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Università di Roma “Tor Vergata”

Abstract

The paper proposes a novel model for time series displaying persistent stationary
cycles, the fractional sinusoidal waveform process. The underlying idea is to allow the
parameters that regulate the amplitude and phase to evolve according to fractional
noise processes. Its advantages with respect to popular alternative specifications,
such as the Gegenbauer process, are twofold: the autocovariance function is available
in closed form, which opens the way to exact maximum likelihood estimation; secondly
the model encompasses deterministic cycles, so that discrete spectra arise as a limiting
case. A generalization of the process, featuring multiple components, an additive ‘red
noise’ component and exogenous variables, provides a model for climate time series
with mixed spectra. Our illustrations deal with the change in amplitude and phase
of the intra-annual component of carbon dioxide concentrations in Mauna Loa, and
with the estimation and the quantification of the contribution of orbital cycles to the
variability of paleoclimate time series.
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1 Introduction

Climate time series are characterized by persistent periodic or quasi-periodic movements.
In reconstructed paleoclimate proxy records these are commonly referred to as glacial
cycles. In the analysis of subannual time series dealing with temperatures and trace
gases concentrations, the propagation of daily or annual insolation forcing arising from
Earth’s rotation through the different parts of the climate system and their interactions
can originate seasonal cycles characterized by time varying amplitude and phases.

In modelling cycles, an important dichotomy is between deterministic cycles and stochas-
tic ones. The former are characterized by a purely discrete (or line) spectrum; see,
e.g., Brockwell and Davis (1991, section 4.2). An example is the harmonic process
{yt, t ∈ Z, yt ∈ R} defined as yt = α cos(λt) + α∗ sin(λt), where λ is a known frequency in
[0, π] and α, α∗ are mutually independent Gaussian random variables with mean zero and
variance σ2α.

Stochastic cycles are further characterized by their stationarity and their memory. The
second order autoregressive process yt = 2ρ cos(λ)yt−1 − ρ2yt−2 + εt, εt ∼ i.i.d. N(0, σ2),
with |ρ| < 1, is a model for a short memory cycle, and it is such that the spectral density
is continuous and bounded, with a spectral peak around the frequency λ. If ρ = 1
the cycle is nonstationary and it is said to be integrated of order 1 at the frequency
λ. Introducing the lag operator L, Lkyt = yt−k, k ∈ Z, the integrated cycle is written
(1− 2 cos(λ)L+ L2)yt = εt.

An important model for cyclical long memory time series is the Gegenbauer processes,
introduced by Hosking (1981) and formalized by Andel (1986) and Gray et al. (1989).
The Gaussian Gegenbauer process {yt, t ∈ Z, yt ∈ R} is defined by the following dynamic
equation,

(

1− 2 cos(λ)L+ L2
)d
yt = εt,

where d ∈ R is the memory parameter. The process is stationary if 0 < λ < π and d < 1/2,
or when λ = 0, π and d < 1/4; its spectral density, f(ω), for −π ≤ ω ≤ π, is
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and has poles at the frequencies ±λ.
Gray et al. (1989) generalized the process to the case when ǫt is an autoregressive

moving average (ARMA) process; Giraitis and Leipus (1995) and Woodward et al. (1998)
introduced the k-factor Gegenbauer ARMA (k-GARMA) model, which allows for multiple
periodicity and poles in the spectral density. Other classes of seasonal long-range depen-
dent models have been proposed by Porter-Hudak (1990), Hassler (1994), and Koopman
et al. (2007).

As for inference about the model parameters, essential references are Chung (1996b,
1996a), Hosoya (1997), Arteche and Robinson (2000), Giraitis et al. (2001) and Palma and
Chan (2005). Robinson (1994) proposes a test of cyclical and seasonal nonstationarity and
Dalla and Hidalgo (2005) propose a test of the hypothesis of long memory versus short
memory cycles. Recently, Leschinski and Sibbertsen (2019) have dealt with the problem
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of selecting the number of cyclical components in the k-GARMA model. Ferrara and
Guégan (2001) deal with forecasting.

Several applications in economics and financial econometrics are available, see Bisaglia
et al. (2003) and Bordignon et al. (2007), among others. For applications to climatological
time series, see Gil-Alana (2017). The literature is indeed very large and we refer to
Palma (2007, ch. 12), Surgailis et al. (2012, ch. 7), Woodward et al. (2017, ch. 11) and
Dissanayake et al. (2018) for reviews and discussions.

One limitation of the Gegenbauer process and its generalizations is the lack of a closed
form expression for the autocovariance function. This prevents exact maximum likelihood
estimation and optimal signal extraction, and only approximate inferences are available.
To address this issue, efficient computational techniques for evaluating the Gegenbauer
autocovariance have been proposed in the literature by Lapsa (1997), McElroy and Holan
(2012) and McElroy and Holan (2016). A minor issue is the discontinuity in the order of
fractional integration at the long run and Nyquist frequencies. Finally, the k-factor Gegen-
bauer model is a reduced-form multiplicative model which does not allow the measurement
of the contribution of the components of variability at different cycle frequencies1, which
is one the aims of our analysis of climate time series.

We propose an additive approach which combines independent persistent cycles gen-
erated by a novel process, the fractional Sinusoidal Waveform (fSW) process. The latter
is defined by the modulation of the trigonometric functions, cos(λt) and sin(λt), by two
independent fractional noise processes, with the same memory and variance, which replace
the random coefficients α and α∗ in the above harmonic process. This is similar in spirit
to the class of integrated cycle models defined by Hannan (1964), who considered modula-
tion by random walk processes. As a result, both amplitude and phase vary stochastically,
with persistence in their movements, regulated by the memory parameter.

As will be shown in the paper, when the process is stationary, the autocovariance
function is available as the product of the autocovariance sequence of the fractional noise
process and a cosine sequence defined at the cyclical frequency. Assuming Gaussianity,
this opens the way to the estimation of the model parameters by maximum likelihood, the
exact likelihood being evaluated with the support of the Durbin-Levinson recursions. The
fSW process can also be obtained as the sum of two complex coniugate fractional noise
processes, which allow the derivation of the spectral density in closed form. Furthermore, a
direct extensions of the argument adopted by Granger (1980) allows to prove that cyclical
long memory can originate from the contemporaneous aggregation of short memory cyclical
processes.

For the analysis of cycles and seasonality in climate time series we propose an additive
generalization of the fSW model, resulting from the linear combination of independent
fSW processes. For capturing the low frequency movements, a red noise component is
added. The latter is meant to capture the internal variability of the climate system,
whereas the fSW cyclical components are used to capture the variability due to external
forcing; see Mitchell (1976). The introduction of fixed regression effects completes the

1Although Beveridge-Nelson type decompositions can in principle be defined, see Proietti (2016) for the
zero frequency, no general theory is available for this purpose.
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specification of the model. An important question for climate time series is the treatment
of mixed spectra, featuring deterministic cyclical components embedded in a background
continuum (see Mann and Lees (1996) and Meyers et al. (2008)). An additional important
property of the fSW is the possibility to encompass stationary deterministic cycles, i.e., a
process with discrete spectrum, which arise as a limiting case of our basic fSW process.
Also, minimum mean square signal extraction analytical formulae are available for the
measurement of the components of variability.

Our illustrations deal with the characterization of the sources of variability of carbon
dioxide concentrations at Manua Loa. Among the interpretative challenges posed by the
Mauna Loa series, we focus on the quantification of the changes of the amplitude and
phase of the seasonal cycle, which are one possible manifestations of how climate change
affects the carbon cycle, and the relation of the interannual component with the El Niño
Southern Oscillation phenomenon. A second application deals with the estimation and
the quantification of the contribution of orbital cycles to the variability of paleoclimate
time series.

The paper is organized as follows. In section 2 we introduce the fractional sinusoidal
waveform model, and present its essential properties: using the linear process represention,
we derive its autocovariance function. The fSW process can also be expressed as the sum
of two complex coniugate fractional noise processes, which allows an easy derivation of
the spectral density function (section 2.2). Section 2.3 shows that deterministic cycles
arise as a limiting case. Section 3 shows that cyclical long memory can result from the
contemporaneous aggregation of stationary short memory cyclical processes.

In section 4 we consider a more general specification which features multiple fSW
cycles, as well as a red noise, or background low-frequency component and a regression
component.

Maximum likelihood inference, both exact and using the Whittle approximation, and
optimal signal extraction are the topic of section 5. Our climatological illustrations deal
with assessing the inter-annual and intra-annual variability of carbon dioxide (CO2) con-
centrations at Mauna Loa (section 6) and measuring the contribution of orbital forcing to
paleoclimate variability of temperatures, ice volume, methane and CO2 and more generally
to glacial cycles (section 7). Section 8 concludes the paper.

2 The Fractional Sinusoidal Waveform process

The Gaussian process {yt, t ∈ Z} defined below is a fractional Sinusoidal Waveform process
with memory parameter d, frequency λ and disturbance variance σ2η:

yt = αt cos(λt) + α∗
t sin(λt), t ∈ Z,

αt = (1− L)−dηt, ηt ∼ i.i.d. N(0, σ2η),

α∗
t = (1− L)−dη∗t , η∗t ∼ i.i.d. N(0, σ2η),

(1)

where ηt and η
∗
t are mutually independent.
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The process (1) is stationary when d < 1/2, in which case E(yt) = 0, Var(yt) ≡ σ2α,

with σ2α = σ2η
Γ(1−2d)
Γ2(1−d)

. The autocovariance function, γ(k) = E(ytyt−k), takes the form

γ(k) = σ2η
Γ(1− 2d)Γ(d+ k)

Γ(1 + k − d)Γ(d)Γ(1− d)
cos(λk), k ∈ Z, (2)

as will be shown in section 2.1.
The spectral density function is derived in section 2.2:

f(ω) =
σ2η
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, ω ∈ [−π, π]. (3)

The fSW can equivalently be written yt = At cos(λt − ϕt), where At =
√

α2
t + α∗2

t is
the random amplitude, with marginal Rayleigh distribution with E(At) = σα

√

π/2 and
Var(At) = σ2α(2− π/2), while the random phase is ϕt = arctan(α∗

t /αt) ∼ U(−π, π).
Figure 1 displays the time series plot of a simulated realization of length n = 500,

generated by a fSW process with d = 0.40, λ = π/6, σ2η = 1, its sample autocorrelation
function, and periodogram.

2.1 Linear process representation and autocovariance function

Let us consider the case when d < 1/2 and σ2η > 0. Using the binomial expansion

(1− L)−d =

∞
∑

j=0

ψjL
j , ψj =

Γ(j + d)

Γ(j + 1)Γ(d)
, j = 0, 1, . . . ,

where Γ(·) is the Gamma function, and setting zt = [cos(λt), sin(λt)]′, αt = [αt, α
∗
t ]
′,

yt = z′tαt

= z′t
∑∞

j=0 ψjηt−j

=
∑∞

j=0 ψjz
′
0C

jκt−j

=
∑∞

j=0 ψj cos(λj)κt−j +
∑∞

j=0 ψj sin(λj)κ
∗
t−j ,

(4)

where ηt = [ηt, η
∗
t ]

′; the third line follows from writing zt = Ct′z0, with z0 =
[

1 0
]′
,

C =

[

cos(λ) sin(λ)
− sin(λ) cos(λ)

]

is the orthogonal Givens rotation matrix with angle λ, and κt = [κt, κ
∗
t ] is defined as

κt = Ctηt. Notice that E(κtκ
′
t) = σ2ηI.

