. Supply S1 ρφ1
0.73 0.76 0.34

Persistence Lab. Supply S2 ρφ2
0.15 0.10 0.70

Persistence Intertemp. ρζ 0.67 0.66 0.82

Wage rigidity S1 θw1
0.84 0.85 0.76

Wage rigidity S2 θw2
0.68 0.68 0.72

Wage indexation S1 ιw1
0.88 0.81 0.90

Wage indexation S2 ιw2
0.77 0.70 0.08

Uiliz. adj.cost S1 ηu,1 0.92 0.89 0.60

Uiliz. adj.cost S2 ηu,2 0.22 0.22 0.37

Cap. adj.cost S1 ηk1
13.38 11.53 13.09

Cap. adj.cost S2 ηk2
12.10 5.38 10.36

St.Dev. Prod. S1 100× σz1 0.74 0.71 0.81

St.Dev. Temp. Mon. Policy 100× σe 0.29 0.24 0.33

St.Dev. Prod. S2 100× σz2 1.39 1.19 3.48

St.Dev. Intratemp. 100× σj 10.98 7.30 60.67

St.Dev. Pers. Mon. Policy 100× σs 5.42 4.86 7.72

St.Dev. Lab. Supply S1 100× σφ1
6.14 6.38 8.33

St.Dev. Lab. Supply S2 100× σφ2
73.51 64.18 29.95

St.Dev. Pref. 100× σζ 2.97 2.88 1.91
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Student’s t shocks

We show that a Student’s t specification can hardly generate the economic shocks found

in the paper. To this end, we evaluate the likelihood of the shocks under the hypothesis

that they are drawn from uncorrelated Student’s t distributions with 2, 5, and 20 degrees

of freedom (ν = 2, 5, 20). Figure 10 it is shown the log-density of a multivariate Student’s

t with a diagonal covariance matrix, evaluated at the standardized shocks filtered by the

MM-CKF, at each time point, namely:

f tν(ε̃t) =
Γ [(ν + nε)/2]

Γ(ν/2)νnε/2πnε/2

[

1 +
1

ν
ε̃

′

tε̃t

]−(ν+nε)/2

,

where Γ(·) is the Gamma function. Consistently with the main text, nε is the number

of structural shocks of the model and ε̃t are the standardized shocks occurring at time t,

namely
(

ε̃t =
εt

σ

)

. As Figure 10 shows, in the last two quarters (2020:Q2 and 2020:Q3)

the value of f tν drops substantially, indicating that the shocks (ε̃t) lie in the tail density.

For the most leptokurtic case, ν = 2, it is shown that the log-density value, in the last

two quarters, is around −30, while in usual times it hovers around a value of −9. For the

case of higher degrees of freedom (ν = 5 and ν = 20), these observations are further in the

tails, and the log-density values in these quarters are even lower. We have to underline

that, if a Student’s t with low degrees of freedom can draw one large shock as the one of

2020 with non-negligible probability, the likelihood of a Student’s t distribution drawing

many large shocks at the same time is low, and this is the reason why the value density

value drops so much.

F The Approximate Conditional Optimal Particle Filter

The Conditionally Optimal Particle Filter (COPF), see Herbst and Schorfheide (2015) and

Aruoba et al. (2021), requires an exact expression for conditionally-optimal proposal den-

sity. This can be easily derived just in few special cases including: linear state transitions

and piecewise-linear state transitions. Specifically, Aruoba et al. (2021) show that when

the DSGE solution produces piecewise-linear state transition equations, the conditionally

optimal density takes the form of truncated normal mixtures.