The autocovariance function of the fractional noise process follows from Hosking (1981,
Theorem 1). Let γα(k) denote the autocovariance function of the scalar fractional noise
process (1− L)dαt = ηt,

γα(k) = σ2η
∑∞

j=0 ψjψj+k

= σ2η
(−1)kΓ(1−2d)

Γ(k+1−d)Γ(−k+1−d) ,
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Figure 1: Simulated time series of length n = 500, generated by an fSW process with
d = 0.40, λ = π/6, σ2η = 1. The middle plot is its sample autocorrelation. The bottom
panel plots the periodogram and the theoretical spectral density.
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see, e.g. Beran et al. (2016), page 49. Then, the autocovariance function of yt takes the
form:

γ(k) = σ2η
∑∞

j=0 ψjψj+kz
′
tzt−k

= γα(k) cos(λk)

= σ2η
(−1)kΓ(1−2d)

Γ(1−d+k)Γ(1−d−k) cos(λk)

= σ2η
Γ(1−2d)Γ(d+k)

Γ(1−d+k)Γ(d)Γ(1−d) cos(λk)

as stated in (2), where the last line follows from Euler’s reflection formula.
The autocorrelation function is ρ(k) = σ−2

α γ(k),

ρ(k) =
Γ(1− d)Γ(d+ k)

Γ(1− d+ k)Γ(d)
cos(λk), k ∈ Z.

As k → ∞, ρ(k) ∼ ck2d−1 cos(kλ), c > 0, an hyperbolically damped cosine wave, as it is

implied by Sterling’s approximation Γ(d+k)
Γ(1−d+k) ∼ k2d−1. Hence, the process features cyclical

long memory in the sense specified by Oppenheim and Viano (2004).
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2.2 Complex fractional noise representation and spectral density

An alternative representation can be obtained by considering the complex fractional noise
process

(1− e−ıλL)dwt = ζt, λ ∈ [0, π]

where ζt is a complex Gaussian white noise process with independent real and imaginary
part, ζt = 2−1/2(κt+ ıκ

∗
t ), with κt and κ

∗
t i.i.d. Gaussian variables, defined in the previous

section, so that Var(ζt) = σ2κ and, denoting ζ̄t = 2−1/2(κt − ıκ∗t ), Cov(ζt, ζ̄t) = 0. Let w̄t

denote the complex conjugate fractional noise process (1− eıλL)dw̄t = ζ̄t.
Using the binomial expansion (1− e−ıλL)−d =

∑∞
j=0 ψje

−ıλjLj

yt = 1√
2
(wt + w̄t)

= 1√
2

{

(1− e−ıλL)−dζt + (1− eıλL)−dζ̄t
}

= 1√
2

∑∞
j=0 ψj

{

e−ıλjζt−j + eıλj ζ̄t−j

}

=
∑∞

j=0 ψj cos(λj)κt−j +
∑∞

j=0 ψj sin(λj)κ
∗
t−j .

(5)

Notice that the last line of (5) coincides with (4); therefore, yt =
1√
2
(wt + w̄t) is a fSW

process. Also, rewriting the second line of (5) as

yt = 1√
2

(1−eıλL)dζt+(1−e−ıλL)dζ̄t

(1−2 cosλL+L2)d
, (6)

we see that yt has an infinite autoregressive feature generated by the fractional Gegenbauer
polynomial in the denominator of (6).

Defining now the process y∗t

y∗t = ı√
2
(w̄t − wt)

= −∑∞
j=0 ψj sin(λj)κt−j +

∑∞
j=0 ψj cos(λj)κ

∗
t−j ,

where the second line is derived similarly to (5), we have

[

yt
y∗t

]

=
∞
∑

j=0

ψjC
jκt−j ,

which for d = 1 reduces to the Markov process (I−CL)[yt, y
∗
t ]

′ = κt, and both yt and y
∗
t

are real processes.
The spectral density is obtained directly from replacing L in (6) by e−ıω, giving (3).

Writing

f(ω) =
σ2η
4π
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shows that f(ω) ∼ σ2

4π |ω − λ|−2d as ω → λ.
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2.3 Deterministic cycles

The harmonic process yt = α cos(λt) + α∗ sin(λt), where α and α∗ are independent and
identically distributed Gaussian random variables with mean zero and variance σ2α, is a
model for a stationary deterministic cycle, characterized by the autocovariance function
Cov(yt, yt−k) = σ2α cos(λk), k ∈ Z, and discrete spectrum with point mass σ2α/(2π) at the
frequencies ±λ.

Let us consider again the general expression (2) for the autocovariance function of

the fSW process, and recall σ2α = σ2η
Γ(1−2d)
Γ2(1−d)

. Assume that for a positive constant c we

can write σ2η = 4c(1 − 2d)/π. Then, if d → 1
2 from the left, limd→ 1

2
− σ

2
α = c > 0 (as

limx→0+ xΓ(x) = 1, x = 1− 2d,). Moreover, the autocovariance function

γ(k) = σ2α
Γ(1− d)Γ(d+ k)

Γ(1 + k − d)Γ(d)
cos(λk), σ2α > 0,

for d → (1/2)−, tends to γ(k) = σ2α cos(λk). Hence, when σ2η → 0 and d → 1
2 from the

left, the fSW process has the same autocovariance function of a harmonic process.
Also, writing the spectral density function (3) in terms of σ2α,

f(ω) =
σ2α
4π
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Γ(1− 2d)
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, ω ∈ [−π, π],

limd→ 1
2
− f(ω) = σ2

α

2 δ(ω − λ), where δ(·) is Dirac’s Delta function. Hence, the spectral

density degenerates to a point with mass σ2α/2 at ω = ±λ and is 0 elsewhere.

3 Contemporaneous aggregation and cyclical long memory

Granger (1980) has shown that long memory can originate from the contemporaneous
aggregation of heterogeneous short memory AR(1) processes. This result has been ex-
tended in various directions, see, among others, Gonçalves and Gourieroux (1988), Abadir
and Talmain (2002), Davidson and Sibbertsen (2005), Schennach (2018); Oppenheim and
Viano (2004) consider the aggregation of higher order autoregressive processes. Lippi and
Zaffaroni (1998) and Haldrup and Vera-Valdés (2017) have extended Granger’s result to
other definitions of long memory.

We iterate the argument by Granger (1980) to illustrate a possible generating mecha-
nism for cyclical long memory. Let us consider a panel of N cyclical processes,

yit = αit cos(λt) + α∗
it sin(λt), i = 1, 2, . . . , N,

where λ ∈ [0, π] is a fixed frequency and the coefficients follow independent AR(1) processes
αit = φiαi,t−1+ηit, ηit ∼ i.i.d. N(0, σ2η), α

∗
it = φiα

∗
i,t−1+η

∗
it, η

∗
it ∼ i.i.d. N(0, σ2η) (with little

loss of generality we assume that the disturbance variance σ2η is common and invariant to
i).
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The individual coefficients φ2i are an i.i.d. sample from a Beta distribution, φ2 ∼
Beta(p, q), so that the probability density function of φ is

g(φ) =
2

B(p, q)
φ2p−1(1− φ2)q−1, φ ∈ (0, 1), p, q > 1,

where B(p, q) = Γ(p)Γ(q)/Γ(p + q). If the process yit has started in the indefinite past,
then its autocovariance function is

γi(k) = σ2η
φki

1− φ2i
cos(λk).

We are interested in characterizing the behaviour of cross-sectional aggregate

yNt =
1√
N

N
∑

i=1

yit,

whose autocovariance function γN (k) = E(ytyt−k) is γN (k) = 1
N

∑N
i=1 γi(k), k ∈ Z. By the

law of large numbers

limN→∞ γN (k) = σ2ηEφ

(

φk
i

1−φ2
i

)

cos(λk)

= σ2η
B(p+k/2,q−1)

B(p,q) cos(λk)

≈ σ2η
Γ(q−1)
B(p,q) k

1−q cos(λk), k → ∞,

where the last line follows by Stirling’s approximation. Hence, yNt displays long memory
with parameter d = 1− q/2 in the covariance sense at the frequency λ.

To prove that the limiting spectral density of yNt has poles at the frequencies ±λ we
start by writing yit = 2−1/2(wit+w̄it), with wit is the idiosyncratic complex AR(1) process
(1 − φie

−ıλL)wit = ζit, and ζit = (κit + ıκ∗it)/
√
2, where κit κ

∗
it are i.i.d. Gaussian white

noises with common variance σ2η. The spectral density of the disaggregate process yit is
then

fi(ω) =
σ2η
4π

{

1

|1− φie−ı(ω+λ)|2 +
1

|1− φie−ı(ω−λ)|2
}

Then, Lemma 2 in Oppenheim and Viano (2004), is used to show that fN (ω) = N−1
∑N

i=1 fi(ω),
has poles at the frequencies ±λ of order |ω − λ|−q (ω → λ), as N tends to infinity. Alter-
natively, we could use the series expansion of |1− φie

−ı(ω−λ)|−2 as in Granger (1980).

4 Multiple periodicities, red noise and explanatory vari-

ables

Multiple periodic components arise when different cycles are present or when harmonic
components are included. In the latter case, if λ1 denotes the fundamental frequency of
a cyclical component with period s = 2π/λ1, the harmonic frequencies are λj = λ1j, j =
2, . . . , ⌊s/2⌋.
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The spectrum of climate time series, due to orbital forcing (which in general can include
the annual solar cycle), has mixed nature, resulting from a combination of discrete spectral
lines and continuous components. A general presentation of processes with mixed spectra
is provided by Quinn and Hannan (2001), Li (2013) and Percival and Walden (2020, ch.
10). Thomson (1982), provides a nonparametric approach to estimating mixed spectra,
based on a multitapering.

A more general specification for periodic time series, including the possibility of strongly
exogenous regression effects, is the following:

yt = β′xt + ut, t = 1, 2, . . . , n,

ut = α0t +
∑M

j=1

(

αjt cos(λjt) + α∗
jt sin(λjt)

)

+ εt.
(7)

The vector xt contains the values of p exogenous regressors. The process α0t is the red
noise component of the series, capturing low frequency movements, formulated as

α0t = φα0,t−1 + η0t, η0t ∼ i.i.d. N(0, σ2η0). (8)

A fractional noise process (also known as pink noise) is a likely candidate for the low
frequency variability of yt. However, for the kind of climatological applications to be
discussed later, and namely paleoclimate time series, the typical spectral shape suggests
a bounded spectrum in the vicinity of the zero frequency. See Mann and Lees (1996) and
Wunsch (2003), among others. The j-th component cycle, αjt cos(λjt) + α∗

jt sin(λjt), is a
Gaussian fSW process with memory parameter dj , frequency parameter λj , disturbance
error variance σ2ηj , and unconditional variance σ2αj . Finally εt is a Gaussian white noise

process, εt ∼ i.i.d. N(0, σ2ε).
The components are assumed to be mutually independent. Hence, conditional on xt,

E(yt|xt) = β′xt and due to additivity and independence, the autocovariance function
of yt, γ(k) = Cov(yt, yt−k|xt,xt−k), is the sum of the autocovariance functions of the
components,

γ(k) = φk
σ2η0

1− φ2
+

M
∑

j=1

σ2αj

Γ(1− dj)Γ(dj + k)

Γ(1− dj + k)Γ(dj)
cos(λjk) + I(k = 0)σ2ε , (9)

where I(·) is the indicator function, and spectral density

f(ω) =
1

2π







σ2η0
1 + φ2 − 2φ cos(ω)

+
M
∑

j=1

σ2ηj

{

∣
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∣

∣

2 sin

(

ω − λj
2

)∣

∣

∣

∣

−2dj

+

∣

∣

∣

∣

2 sin

(

ω + λj
2

)∣

∣

∣

∣

−2dj
}

+ σ2ε







.

5 Inference

Due to the availability of closed form expressions for the autocovariance and spectral den-
sity functions, the parameters of model (7) can be estimated either in the time domain or
in the frequency domain. In the former case, under the Gaussian assumption, the likeli-
hood can be evaluated exactly with the support of the Durbin-Levinson (DL) algorithm

10



(Levinson, 1946; Durbin, 1960). In the latter, we use the Whittle likelihood approxima-
tion (Whittle, 1953). The estimation of the components of variability in (7), conditional
on the parameter estimates, again uses the DL factorization of the inverse autocovariance
matrix.

5.1 Profile and residual maximum likelihood estimation

Let y = [y1, y2, . . . , yn]
′ denote the stack of the time series observations. The linear

model (7) implies the representation y = Xβ + u, with X = [x′
1,x

′
2, . . . ,x

′
n]

′ and u =
[u1, u2, . . . , un]

′, so that u ∼ N(0,Γn), where Γn is the Toeplitz matrix

Γn =



















γ(0) γ(1) · · · · · · γ(n− 1)

γ(1) γ(0)
. . .

. . . γ(n− 2)
...

. . .
. . .

. . .
...

γ(n− 2)
. . .

. . .
. . . γ(1)

γ(n− 1) γ(n− 2) · · · γ(1) γ(0)



















,

with elements given by (9).
Letting θj = (dj , λj , σ

2
ηj )

′, j = 1, . . . ,M, and θ0 = (φ, σ2η0)
′, Γn depends on the vector

of unknown parameters θ = (θ′
0,θ

′
1, . . . ,θ

′
m, σ

2
ε)

′.
The Gaussian log-likelihood is

ℓ(θ,β;y) = −n
2
log(2π)− 1

2
log |Γn| −

1

2
(y −Xβ)′Γ−1

n (y −Xβ)

Maximising with respect to β yields the generalized least squares estimator

β̃ = (X′Γ−1
n X)−1X′Γ−1

n y.

Replacing into the previous expression gives the profile likelihood

ℓβ(θ;y) = −n
2
log(2π)− 1

2
log |Γn| −

1

2
y′Py,

with P = Γ−1
n − Γ−1

n X(X′Γ−1
n X)−1X′Γ−1

n .
The marginal likelihood of the n−p linear transformation of the data, y∗ = A′y, which

is invariant to β, where A is an (n − k) × n matrix spanning the null space of X, i.e., it
is chosen so that A(A′A)−1A′ = I−X(X′X)−1X′,

ℓ(θ;y∗) = −n− p

2
log(2π)− 1

2
log |Γn| −

1

2
y′Py − 1

2
|X′Γ−1

n X|,

The value θ̃ maximizing is known in the literature as a restricted maximum likelihood
(REML) estimator. See Verbyla (1990) and Smyth and Verbyla (1996). See also Doornik
and Ooms (2003) for the discussion of the merits of various likelihoods for the estimation
of ARFIMA models.
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The evaluation of the log-likelihood entails the inversion and the determinant of a pos-
sibly large dimensional covariance matrix. The Durbin–Levinson algorithm, see Brockwell
and Davis (1991), performs the factorization (Pourahmadi, 2001, chapter 7):

Γ−1
n = Φ′

nDnΦn,

where Dn = diag
(

v−1
0 , v−1

1 , . . . , v−1
n−1

)

, vk = Var(ut|ut−1, . . . , ut−k), i.e., the conditional
variance of ut = yt − β′xt, given k past values, and

Φn =















1 0 0 · · · 0
−φ11 1 0 · · · 0
−φ22 −φ21 1 · · · 0
...

... · · · . . .
...

−φn−1,n−1 −φn−1,n−2 −φn−1,n−3 · · · 1















.

Appendix A deals with the maximum likelihood estimation in the case when the fSW
process collapses to a deterministic cycle with discrete spectrum.

5.2 Whittle likelihood estimation

The Whittle likelihood is based on the asymptotic approximation (Brockwell and Davis,
1991, section 4.5.2)

Γ−1
n ≈ 1

2π
WnF

−1
n WH

n ,

where Wn is the n× n Fourier matrix

Wn =

{

1√
2πn

eıωjt, t = 1, . . . , n; j = 0, . . . , n− 1

}

,

Fn = diag{f(ω0, f(ω1), . . . , f(ωn−1)}, and WH
n is the complex conjugate transpose of Wn,

such that WnW
H
h = (2π)−1I.

Denoting the Fourier tranform of yt and xt by

Jy(ωj) =
1√
2πn

n
∑

t=1

yte
−ıωjt,Jx(ωj) =

1√
2πn

n
∑

t=1

xte
−ıωjt,

where ωj = 2πj/n, j = 0, 1, . . . , n−1, are the Fourier frequencies, and letting WH
n y = Jy,

Jy = (Jy(ω0), Jy(ω1), . . . , Jy(ωn−1))
′, WH

n X = Jx, Jx being the n×p matrix with element
in position (j, k) given by 1√

2πn

∑n
t=1 xkte

−ıωjt, the maximum likelihood estimator of β is

β̃ = (JH
x F−1

n Jx)
−1JH

x F−1
n Jy,

and the profile Whittle likelihood is

ℓW (θ;y) = −n
2
log(2π)− 1

2

n−1
∑

j=0

{

log f(ωj) +
Iû(ωj)

f(ωj)

}

,
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where Iû(ωj) = |Jy(ωj)− J(ωj)β̃|2 is the periodogram of ût = yt − x′
tβ̃.

The asymptotic properties of the maximum likelihood estimator of θ have been dealt
with by Hosoya (1997), assuming the cycle frequencies are known; Giraitis et al. (2001)
consider the estimation in the case of unknown λj .

While in our specific applications λj can be considered as given, as they represent
seasonal frequencies of a subannual time series or because they are given by orbital theory,
the regularity conditions under which the MLE’s are consistent asymptotically normal
are violated in the deterministic case, when dj → 1/2 and σ2ηj → 0, for some j. A
deterministic cycle can be however estimated by including the term α cos(λjt)+α

∗ sin(λjt)
in the regression component, and the consistency of the MLE of (α, α∗, λj) follows from
Hannan (1973). For the estimation of frequency of a deterministic cycle, see Quinn (2012).

5.3 Signal Extraction and Prediction

Consider the problem of estimating the signal s = (s1, . . . , st, . . . , sn+h)
′, h ≥ 0, where,

e.g., st = αkt cos(λkt) + α∗
kt sin(λkt), for a given k, conditional on θ̃ and (y,X).

The optimal estimator is

ŝ = Γs,yΦ̃
′
nD̃nΦ̃n(y −Xβ̃)

where Γs,y = Cov(s,y) has (i, j) element

σ̃2ηk
Γ(1− 2d̃k)Γ(d̃k + |i− j|)

Γ(1− d̃k + |i− j|)Γ(d̃k)Γ(1− d̃k)
cos(λ̃k(|i− j|)).

The minimum mean square estimator of the other components and the prediction of yt
follows straightforwardly.

6 Mauna Loa Atmospheric CO2 Data

The series considered in this illustration consists of monthly atmospheric carbon dioxide
measurements collected at the summit of Mauna Loa mountain (Hawaii), dealing with
concentrations in parts per million (ppm), over the period January 1958 - June 2020
(Source: National Oceanographic and Atmospheric Administration Climate Monitoring
and Diagnostics Laboratory, and Keeling et al. (1976)).

The series is very relevant for climate change discussion, being the longest instrumental
record available of atmospheric CO2; it is also a testbed for the class of k-factor generalized
Gegenbauer processes, see Woodward et al. (1998) and McElroy and Holan (2012, 2016),
which have been fitted to the second differences of the series.

While its distinctive upward pattern is attributed to anthropogenic causes (combustion
of fossil fuels and long-term changes in land use), the series displays important inter-annual
and intra-annual movements.

Seasonality is indeed prominent, and the changes in the amplitude and phase of the
annual cycle have been the subject of a rich debate. The seasonal cycle, which peaks in
May and has a trough in October, is driven by the metabolic activity of terrestrial plants
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and soils: the process of carbon uptake and release of the land biosphere is such that
CO2 concentrations increase in winter, when plant respiration dominates, and decreases
in summer, when the photosyntesis uptake dominates.

A significant amplitude increase was documented already by Bacastow et al. (1985),
while Keeling et al. (1996) also detected a change in the phase, implying an advance of the
seasonal cycle of about 7 days. These references attributed the changes to global warming
and longer growing seasons. Singular spectrum analysis of the Mauna Loa time series
(Dettinger and Ghil, 1998) provided further support for the changes in the seasonal cycle.
Kaufmann (2007) identifies statistically significant variation in the anomalies pertaining
to the monthly concentrations of April and October.

Amplitude trends and phase changes reflect changes in the global carbon cycle and its
response to climate change; thus, their attribution is an important matter of investigation,
see Forkel et al. (2016), Bastos et al. (2019) and Wang et al. (2020), for some recent
contribution and discussion.

The interannual variation of CO2 concentrations has been related to the El Niño South-
ern Oscillation (ENSO) phenomenon already by Bacastow (1976), who identified the com-
ponent by a semiparametric detrending and seasonal adjustment method, and used the
Southern Oscillation Index (SOI) as a measure of ENSO. The correlation has been con-
firmed by alternative methods (Dettinger and Ghil, 1998) and measurements (Chatterjee
et al. (2017). As highlighted by Zeng et al. (2005), the strong correlation between the in-
terannual variation and the SOI index is quite remarkable, considering the chain of causal
links that relates the two phenomena. ENSO originates in the tropical Pacific Ocean, but
is one of the main drivers of interannual global climate variability. Volcanic eruptions
also contribute to interannual variation of CO2. Hendry and Pretis (2013) conclude, how-
ever, that natural factors are not sufficient to explain the changes in CO2 concentrations.
They identify significant anthropogenic contributions using an autoregressive distributed
lag model selected by a general to specific modelling approach.

Denoting by yt the Mauna Loa CO2 monthly time series, we formulate and estimate
the following specification:

yt = β0 + β1t+ β2t
2 + α0t +

5
∑

j=1

(

αjt cos(λjt) + α∗
jt sin(λjt)

)

+ α6t cos(πt).

The regression component features a quadratic trend, α0t is the AR(1) red noise pro-
cess (8), modelling the low-frequency variability of CO2 concentrations, and the sea-
sonal component is modelled by the six fSW cycles defined at the seasonal frequencies
λj =

π
6 j, j = 1, . . . , 6.