In our model solution, the state transition is a second order polynomial in the states and,
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Figure 10: Log-density of shocks under a Student’s t distribution.

unfortunately, an exact expression for the conditionally optimal density is not available and

the COPF cannot be applied. As an approximation, we propose the Approximate Condi-

tionally Optimal Particle Filter (ACOPF) which the conditionally-approximate density is

derived with a CKF step. More specifically:

p(xt|x
j
t−1,yt) ≈ p̃(xt|x

j
t−1,yt) = N

(

xj,CKF
t|t , P j,CKF

t|t

)

,

where xj,CKF
t|t and P j,CKF

t|t represent respectively the filtered means and covariances, of

the unobserved states, obtained from a run of the CKF on the latest observation yt, this

filter is also known as Cubature Particle Filter (CPF).

In the context of DSGE models, the optimal importance density approximation using

Gaussian filters have been proposed, among others, by Amisano and Tristani (2010) (Ex-

tended Kalman Filter) and by Andreasen (2011) (Central Difference Kalman filter). By

using an importance density proposal gt(xt|x
j
t−1,yt) 6= p(xt|x

j
t−1), the importance weight

wj
t =

p(yt|x
j
t )p(x

j
t |x

j
t−1)

gt(x
j
t |x

j
t−1,yt)

,
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must be evaluated. In our case, as in Andreasen (2011), the density p(xj
t |x

j
t−1) is degener-

ate, given that the shocks enter contemporaneously for just some state variables, i.e. the

loading matrix R displays null lines and RV(εt)R
′ is singular. To circumvent this problem,

exactly as in Andreasen (2011), the proposal is split is two parts. The first one propagates

the states corresponding to the singular lines deterministically through the transition func-

tions. The second part updates the states corresponding to the non singular lines by a run

of the CKF. The importance weight for each particle is then calculated only evaluating

the non-degenerate part of the density corresponding to the non-degenerate states.

G Miscellanea

Detailed Monte Carlo results

Table 5 reports the full version of Table 1 in the main text.

Table 5: Full table. RMSE of the Monte Carlo experiment for N = 100 replications of the Two-Sector model
with large shocks. Note: The Table reports the full name (Full Name) with the associated symbol
(Symbol). The filters are: Kalman filter (KF); Bootstrap Particle Filter with 40000 particles
(BPF); Auxiliary Particle Filter with 40000 particles (APF); the Approximate Optimal Particle
Filter with 400 and 4000 particles (ACOPF(400), ACOPF(40000)); and the Mixture of Mixture
of Cubature Kalman Filter (MM-CKF) with four components (Ḡ = 4).

Full Name Symbol KF BPF APF ACOPF(400) ACOPF(4000) MM-CKF

Wage S1 w1 3.00 0.88 1.00 1.00 1.10 0.98

Int. rate runc 0.49 0.07 0.06 0.05 0.05 0.08

Lab. Supply S1 at1 1.30 1.20 1.20 1.50 1.20 0.60

Wage S2 w2 0.23 0.27 0.27 0.20 0.18 0.20

Lab. supply S2 at2 14.00 9.90 9.80 9.70 9.50 8.80

Prod. S1 az1 2.70 0.89 1.00 1.00 1.10 0.94

Prod. S2 az2 0.09 0.16 0.16 0.15 0.13 0.08

Persistent MP as 6.00 2.20 2.30 2.80 2.40 0.99

Consumption S1 c1 3.00 0.94 1.10 1.10 1.10 1.00

Intertemp. shock aζ 0.98 0.51 0.51 0.58 0.52 0.23

Intratemp. shock aj 1.20 1.70 1.60 1.70 1.60 1.10

Inflation S1 π1 0.05 0.04 0.04 0.02 0.02 0.02

Consumption S2 c2 2.60 1.90 1.80 2.10 1.90 1.00
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Table 5 – Continued from previous page