When the model is estimated in the time domain by maximum likelihood, the regression
coefficients are significant and the MLE of φ is 0.9998, so that the red noise process actually
turns brown, and σ̃2η0 = 0.0212. As for the fSW seasonal cycles, the estimates presented
in table 1 point out that the cycles at the harmonics π/2 (3 cycles per year), and 2π/3 (4
cycles per year) are deterministic, contributing with a line or narrow band component to
the spectrum, whereas the cycle at the π frequency (six cycles per year) is not present.
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j λj d̃j σ̃2ηj σ̃2αj
1 π/6 0.4995 0.0127 4.0165
2 π/3 0.4980 0.0041 0.3297
3 π/2 0.5000 0.0000 0.0032
4 2π/3 0.5000 0.0000 0.0027
5 5π/6 0.0569 0.0241 0.0243
6 π 0.5000 0.0000 0.0000

Table 1: Maximum likelihood estimates of the fSW cycle memory and variance parame-
ters.

The broad band components are identified at the fundamental frequency (1 cycle per
year), and at π/3, the semiannual frequency. The seasonal cycle at 5π/6 (2.4 cycles per
year) is also estimated as a broadband component, although it shows little persistence and
variability.

The model provides a good fit: the estimated prediction error variance is ṽn−1 =
0.0913, which represent 6.04% of the variance of ∆yt. The standardized residuals show no
significant autocorrelation, the sample autocorrelations at lags 1 and 12 resulting 0.0052
and 0.0199, respectively, and those of their squares being equal to 0.0120 and 0.0775,
respectively; the Jarque-Bera test statistic resulted 4.6479.

The estimated components provide useful insight. Figure 2 displays the trend estimate,
resulting as µ̃t =

∑2
j=0 β̃jt

j + α̃0t, where α̃0t is obtained according to 5.3, as the minimum
mean square estimate of the red (possibly brown) noise component, and is displayed in
the bottom panel of the figure.
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Figure 2: Minimum mean square estimates of the trend component, µ̃t =
∑2

j=0 β̃jt
j + α̃0t.

The bottom panel displays the minimum mean square estimates of the red, or brown,
possibly, component α̃0t.

The literature referenced above has identified the interannual variability as the change
in low frequency component of CO2 concentrations, which is extracted by various para-
metric and nonparametric methods both in the time and frequency domains. In our setup
it is quite natural to identify it as ∆α0t. To investigate its relation with the ENSO phe-
nomenon, figure 3 plots on a standardized scale the Southern Oscillation Index (SOI)
time series along with ∆α̃0t. The SOI measures the normalized surface pressure difference
between Tahiti and Darwin (Australia), and is an expression of the ENSO, which takes
negative values during El Niño episodes and positive values during La Niña episodes.
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The picture reveals a negative association between the two series, which is also con-
firmed by the plot of the cross-correlations in the bottom panel of the figure, whose pattern
confirms that SOI leads the the interannual variation in CO2 by 3-5 months. The litera-
ture reports a maximum absolute correlation of 0.5, but this is computed on the smoothed
SOI and CO2 growth. Indeed, it could be argued that the correlation is inflated by the
fact that the estimates of ∆α0t are conditional on the full available sample. To address
this point we also present the cross-correlation function of the SOI and the real time es-
timates of the interannual variation in CO2, which are lower, yet significant. The real
time estimate of the changes of the red noise component is obtained by projecting ∆α0t

on (∆y2, . . . ,∆yt)
′.
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Figure 3: SOI index and first differences of the Red Noise component (standardized scale).
The bottom plot is the sample cross-correlation between the SOI index and the first
differences of the red noise component, estimated both conditioning on the full available
series and in real time.

The minimum mean square estimates of the fSW cycles at the annual frequency,
α̃1t cos(πt/6) + α̃∗

1t sin(πt/6), t = 1, . . . , n, and at the semiannual (2 cycles per year)
frequency, α̃2t cos(πt/3) + α̃∗

2t sin(πt/3), are plotted in the top panels of figure 4. As im-
plied by the estimates of their variance (table 1) the annual component has the largest
magnitude and the plot reveals that these components vary over time. The time-varying

amplitude, Ãjt =
√

α̃2
jt + α̃2∗

jt , and phase ϕ̃jt = arctan(α̃2∗
jt /α̃

2
jt), j = 1, 2, of the two fSW

components are displayed in the bottom panels of figure 4.
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The overall change in amplitude during the period considered amounts to 0.5 ppm for
the fundamental cycle and to 0.2 ppm for the semiannual one. The changes imply that
CO2 release in winter months has relatively increased and uptake in summer months has
declined. The estimated percent change in amplitude per year of the seasonal component,
resulting from the sum of the six cycles, is slightly above that reported by Graven et al.
(2013) (0.36% versus 0.32%), which can be due to the faster amplitude increase of the most
recent years. The trend in the amplitude shows a deceleration after the 1980s, consistent
with Wang et al. (2020), but it is subject to a more rapid increase in the recent years.
As mentioned above, the attribution of the amplitude increase is controversial. Forkel et
al. (2016) relate it to the stimulation of photosynthesis and vegetation growth induced by
climate change.

A relevant phase change is also evident from figure 4. Our estimates imply a phase
advance of 20 days for the fundamental cycle, resulting from 30.44 6

π (ϕ̂n−ϕ̂)1), where 30.44
is the average month length. The semiannual cycle is also subject to a phase advance,
but of only 6 days. The combined effects imply that the May annual peak becomes more
prominent with time, while September emerges as the seasonal trough.

7 Cycles and Variability in Paleoclimate Data

Figure 5 displays four paleoclimate time series dealing with ice cores reconstructions of
temperatures, methane (CH4), carbon dioxide (CO2) concentrations and ice volume. The
first three series are obtained by the European Project for Ice Core in Antartica (EPICA)
(Jouzel et al., 2007; Loulergue et al., 2008; Lüthi et al., 2008), while the ice volume series
is obtained from Lisiecki and Raymo (2005).

19



1960 1970 1980 1990 2000 2010 2020
-4

-2

0

2

4

1960 1970 1980 1990 2000 2010 2020
-1

-0.5

0

0.5

1

1960 1970 1980 1990 2000 2010 2020
0.5

1

1.5

2

2.5

3

3.5

1 cycle per year

2 cycles per year

1960 1970 1980 1990 2000 2010 2020
0.7

0.8

0.9

1

1.1

1.2

1.3

1 cycle per year

2 cycles per year

Figure 4: Minimum mean square estimates of the fSW cycles at the fundamental (annual)
frequency, α̃1t cos(πt/6)+ α̃

∗
1t sin(πt/6) (top left) and at the semiannual (2 cycles per year)

frequency, α̃2t cos(πt/3)+α̃
∗
2t sin(πt/3) (top right). Amplitude, Ãjt =

√

α̃2
jt + α̃2∗

jt , j = 1, 2,

(bottom left), and phase ϕ̃jt = arctan(α̃2∗
jt /α̃

2
jt) (bottom right) of the two fSW components.
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Figure 5: Paleoclimate time series extending back to 800 kyr: temperature, ice volume,
and atmospheric concentrations of CH4 and CO2.

The series display substantial recurrent co-movements referred to as glacial cycles :
during glaciations, temperature and trace gases concentrations stay below their mean
for prolonged periods, while for ice volume the pattern is reversed. According to the
paleoclimatic literature and the Milankovitch theory (Hays et al., 1976), glacial cycles
are attributed to changes in Earth’s orbital geometry over time, which affects incoming
solar radiation. The three main sources of variation are: i. eccentricity of the Earth orbit
round the Sun, due to gravitational effects of other planets in the solar system, which varies
deterministically with a periodicity of about 100 kyr; ii. obliquity or tilt of the Earth’s
axis of rotation, which varies with a period of 41 kyr; iii. precession of the equinoxes. This
component has periodicities of about 23 and 19 kyr.

The four series have been recently investigated by Davidson et al. (2016) and Castle
and Hendry (2020, chapter 6). Davidson et al. (2016) conducted a variety of tests of unit
root nonstationarity, and found evidence against it. They estimate a vector autoregressive
(VAR) model with exogenous forcing of orbital variables and conclude that Milankovitch
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theory predicts glacial cycles remarkably well, and that while temperatures Granger-cause
greenhouse gas concentrations, the reverse hypothesis is not supported. Castle and Hendry
(2020, chapter 6) model Ice volume, CO2 and temperatures according to a VAR model
with strongly exogenous orbital forcing variables. They find that, while the Milankovitch
hypothesis cannot account for all aspects of glacial cycles, nonlinear feedbacks or interac-
tions between the three orbital components have significant effects on paleoclimate time
series, and find support for an endogenous response of CO2 to orbital forcing.

Larger cointegrated VAR systems are adopted by Kaufmann and Juselius (2013, 2016)
and Kaufmann and Pretis (2020, 2021). These extend the range of endogenous paleocli-
mate variables and estimate long-run cointegration relations between solar insolation and
climate variables. These reference find support for a weak form of the Milankovitch the-
ory in which solar insolation drives glacial cycles, with perturbations imposed by internal
dynamics by which the climate system corrects the disequilibrium from the cointegrating
relations.

A key issue deals with the role of the above three orbital components in explaining
the variability in the climate and trace gases. It is evident from the plots that glacial
cycles in the late Pleistocene occur at intervals of 100 kyr; however, eccentricity is the
smallest of the orbital forcings, accounting for minor fluctuations in the amplitude of the
insolation signal. This is known as the ‘100 kyr’ problem. Hence, the detailed mechanism
by which small changes in insolation become amplified to drive major climatic changes
remains unclear. A nonlinear response of the climate system to relatively weak eccentricity
variations has been advocated by Paillard (2001), see also Wunsch (2003) for the ‘drunkard
climb’ hypothesis used to explain the saw tooth pattern of ice volume.

An important strand of the literature has aimed at quantifying the contribution of the
orbital components via a decomposition of the total variability of paleoclimate series in
the frequency domain. This entails estimation of a possibly mixed spectrum or pseudo-
spectrum, for which purpose the use of Thomson (1982) multitaper spectral method, see
also Percival and Walden (2020), is prominent. Given the deterministic nature of orbital
forcing, the ability to distinguish narrow-band (discrete spectra) components from back-
ground broad-band components is quintessential to the identification of the components
of paleoclimate variability. See Mitchell (1976), Mann and Lees (1996), Wunsch (2003)
Meyers et al. (2008), Ditlevsen et al. (2020), among others.

Our contribution to this literature is to provide an alternative parametric approach,
based on the additive model (7), to the quantification of the components of paleoclimate
variability via the spectrum. We adopt the logarithmic transformation of the variables
used by Davidson et al. (2016), namely yt = log(xt +16) for temperatures, yt = − log(8−
xt) for ice, and yt = log(xt/100) for both CH4 and CO2, where xt denotes the original
measurement. The model features a constant, a red noise component, specified as in
(8), and four fSW cycles associated to the orbital frequencies λ1 = π/50 (eccentricity),
λ2 = 2π/41 (obliquity), λ3 = 2π/23 and λ4 = 2π/19 (precession):

yt = β0 + α0t +

4
∑

j=1

(

αjt cos(λjt) + α∗
jt cos(λjt)

)

. (10)
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The red noise captures the internal stochastic variability of the climate system, see Mitchell
(1976), while the fSW cycles aim at capturing the variability due to climate response to
orbital forcing.

The maximum likelihood estimates of the parameters are presented in table 2. The
estimated autoregressive parameter of the red noise component is positive and high, but
less than 1 for all series. The fSW cycles associated to eccentricity and obliquity are
estimated to be deterministic for all series. The only orbital component characterized by
a broad-band spectrum is the 23 kyr cycle (precession), whereas the 19 kyr cycle makes a
negligible contribution. The presence of narrow spectral peaks is consistent with Muller
and MacDonald (1997).

Parameter estimates
Temp. Ice v. CH4 CO2

β̃0 2.3317 -1.3331 1.5886 0.7967

φ̃ 0.9240 0.9638 0.8705 0.9669
σ̃2η0 0.0057 0.0005 0.0039 0.0006

d̃1 0.5000 0.5000 0.5000 0.5000
σ̃2η1 0.0000 0.0000 0.0000 0.0000

d̃2 0.5000 0.5000 0.5000 0.5000
σ̃2η2 0.0000 0.0000 0.0000 0.0000

d̃3 0.4695 0.4832 0.4467 0.5000
σ̃2η3 0.0006 0.0001 0.0002 0.0000

d̃4 0.3753 0.5000 0.5000 0.5000
σ̃2η4 0.0000 0.0000 0.0000 0.0000

Diagnostics
Temp. Ice v. CH4 CO2

p.e.v. 0.0065 0.0006 0.0042 0.0006
R2 0.9075 0.9583 0.8388 0.9559
r(1) 0.0382 0.0352 0.0323 0.3493
r(2|1) -0.0537 0.0849 -0.0081 -0.1128
rsq(1) 0.1591 0.1811 0.1640 0.2918
Skewness -0.2548 -0.3451 0.8904 0.5768
Kurtosis 4.3064 4.3159 6.6686 4.8094

Table 2: Maximum likelihood estimates of the parameters of model (10) and model diag-
nostics: prediction error variance (p.e.v.), coefficient of determination, R2; r(1) is the first
order sample residual autocorrelation; r(2|1) is the residuals sample partial autocorrela-
tion at lag 2; r2(1) is the first order autocorrelation of the squares of the residuals; the
last two rows are the standardized third and fourth moments of the residuals.

Model (10) proves quite effective in capturing the dynamic structure of the series.
The prediction error variance, estimated by ṽn−1, is reported in table 2, along with the
coefficient of determination, R2 = 1 − ṽn−1

ṽ0
. Diagnostic checking is carried out on the

23



standardized residuals e = D̃
1/2
n Φ̃n(y−Xβ̃): their autocorrelation at lag one, reported in

table 2 as r(1), and the partial autocorrelation at lag two, r(2|1), show that no residual
serial dependence is present, with the exception of CO2. A possible cause is a change in
level around t = −600. The positive autocorrelation of the squared standardized residuals
at lag one, rsq(1), suggests that some unaccounted conditional heteroscedasticity is present.
Also, the skewness and kurtosis of the sampling distribution of the residuals is somewhat
at odds with the assumption of normality.

Figure 6 displays the minimummean square estimates (MMSEs) of the red noise compo-
nent for the temperature series (top panel). The dotted series in the background is the orig-

inal demeaned series. The orbital component, resulting from
∑4

j=1

(

α̃jt cos(λjt) + α̃∗
jt cos(λjt)

)

,

is plotted in the central panel, and the bottom plot are the MMSEs of the precession

component,
∑4

j=3

(

α̃jt cos(λjt) + α̃∗
jt cos(λjt)

)

. It is evident that the cyclical movements

attributed to precession are a minor component of the variation of temperatures. Similar
considerations hold for the other series: figure 7 displays the MMSEs of the components
the transformed ice volume series.
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Figure 6: Temperature series. Minimum mean square estimates of the red noise compo-

nent, the orbital component,
∑4

j=1

(

α̃jt cos(λjt) + α̃∗
jt cos(λjt)

)

, and the precession com-

ponent,
∑4

j=3

(

α̃jt cos(λjt) + α̃∗
jt cos(λjt)

)

. The dotted series in the background is the

original demeaned series.
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Figure 7: Ice volume series. Minimum mean square estimates of the red noise component,

the orbital component,
∑4

j=1

(

α̃jt cos(λjt) + α̃∗
jt cos(λjt)

)

, and the precession component,
∑4

j=3

(

α̃jt cos(λjt) + α̃∗
jt cos(λjt)

)

. The dotted series in the background is the original

demeaned series.

Our measurement model allows the quantification of the contribution of the compo-
nents to the overall variability, since the following variance decomposition holds: Var(yt) =
∑4

j=0 σ
2
αj . When the model is estimated by maximum likelihood, the sample counterpart

is the additive decomposition ṽ0 =
∑4

j=0 σ̃αj . Table 3 present the contribution of the red

noise component (σ̃2α0), that of eccentricity (σ̃2α1), obliquity (σ̃2α2) and precession (σ̃2α3+σ̃
2
α4)

to the total variability for the four series. The lower and upper confidence limits are ob-
tained by generating 500 bootstrap samples according to the parametric bootstrap method
presented in Appendix B. The red noise component accounts for 55.60%, 43.54%, 61.30%
and 67.39% of the variance, respectively for temperatures, ice, CH4 and CO2. Hence, it
represents the predominant source of variability for all series, excluding ice. These es-
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timates are somewhat above the corresponding estimates for temperature proxy records
from the Vostok ice cores obtained by Meyers et al. (2008). To explain the difference
we notice that we estimate the spectrum of eccentricity and obliquity as a line spectrum,
whereas Meyers et al. (2008) integrate the multitaper spectral density estimate across a
neighbourhood of frequencies around the 100 and 41 kyr frequencies.

Table 3: Variance decompositions: contribution of the Red Noise and the three orbital
cycles to the total variability of the series. The upper and lower 95% confidence limits are
obtained by the parametric bootstrap discussed in Appendix B.

Temperatures
Point est. Lower Conf. Limit Upper Conf. Limit

Red Noise 0.0392 0.0275 0.0536
Eccentricity 0.0170 0.0001 0.0529
Obliquity 0.0111 0.0000 0.0370
Precession 0.0032 0.0001 0.0080
Total Variance 0.0705 0.0407 0.1084

Ice Volume
Point est. Lower Conf. Limit Upper Conf. Limit

Red Noise 0.0064 0.0040 0.0096
Eccentricity 0.0047 0.0001 0.0162
Obliquity 0.0024 0.0001 0.0070
Precession 0.0011 0.0002 0.0030
Total Variance 0.0147 0.0073 0.0271

CH4

Point est. Lower Conf. Limit Upper Conf. Limit
Red Noise 0.0160 0.0119 0.0207
Eccentricity 0.0064 0.0001 0.0196
Obliquity 0.0027 0.0000 0.0089
Precession 0.0010 0.0000 0.0029
Total Variance 0.0261 0.0159 0.0416

CO2

Point est. Lower Conf. Limit Upper Conf. Limit
Red Noise 0.0093 0.0056 0.0142
Eccentricity 0.0038 0.0001 0.0116
Obliquity 0.0006 0.0000 0.0019
Precession 0.0001 0.0000 0.0004
Total Variance 0.0138 0.0072 0.0219

Our estimates are more in line with Wunsch (2003), who questions the notion that pa-
leoclimate variability is predominantly associated with the frequency bands attributed to
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solar insolation. However, this is not quite the end of the story, as the red noise could may
also result from the climate response to orbital forcing: the path from the orbital signal
to climate and trace gases proxy records goes through several steps, outlined in Meyers et
al. (2008), and possibly nonlinear and persistent transfer functions can be responsible for
the dominance of the stochastic red noise component. A model of low frequency variation
featuring hysteresis, such as α0t = φα0,t−1 + α1t cos(λ1t) + α∗

1t sin(λ1t) + η0t, cannot be
ruled out. When this specification is entertained on the four series, estimation becomes
very unreliable, convergence being dramatically slow, although the likelihood is increased
significantly.

8 Conclusions

The paper has proposed a novel time series model for persistent cycles, the fractional
sinusoidal waveform (fSW) process. The model features stationary cyclical long memory
and collapses to a line spectrum component when the parameters are on the boundary of
their admissible range. Hence, it is suitable to analyze time series with mixed spectra.
Likelihood inference and optimal signal extraction were discussed with reference to an
additive model combining a broadband continuum component of variability with a number
of fSW process.

The application to carbon dioxide concentration and paleoclimate time series have il-
lustrated that the model can address some important questions raised with respect to the
quantification of feature changes and the contribution to the total variability of determin-
istic forcing due to solar radiation.
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A Mixed spectrum estimation

This appendix deals with maximum likelihood estimation of the parameters of the simplest
mixed spectrum process yt = α cos(λt)+α∗ sin(λt)+ǫt, where α ∼ N(0, σ2α), α

∗
t ∼ N(0, σ2α),

E(αα∗) = 0, ǫt ∼ N(0, σ2ǫ ). We do not discuss the estimation of λ, for which we refer to
Hannan (1973), Quinn (2012), and Percival and Walden (2020, ch. 10), and we assume
that λ is a known frequency in the range (0, π).

In particular, we are concerned on the MLE of σ2α from a sample realization consisting
of n observations {yt, t = 0, 1, . . . , n − 1}. With obvious notation, y ∼ N(0,Γn), Γn =
σ2ǫ In + σ2αXX′, where we denoted

X′ =

(

1 cos(λ) . . . cos((n− 1)λ)
0 sin(λ) . . . sin((n− 1)λ)

)

.

We will use the approximation X′X = (n/2)I2, which holds exactly if λ coincides with a
Fourier frequency, and denote ςα = σ2α/σ

2
ǫ . Then, we can write

|Γn| = σ2nǫ

(

1 + ςα
n

2

)2
, Γ−1

n =
1

σ2ǫ

(

In − ςα
1 + ςα

n
2

XX′
)

.

Differentiating the log-likelihood ℓ(ςα, σ
2
ǫ ) = −n

2 log(2π)− 1
2 log |Γn|− 1

2y
′Γ−1

n y with respect
to the parameters and equating to zero yields

ς̃α =
ESS

nσ̃2ǫ
− 2

n
, σ̃2ǫ =

RSS

n
− 1

1 + ς̃α
n
2

ESS

n
,

where ESS = y′X(X′X)−1X′y is the explained sum of squares of the regression of yt on
xt = (cos(λt), sin(λt))′ and RSS = y′y − y′X(X′X)−1X′y is the corresponding residual
sum of squares. Hence, for n large, σ2α is estimated as ESS/n.

The Hessian matrix has elements

∂2ℓ

∂(σ2ǫ )
2
= O(n),

∂2ℓ

∂σ2ǫ∂ςα
= O(1),

∂2ℓ

∂ς2α
= O(1),

and in particular ∂2ℓ
∂ς2α

|ςα=ς̃α = 2

( 2
n
+ς̃α)

2 , so that the sample information on ςα does not

increase with n.

B Parametric bootstrap and simulation

The Durbin-Levinson algorithm of section 5 provides the factorization of the precision
matrix Γ−1

n = Φ′
nDnΦn. Denoting ũ = y − Xβ̃, a bootstrap sample y∗ is drawn as

follows.

1. Compute the scaled residuals e = D
1/2
n Φnũ. The vector e has elements

et =



ũt −
t−1
∑

j=1

φ̃t−1,j ũt−j



 /
√

ṽt−1, t = 2, . . . , n, e1 = ũ1/
√

ṽ0.
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2. Sample e with replacement; let e∗ denote the bootstrap sample.