Full Name Symbol KF BPF APF ACOPF(400) ACOPF(4000) MM-CKF

Inflation S2 π2 0.06 0.18 0.17 0.05 0.04 0.02

Capital S1 k1 4.30 1.10 1.30 1.40 1.20 1.10

Capital S2 k2 2.30 2.50 2.50 2.60 2.50 2.60

MP shock ǫe 0.08 0.03 0.03 0.03 0.03 0.03

Relative price p2 5.20 1.30 1.50 1.60 1.40 1.20

Investment invest 4.00 1.30 1.40 1.50 1.30 1.10

Production S1 Y1 3.40 0.93 1.10 1.10 1.10 1.00

Production S2 Y2 2.50 1.90 1.70 2.10 1.90 0.99

Hours S1 n1 0.39 0.44 0.45 0.48 0.39 0.20

Hours S2 n2 2.60 1.90 1.70 2.00 1.90 0.84

Total output GDP 3.40 0.93 1.10 1.10 1.10 1.00

Markup S1 X1 0.16 0.10 0.09 0.09 0.08 0.05

Marg. ut. S2 uc2 2.50 1.00 1.00 0.72 0.67 0.98

Markup S2 X2 0.09 0.15 0.15 0.07 0.07 0.06

Inflation π 0.04 0.04 0.04 0.02 0.01 0.001

Profits retailers Πr 3.80 1.40 1.40 1.40 1.30 1.10

Cap. adj. Cost Ψk 0.25 0.11 0.10 0.08 0.08 0.08

Wage markup S1 Xw1
1.10 0.85 0.85 0.99 0.86 0.43

Wage markup S2 Xw2
15.00 9.50 9.50 9.00 8.90 8.60

Profits unions Πu 17.00 19.00 19.00 13.00 12.00 7.20

Int. rate R 0.14 0.04 0.04 0.02 0.02 0.02

Marg. ut. S1 uc1 3.80 0.99 1.10 1.30 1.10 1.00

Rental rate S1 rk1
1.00 0.50 0.48 0.62 0.50 0.30

Utilization S1 uk1
0.08 0.05 0.05 0.06 0.05 0.03

Rental rate S2 rk2
0.39 0.33 0.34 0.33 0.30 0.42

Utilization S2 uk2
1.40 1.00 1.10 1.00 0.93 1.40

Wage infl. S1 ω1 0.03 0.05 0.05 0.02 0.02 0.01

Wage infl. S2 ω2 0.13 0.24 0.24 0.07 0.08 0.01

Uiliz. adj.cost S1 Ψu1
0.00 0.00 0.00 0.00 0.00 0.00

Uiliz. adj.cost S2 Ψu2
0.05 0.04 0.04 0.04 0.04 0.05
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Figure 11: The exact and the smooth zero lower bound.

Table 6: Coefficients of the smooth barrier polynomial.

c0 c1 c2

9.79 -18.07 9.28

Constraining polynomial

As detailed in the main text, we approximate the lower bound on the nominal interest

rate by using a smooth barrier polynomial. The form of the approximating polynomial is

the following:

Rt = c0 + c1Runc,t + c2R
2
unc,t.

The values for the c0, c1 and c2 coefficients are chosen by performing a least squares

regression of the ideal zero lower bound (Rt = max {1, Runc,t}) on the approximated one,

over the range of values shown in Figure 11. The values are reported in Table 6. By

solving the model at second order, we are able to preserve the shape of the polynomial.

Figure 11 shows that the approximation is valid in the range of quarterly interest rates

between -4% and +4% (approximately -16% and +16% in annual figures).
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Calibrated parameters

Table 7: Calibrated parameters. Note: The table reports the parameter’s name (Full Name), the associate
symbol (Symbol) and the calibrated value (Value).

Full Name Symbol Value

Labor share S1 α1 0.350
Labor share S2 α2 0.350
Discount factor β 0.991
Depreciation S1 δk1 0.025
Depreciation S2 δk2 0.025
Mean of aj,t jss 0.072
Mean of φ1,t φss1 0.643
Mean of φ2,t φss2 1.896
Elast. final goods S1 ǫπ1 7.667
Elast. final goods S2 ǫπ2 7.667
Elast. labor S1 ǫw1 7.667
Elast. labor S2 ǫw2 7.667
Persistence Mon. Policy ρs 0.975
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