3. Compute the bootstrap sample y∗ = Xβ̃ + u∗ where, using Φnu
∗ = D

−1/2
n e∗, the

elements of u∗ are obtained recursively as follows:

u∗1 =
√
v0e

∗
1

u∗2 = φ1,1u
∗
1 +

√
v1e

∗
2

u∗3 = φ2,1u
∗
2 + φ2,2u

∗
1 +

√
v2e

∗
3

...
u∗t = φt−1,1u

∗
t−1 + · · ·+ φt−1,t−1u

∗
1 +

√
vt−1e

∗
t

...
u∗n = φn−1,1u

∗
n−1 + · · ·+ φn−1,n−1u

∗
1 +

√
vn−1e

∗
n

Simularly, to simulate from the Gaussian process y|X ∼ N(Xβ,Γn), we skip step 1 of
the above sampling scheme and replace step 2 by drawing e∗ ∼ N(0, In), and replace β̃

with the true β.

C Simulation study

This appendix reports the result of a Monte Carlo experiment for assessing the finite
sample properties of the maximum likelihood estimators of the parameters d, λ and σ2η
of the basic fSW model (1). The objective is also to compare the exact MLE with the
approximate MLE based on the Whittle approximation to the log-likelihood funciton. In
both cases, the MLE is computed by maximising the log-likelihood numerically using a
Quasi-Newton algorithm of transformed parameters ϑ1 = log((0.5 + d)/(0.5 − d)), ϑ2 =
log(2π/λ− 2) and ϑ3 = 0.5 log(σ2η).

The design of the experiment considers four sample sizes, n = {100, 250, 500, 1000},
six values of the memory parameter, d = {0.10, 0.20, 0.30, 0.40, 0.45, 0.49}, six frequencies
λ = {π/50, π/25, π/15, π/3, π/2, π}, and we set σ2η = 1 throughout. The Monte Carlo
results reported below are computed across 1,000 replications of the experiment. Note
that in the case λ = π the model is yt = α∗

t cos(πt), i.e., the sine term vanishes.
Gray et al. (1989), Chung (1996a) and Giraitis et al. (2001) estimate λ by a grid search.

In particular, Chung (1996a) discusses the problems in the convergence of gradient based
algorithms, ascribing them to the different convergence rates of the MLEs of d and λ.
We found that these problems are remedied by choosing suitable initial values. For the
frequency parameter we consider the λ̂ = argmaxωI(ω), i.e. the frequency corresponding
to the largest periodogram value, see Quinn (2012); for the memory parameter d we
consider the Arteche and Robinson (2000) semi-parametric estimator

d̂ = −1

2

∑±⌊n0.75⌋
j=±1 νj log I(λ̂+ ωj)

∑±⌊n0.75⌋
j=±1 ν2j

,
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where νj = log |j| + 1
n0.75

∑⌊n0.75⌋
h=1 log h; for σ2η we consider the sample variance s2 scaled

by Γ2(1 − d̂)/Γ(1 − 2d̂). The optimization is performed in MATLAB-R 2019a using the
function fminunc.

Tables 4–6 report the Monte Carlo estimates of the bias and the root mean square error
of the exact and Whittle MLEs of d, λ and σ2η. Table 7 reports the average integrated
square distance between the theoretical log-spectrum and the estimated one, defined as

Dn =

∫ π

−π

(

log f(ω; θ)− log f(ω; θ̃)

)2

dω,

where θ = [d, λ, σ2η]
′ and Dn is approximated via numerical integration.

The synthetic evidence is that the exact MLE is more accurate for the estimation of the
parameters and the spectral density, except for the case when n = 100 and the memory
is low. Finally, we considered the likelihood approximation obtained by the regularized
Durbin-Levinson proposed in Proietti and Giovannelli (2018). This approach led to result,
not reported for brevity, very close to exact MLE; they seem to suggest that for large n
the approximation can be suitable and very effective in enhancing computational speed.
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Table 4: Bias and RMSE of the exact and Whittle maximum likelihood estimators of the
memory parameter d of an fSW process.

Bias

Exact likelihood Whittle likelihood
λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π

n=100 d = 0.10 -0.0837 -0.0593 -0.0427 0.0034 0.0094 0.0129 -0.0079 -0.0328 -0.0384 -0.0482 -0.0398 -0.0500
d = 0.20 -0.1951 -0.1469 -0.0723 -0.0243 -0.0275 -0.0105 -0.0297 -0.0572 -0.0747 -0.0797 -0.0779 -0.0620
d = 0.30 -0.2206 -0.1237 -0.0610 -0.0270 -0.0265 -0.0179 -0.0272 -0.0440 -0.0971 -0.0586 -0.0421 -0.0471
d = 0.40 -0.1156 -0.0508 -0.0312 -0.0255 -0.0210 -0.0294 -0.0102 -0.0830 -0.1448 -0.0093 0.0007 -0.0350
d = 0.45 -0.0646 -0.0308 -0.0244 -0.0220 -0.0244 -0.0326 -0.0191 -0.1477 -0.1814 0.0124 -0.0027 -0.0384
d = 0.49 -0.0251 -0.0165 -0.0137 -0.0147 -0.0136 -0.0266 -0.1113 -0.2342 -0.0879 0.0017 -0.0192 -0.0395

n=250 d = 0.10 -0.0066 -0.0089 -0.0130 -0.0049 -0.0053 -0.0086 -0.0520 -0.0580 -0.0642 -0.0522 -0.0583 -0.0514
d = 0.20 -0.0177 -0.0158 -0.0138 -0.0238 -0.0217 -0.0166 -0.0727 -0.0883 -0.1038 -0.0655 -0.0713 -0.0482
d = 0.30 -0.0083 -0.0116 -0.0106 -0.0200 -0.0149 -0.0194 -0.1109 -0.1210 -0.1008 -0.0306 -0.0249 -0.0319
d = 0.40 -0.0112 -0.0113 -0.0102 -0.0142 -0.0130 -0.0193 -0.0893 -0.0937 -0.0330 0.0123 0.0236 -0.0169
d = 0.45 -0.0134 -0.0131 -0.0118 -0.0143 -0.0133} -0.0194 -0.0321 -0.0810 0.0031 0.0230 0.0294 -0.0117
d = 0.49 -0.0100 -0.0093 -0.0095 -0.0110 -0.0101 -0.0171 -0.0008 -0.0987 0.0033 0.0065 0.0086 -0.0163

n=500 d = 0.10 -0.0222 -0.0245 -0.0238 -0.0228 -0.0193 -0.0188 -0.0576 -0.0632 -0.0656 -0.0597 -0.0691 -0.0495
d = 0.20 -0.0114 -0.0094 -0.0105 -0.0198 -0.0167 -0.0113 -0.0922 -0.0885 -0.0926 -0.0520 -0.0735 -0.0345
d = 0.30 -0.0052 -0.0063 -0.0051 -0.0090 -0.0103 -0.0075 -0.0708 -0.0571 -0.0463 -0.0128 -0.0287 -0.0124
d = 0.40 -0.0066 -0.0074 -0.0057 -0.0063 -0.0075 -0.0102 -0.0160 -0.0151 0.0076 0.0143 -0.0138 -0.0068
d = 0.45 -0.0099 -0.0070 -0.0093 -0.0082 -0.0094 -0.0128 -0.0139 -0.0109 0.0200 0.0243 -0.0102 -0.0052
d = 0.49 -0.0096 -0.0078 -0.0081 -0.0079 -0.0087 -0.0125 -0.0217 -0.0320 0.0079 0.0070 -0.0411 -0.0088

n=1000 d = 0.10 -0.0236 -0.0243 -0.0317 -0.0349 -0.0300 -0.0204 -0.0597 -0.0631 -0.0681 -0.0659 -0.0715 -0.0447
d = 0.20 -0.0036 -0.0054 -0.0053 -0.0102 -0.0106 -0.0038 -0.0621 -0.0607 -0.0760 -0.0394 -0.0593 -0.0165
d = 0.30 -0.0039 -0.0045 -0.0021 -0.0054 -0.0040 -0.0057 -0.0135 -0.0160 -0.0208 -0.0065 -0.0172 -0.0075
d = 0.40 -0.0046 -0.0035 -0.0036 -0.0035 -0.0051 -0.0071 -0.0012 -0.0013 0.0067 0.0113 -0.0060 -0.0049
d = 0.45 -0.0051 -0.0043 -0.0050 -0.0045 -0.0050 -0.0072 0.0028 0.0012 0.0208 0.0215 -0.0092 -0.0019
d = 0.49 -0.0065 -0.0061 -0.0063 -0.0059 -0.0066 -0.0084 -0.0067 -0.0173 0.0081 0.0075 -0.0343 -0.0046

Root mean square error

Exact likelihood Whittle likelihood
λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π

n=100 d = 0.10 0.8374 0.8235 0.8149 0.7862 0.7785 0.7696 0.8078 0.7972 0.7916 0.7772 0.7714 0.7642
d = 0.20 0.8778 0.8621 0.8257 0.7797 0.7723 0.7555 0.8191 0.8199 0.8074 0.7922 0.7993 0.7691
d = 0.30 0.8947 0.8607 0.8194 0.7502 0.7430 0.7269 0.8071 0.8172 0.8230 0.7861 0.7880 0.7667
d = 0.40 0.8605 0.8078 0.7736 0.7136 0.7062 0.7178 0.7874 0.8300 0.8427 0.7625 0.7609 0.7532
d = 0.45 0.8257 0.7566 0.7245 0.7129 0.6973 0.7127 0.7843 0.8459 0.8518 0.7247 0.7368 0.7465
d = 0.49 0.7610 0.7152 0.6426 0.6551 0.6474 0.6912 0.8285 0.8634 0.8127 0.6639 0.7085 0.7305

n=250 d = 0.10 0.5593 0.5604 0.5528 0.5365 0.5327 0.5552 0.5495 0.5497 0.5566 0.5444 0.5515 0.5424
d = 0.20 0.5575 0.5499 0.5361 0.5535 0.5292 0.5483 0.5985 0.6037 0.6159 0.5832 0.5867 0.5575
d = 0.30 0.4577 0.4705 0.4723 0.5075 0.4926 0.5293 0.6479 0.6489 0.6365 0.5539 0.5512 0.5375
d = 0.40 0.4451 0.4451 0.4416 0.4580 0.4568 0.4735 0.6662 0.6517 0.6052 0.5126 0.5246 0.4995
d = 0.45 0.4352 0.4303 0.4275 0.4392 0.4326 0.4597 0.6256 0.6376 0.5555 0.4723 0.4745 0.4771
d = 0.49 0.3808 0.3755 0.3782 0.3922 0.3811 0.4259 0.4937 0.6357 0.4508 0.3625 0.3413 0.4473

n=500 d = 0.10 0.3267 0.3131 0.3269 0.2741 0.2588 0.3092 0.2916 0.2925 0.2950 0.2935 0.2971 0.2769
d = 0.20 0.2752 0.2408 0.2843 0.2693 0.2442 0.2590 0.3495 0.3454 0.3507 0.3038 0.3263 0.2704
d = 0.30 0.1798 0.1754 0.1982 0.1893 0.2051 0.2078 0.3593 0.3360 0.3230 0.2301 0.2755 0.2293
d = 0.40 0.1700 0.1689 0.1674 0.1711 0.1754 0.1854 0.2785 0.2621 0.2432 0.2104 0.2409 0.1986
d = 0.45 0.1697 0.1577 0.1627 0.1599 0.1633 0.1836 0.2684 0.2532 0.2161 0.1996 0.2300 0.1951
d = 0.49 0.1389 0.1296 0.1282 0.1328 0.1340 0.1548 0.2487 0.2715 0.1223 0.1106 0.2644 0.1630

n=1000 d = 0.10 0.0876 0.0934 0.1011 0.0749 0.0634 0.0900 0.0758 0.0801 0.0826 0.0826 0.0837 0.0668
d = 0.20 0.0335 0.0471 0.0414 0.0470 0.0453 0.0244 0.0940 0.0926 0.1018 0.0722 0.0878 0.0439
d = 0.30 0.0241 0.0221 0.0217 0.0242 0.0256 0.0258 0.0529 0.0538 0.0672 0.0358 0.0523 0.0298
d = 0.40 0.0221 0.0204 0.0204 0.0223 0.0231 0.0265 0.0295 0.0325 0.0411 0.0309 0.0359 0.0270
d = 0.45 0.0197 0.0199 0.0186 0.0197 0.0198 0.0251 0.0265 0.0308 0.0355 0.0343 0.0412 0.0275
d = 0.49 0.0139 0.0135 0.0135 0.0133 0.0137 0.0181 0.0308 0.0477 0.0118 0.0106 0.0565 0.0193
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Table 5: Bias and RMSE of the exact and Whittle maximum likelihood estimators of the
frequency parameter λ of an fSW process.

Bias

Exact likelihood Whittle likelihood
λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π

n=100 d = 0.10 1.4131 1.3057 1.1431 0.4824 0.2036 -0.8321 0.9876 0.9583 0.8388 0.3334 0.0435 -0.9597
d = 0.20 1.1047 0.9300 0.5912 0.1695 0.0901 -0.3350 0.4650 0.4615 0.3371 0.0707 0.0040 -0.4031
d = 0.30 0.8048 0.4771 0.2457 0.0324 0.0173 -0.1197 0.1385 0.0932 0.0560 0.0034 -0.0128 -0.1551
d = 0.40 0.3481 0.1204 0.0516 0.0027 0.0055 -0.0446 0.0079 -0.0193 -0.0373 -0.0056 -0.0068 -0.0646
d = 0.45 0.1502 0.0374 0.0136 0.0044 0.0018 -0.0244 -0.0335 -0.0393 -0.0363 -0.0019 -0.0087 -0.0400
d = 0.49 0.0379 0.0118 0.0002 -0.0015 -0.0002 -0.0110 -0.0381 -0.0369 -0.0267 -0.0014 -0.0024 -0.0182

n=250 d = 0.10 0.7627 0.7682 0.7606 0.2643 0.0713 -0.7137 0.7188 0.7336 0.7100 0.2142 0.0131 -0.7941
d = 0.20 0.1970 0.1842 0.1326 0.0627 0.0174 -0.2108 0.1731 0.1550 0.1138 0.0472 0.0071 -0.2246
d = 0.30 0.0234 0.0141 0.0032 0.0005 -0.0009 -0.0613 0.0084 0.0035 -0.0079 -0.0051 -0.0099 -0.0691
d = 0.40 0.0046 0.0008 -0.0024 -0.0005 0.0014 -0.0204 0.0009 -0.0029 -0.0086 -0.0052 -0.0114 -0.0274
d = 0.45 0.0013 0.0002 -0.0001 -0.0008 -0.0004 -0.0106 -0.0027 -0.0014 -0.0068 -0.0075 -0.0156 -0.0180
d = 0.49 0.0005 -0.0004 -0.0002 0.0000 0.0002 -0.0038 -0.0027 -0.0007 -0.0086 0.0000 -0.0113 -0.0070

n=500 d = 0.10 0.6292 0.6301 0.5510 0.2131 0.0179 -0.5794 0.5940 0.5986 0.5169 0.1844 -0.0279 -0.6350
d = 0.20 0.1033 0.0579 0.0610 0.0221 0.0014 -0.1044 0.0938 0.0529 0.0575 0.0169 -0.0106 -0.1212
d = 0.30 0.0080 0.0029 -0.0015 0.0015 0.0014 -0.0227 0.0062 0.0014 -0.0022 -0.0015 -0.0029 -0.0254
d = 0.40 0.0013 0.0001 -0.0017 -0.0001 -0.0007 -0.0102 -0.0009 -0.0016 -0.0019 -0.0037 -0.0018 -0.0151
d = 0.45 -0.0002 0.0001 -0.0001 0.0002 0.0001 -0.0064 -0.0012 -0.0008 0.0007 -0.0067 -0.0008 -0.0116
d = 0.49 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0017 -0.0003 -0.0001 0.0023 -0.0064 -0.0008 -0.0045

n=1000 d = 0.10 0.4933 0.4299 0.4702 0.1735 -0.0061 -0.4386 0.4681 0.4128 0.4438 0.1597 -0.0250 -0.4737
d = 0.20 0.0354 0.0272 0.0159 -0.0069 -0.0031 -0.0366 0.0350 0.0255 0.0185 -0.0067 -0.0034 -0.0382
d = 0.30 0.0020 -0.0017 -0.0017 -0.0001 -0.0001 -0.0119 0.0009 -0.0033 -0.0035 -0.0012 0.0002 -0.0137
d = 0.40 0.0001 0.0000 -0.0001 0.0000 -0.0002 -0.0044 -0.0008 -0.0008 -0.0024 -0.0002 -0.0006 -0.0064
d = 0.45 -0.0002 0.0000 0.0000 0.0001 0.0000 -0.0022 -0.0010 -0.0004 -0.0018 -0.0002 -0.0003 -0.0055
d = 0.49 0.0000 0.0000 -0.0001 0.0000 0.0000 -0.0009 -0.0003 -0.0002 -0.0020 0.0003 -0.0003 -0.0031

Root mean square error

Exact likelihood Whittle likelihood
λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π

n=100 d = 0.10 1.0458 1.0355 1.0186 0.9179 0.8384 0.9786 1.0005 0.9964 0.9802 0.8788 0.7723 0.9956
d = 0.20 1.0168 0.9959 0.9430 0.8258 0.7908 0.8774 0.9185 0.9173 0.8846 0.7894 0.7871 0.8963
d = 0.30 0.9836 0.9281 0.8649 0.7516 0.7407 0.7833 0.8301 0.8253 0.8152 0.7776 0.7843 0.8125
d = 0.40 0.9038 0.8236 0.7784 0.7067 0.7012 0.7270 0.7874 0.8229 0.8239 0.7623 0.7610 0.7647
d = 0.45 0.8430 0.7584 0.7211 0.7080 0.6882 0.7078 0.7861 0.8276 0.8241 0.7235 0.7373 0.7471
d = 0.49 0.7640 0.7140 0.6327 0.6468 0.6388 0.6808 0.8156 0.8202 0.8019 0.6639 0.7044 0.7211

n=250 d = 0.10 0.9364 0.9381 0.9356 0.7254 0.5726 0.9212 0.9220 0.9266 0.9191 0.6891 0.5198 0.9449
d = 0.20 0.6839 0.6729 0.6280 0.5763 0.5274 0.6916 0.6711 0.6550 0.6237 0.5712 0.5550 0.6997
d = 0.30 0.4706 0.4720 0.4698 0.5015 0.4886 0.5590 0.6086 0.6001 0.6002 0.5464 0.5469 0.5673
d = 0.40 0.4413 0.4403 0.4377 0.4518 0.4516 0.4745 0.6473 0.6266 0.6008 0.5109 0.5195 0.5066
d = 0.45 0.4273 0.4220 0.4204 0.4305 0.4243 0.4516 0.6221 0.6160 0.5557 0.4599 0.4583 0.4812
d = 0.49 0.3687 0.3641 0.3670 0.3804 0.3689 0.4104 0.4939 0.6006 0.4528 0.3557 0.3524 0.4392

n=500 d = 0.10 0.7986 0.7982 0.7488 0.4741 0.2580 0.7661 0.7728 0.7755 0.7212 0.4411 0.2483 0.7985
d = 0.20 0.3572 0.2853 0.3173 0.2705 0.2393 0.3515 0.3512 0.3097 0.3151 0.2794 0.2787 0.3706
d = 0.30 0.1813 0.1739 0.1974 0.1863 0.2021 0.2195 0.3289 0.3121 0.3058 0.2268 0.2652 0.2389
d = 0.40 0.1678 0.1660 0.1658 0.1691 0.1727 0.1854 0.2755 0.2589 0.2423 0.2050 0.2375 0.2042
d = 0.45 0.1645 0.1545 0.1575 0.1557 0.1580 0.1784 0.2659 0.2514 0.2054 0.1796 0.2279 0.1987
d = 0.49 0.1295 0.1219 0.1195 0.1257 0.1254 0.1433 0.2407 0.2576 0.1136 0.1091 0.2378 0.1596

n=1000 d = 0.10 0.5004 0.4392 0.4799 0.1857 0.0561 0.4473 0.4704 0.4157 0.4462 0.1672 0.0502 0.4762
d = 0.20 0.0486 0.0541 0.0440 0.0464 0.0441 0.0438 0.0787 0.0744 0.0702 0.0608 0.0648 0.0558
d = 0.30 0.0239 0.0217 0.0217 0.0236 0.0252 0.0279 0.0512 0.0514 0.0640 0.0352 0.0494 0.0319
d = 0.40 0.0216 0.0201 0.0200 0.0221 0.0225 0.0259 0.0294 0.0324 0.0406 0.0288 0.0354 0.0273
d = 0.45 0.0191 0.0194 0.0179 0.0192 0.0192 0.0242 0.0264 0.0308 0.0289 0.0267 0.0402 0.0280
d = 0.49 0.0123 0.0120 0.0120 0.0119 0.0120 0.0160 0.0300 0.0444 0.0088 0.0075 0.0448 0.0190
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Table 6: Bias and RMSE of the exact and Whittle maximum likelihood estimators of the
disturbance variance parameter σ2η of an fSW process.

Bias

Exact likelihood Whittle likelihood
λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π

n=100 d = 0.10 -0.0515 -0.0465 -0.0402 -0.0489 -0.0451 -0.0293 0.0224 -0.0062 0.0118 -0.0386 -0.0440 -0.0209
d = 0.20 -0.0444 -0.0390 -0.0308 -0.0281 -0.0189 -0.0351 0.0720 0.0858 0.1146 0.0081 -0.0068 -0.0409
d = 0.30 -0.0249 -0.0250 -0.0239 -0.0146 -0.0120 -0.0223 0.1126 0.2510 0.3953 0.0534 0.0085 -0.0230
d = 0.40 0.0124 -0.0040 -0.0205 -0.0010 -0.0071 -0.0249 0.1915 0.8748 0.9223 0.1269 0.0287 -0.0226
d = 0.45 0.0155 -0.0097 -0.0140 -0.0018 -0.0010 -0.0242 0.5944 1.9510 1.5733 0.3184 0.0674 -0.0107
d = 0.49 0.0258 0.0079 -0.0054 -0.0054 0.0071 -0.0140 7.1101 11.2829 3.1664 5.2504 0.4821 0.0229

n=250 d = 0.10 -0.0134 -0.0172 -0.0091 -0.0118 -0.0135 -0.0190 0.0298 0.0231 0.0350 -0.0002 -0.0021 -0.0109
d = 0.20 -0.0130 -0.0086 -0.0115 -0.0036 -0.0021 -0.0173 0.0731 0.0927 0.0933 0.0220 0.0285 -0.0159
d = 0.30 -0.0108 -0.0062 -0.0084 -0.0058 -0.0017 -0.0177 0.1802 0.1789 0.1388 0.0216 0.0337 -0.0239
d = 0.40 -0.0089 -0.0119 -0.0081 0.0033 -0.0019 -0.0160 0.3343 0.3564 0.1988 0.0552 0.0515 -0.0163
d = 0.45 -0.0015 -0.0058 -0.0084 0.0049 0.0076 -0.0080 0.3843 0.7148 0.2366 0.1529 0.2142 0.0072
d = 0.49 -0.0046 -0.0026 -0.0075 0.0033 0.0000 -0.0065 1.1964 4.2428 0.8761 0.8694 1.8403 0.0176

n=500 d = 0.10 -0.0088 -0.0043 -0.0104 -0.0016 -0.0024 -0.0109 0.0233 0.0266 0.0201 0.0135 0.0152 -0.0016
d = 0.20 -0.0058 -0.0086 -0.0075 -0.0016 0.0026 -0.0121 0.0552 0.0455 0.0543 0.0207 0.0453 -0.0113
d = 0.30 -0.0021 -0.0035 0.0000 0.0001 -0.0007 -0.0090 0.0935 0.0714 0.0757 0.0207 0.0413 -0.0136
d = 0.40 -0.0040 -0.0018 -0.0039 0.0006 -0.0005 -0.0029 0.0746 0.0709 0.0540 0.0218 0.0635 0.0039
d = 0.45 -0.0055 -0.0044 -0.0028 0.0009 0.0028 -0.0051 0.1272 0.1356 0.0816 0.0694 0.0952 0.0047
d = 0.49 -0.0009 -0.0008 -0.0041 0.0024 0.0043 0.0021 0.3655 1.0703 0.4252 0.4793 0.8353 0.0232

n=1000 d = 0.10 -0.0013 -0.0044 -0.0048 0.0003 0.0004 -0.0076 0.0201 0.0142 0.0174 0.0147 0.0146 0.0029
d = 0.20 -0.0010 0.0002 -0.0030 0.0023 0.0020 -0.0031 0.0350 0.0383 0.0479 0.0267 0.0403 -0.0026
d = 0.30 -0.0037 -0.0018 -0.0019 0.0017 -0.0021 -0.0015 0.0117 0.0223 0.0413 0.0167 0.0327 -0.0009
d = 0.40 -0.0011 -0.0046 -0.0015 0.0029 0.0024 -0.0006 0.0115 0.0125 0.0312 0.0104 0.0257 0.0043
d = 0.45 -0.0013 -0.0021 -0.0008 0.0010 0.0008 -0.0028 0.0098 0.0176 0.0447 0.0218 0.0500 0.0042
d = 0.49 0.0005 -0.0028 -0.0006 0.0024 0.0049 -0.0018 0.0392 0.4761 0.2449 0.2657 0.7143 0.0098

Root mean square error

Exact likelihood Whittle likelihood
λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π

n=100 d = 0.10 0.9839 0.9838 0.9842 0.9818 0.9821 0.9840 0.9923 0.9880 0.9902 0.9828 0.9819 0.9849
d = 0.20 0.9741 0.9735 0.9718 0.9700 0.9711 0.9682 0.9862 0.9879 0.9909 0.9754 0.9735 0.9673
d = 0.30 0.9661 0.9612 0.9570 0.9551 0.9553 0.9533 0.9773 0.9963 1.0133 0.9671 0.9602 0.9539
d = 0.40 0.9516 0.9422 0.9367 0.9386 0.9373 0.9339 0.9733 1.0511 1.0552 0.9624 0.9455 0.9353
d = 0.45 0.9385 0.9280 0.9260 0.9284 0.9283 0.9235 1.0180 1.1219 1.0994 0.9830 0.9427 0.9273
d = 0.49 0.9273 0.9220 0.9182 0.9176 0.9210 0.9166 1.2890 1.3613 1.1769 1.2447 0.9992 0.9254

n=250 d = 0.10 0.9718 0.9708 0.9728 0.9718 0.9713 0.9702 0.9828 0.9809 0.9840 0.9747 0.9742 0.9718
d = 0.20 0.9436 0.9447 0.9436 0.9462 0.9462 0.9421 0.9684 0.9735 0.9737 0.9538 0.9556 0.9423
d = 0.30 0.9116 0.9132 0.9125 0.9137 0.9149 0.9102 0.9715 0.9709 0.9598 0.9234 0.9272 0.9083
d = 0.40 0.8773 0.8762 0.8775 0.8818 0.8799 0.8749 0.9874 0.9921 0.9485 0.9009 0.8998 0.8752
d = 0.45 0.8610 0.8593 0.8582 0.8635 0.8645 0.8586 0.9863 1.0622 0.9435 0.9161 0.9353 0.8649
d = 0.49 0.8433 0.8441 0.8421 0.8466 0.8452 0.8427 1.1431 1.4767 1.0852 1.0837 1.2382 0.8528

n=500 d = 0.10 0.9472 0.9490 0.9464 0.9493 0.9486 0.9455 0.9620 0.9635 0.9601 0.9569 0.9575 0.9489
d = 0.20 0.8932 0.8908 0.8925 0.8952 0.8970 0.8892 0.9268 0.9216 0.9264 0.9079 0.9213 0.8896
d = 0.30 0.8359 0.8349 0.8373 0.8372 0.8370 0.8321 0.8949 0.8818 0.8839 0.8500 0.8629 0.8296
d = 0.40 0.7725 0.7739 0.7725 0.7754 0.7748 0.7733 0.8239 0.8211 0.8103 0.7894 0.8160 0.7779
d = 0.45 0.7383 0.7390 0.7401 0.7426 0.7439 0.7388 0.8251 0.8297 0.7956 0.7876 0.8045 0.7457
d = 0.49 0.7137 0.7138 0.7114 0.7160 0.7173 0.7159 0.9367 1.2577 0.9671 0.9946 1.1604 0.7306

n=1000 d = 0.10 0.9027 0.9001 0.9004 0.9027 0.9021 0.8967 0.9212 0.9155 0.9186 0.9161 0.9157 0.9042
d = 0.20 0.7997 0.8016 0.7980 0.8036 0.8033 0.7973 0.8380 0.8412 0.8506 0.8289 0.8428 0.7985
d = 0.30 0.6967 0.6986 0.6985 0.7021 0.6984 0.6990 0.7136 0.7241 0.7441 0.7175 0.7344 0.6997
d = 0.40 0.5993 0.5957 0.5988 0.6033 0.6028 0.6000 0.6122 0.6134 0.6325 0.6111 0.6267 0.6049
d = 0.45 0.5491 0.5483 0.5495 0.5513 0.5512 0.5477 0.5605 0.5685 0.5954 0.5725 0.6013 0.5548
d = 0.49 0.5106 0.5074 0.5095 0.5126 0.5150 0.5085 0.5500 0.9871 0.7550 0.7757 1.2251 0.5201
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Table 7: Average integrated square distance between the true log-spectral density and the
that estimated by exact and Whittle likelihood methods.

Exact likelihood Whittle likelihood
λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π λ = π/50 λ = π/25 λ = π/15 λ = π/3 λ = π/2 λ = π

n=100 d = 0.10 0.2274 0.2306 0.2223 0.1644 0.0909 0.2081 0.2261 0.1937 0.1739 0.0930 0.0429 0.1845
d = 0.20 0.8503 0.7909 0.6200 0.2995 0.1785 0.3325 0.5326 0.5477 0.4981 0.1903 0.1038 0.3846
d = 0.30 1.7247 1.2689 0.8477 0.2023 0.1201 0.2894 0.5431 0.7040 1.0687 0.0944 0.1081 0.3644
d = 0.40 1.7730 0.9028 0.5035 0.0484 0.0779 0.2094 0.2802 2.7237 3.2316 0.1501 0.0895 0.2959
d = 0.45 1.2441 0.4705 0.2074 0.0797 0.0434 0.1563 1.6641 7.9383 6.3409 0.5444 0.1619 0.2445
d = 0.49 0.5274 0.2064 0.0101 0.0356 0.0081 0.0893 27.8318 40.2862 12.9751 21.1537 0.9525 0.1520

n=250 d = 0.10 0.1745 0.1788 0.1769 0.0827 0.0276 0.1551 0.1617 0.1630 0.1636 0.0641 0.0350 0.1625
d = 0.20 0.2364 0.2456 0.2034 0.1306 0.0469 0.2052 0.2957 0.3480 0.3665 0.1395 0.0876 0.2263
d = 0.30 0.1102 0.0792 0.0234 0.0135 0.0114 0.1500 0.4727 0.5102 0.3609 0.0510 0.0746 0.1718
d = 0.40 0.0539 0.0145 0.0322 0.0112 0.0212 0.0990 0.7050 0.7941 0.3115 0.0938 0.1889 0.1306
d = 0.45 0.0233 0.0083 0.0067 0.0182 0.0098 0.0689 0.7179 1.9516 0.3862 0.2938 0.5737 0.1137
d = 0.49 0.0111 0.0090 0.0074 0.0037 0.0060 0.0327 3.9296 17.2638 2.6321 2.4971 7.1515 0.0579

n=500 d = 0.10 0.1381 0.1408 0.1289 0.0608 0.0104 0.1226 0.1477 0.1527 0.1411 0.0636 0.0463 0.1403
d = 0.20 0.1380 0.0958 0.1079 0.0558 0.0084 0.1038 0.2759 0.2332 0.2562 0.0761 0.0987 0.1267
d = 0.30 0.0439 0.0190 0.0108 0.0119 0.0118 0.0573 0.1888 0.1123 0.0929 0.0146 0.0384 0.0644
d = 0.40 0.0160 0.0021 0.0217 0.0021 0.0107 0.0494 0.0478 0.0527 0.0437 0.0586 0.0433 0.0734
d = 0.45 0.0059 0.0037 0.0042 0.0046 0.0045 0.0415 0.1104 0.1147 0.0654 0.1692 0.0587 0.0744
d = 0.49 0.0024 0.0018 0.0027 0.0020 0.0025 0.0158 0.6217 3.3194 0.8432 1.1082 2.1374 0.0388

n=1000 d = 0.10 0.1119 0.1027 0.1132 0.0524 0.0114 0.0949 0.1344 0.1299 0.1362 0.0650 0.0484 0.1137
d = 0.20 0.0574 0.0511 0.0348 0.0192 0.0100 0.0373 0.1308 0.1233 0.1616 0.0414 0.0620 0.0407
d = 0.30 0.0127 0.0118 0.0116 0.0014 0.0013 0.0303 0.0105 0.0286 0.0403 0.0101 0.0106 0.0347
d = 0.40 0.0014 0.0005 0.0019 0.0003 0.0027 0.0216 0.0107 0.0111 0.0370 0.0073 0.0110 0.0314
d = 0.45 0.0036 0.0011 0.0014 0.0019 0.0010 0.0148 0.0167 0.0090 0.0557 0.0233 0.0185 0.0356
d = 0.49 0.0019 0.0020 0.0025 0.0010 0.0015 0.0078 0.0159 0.9528 0.3448 0.3720 1.6849 0.0249
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