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Abstract

The literature on heteroskedasticity and autocorrelation robust (HAR) inference is extensive but
its usefulness relies on stationarity of the relevant process, say Vt, usually a function of the data and
estimated model residuals. Yet, a large body of work shows widespread evidence of various forms of
nonstationarity in the latter. Also, many testing problems are such that Vt is stationary under the
null hypothesis but nonstationary under the alternative. In either case, the consequences are possible
size distortions and, especially, a reduction in power which can be substantial (e.g., non-monotonic
power), since all such estimates are based on weighted sums of the sample autocovariances of Vt, which
are inflated. We propose HAR inference methods valid under a broad class of nonstationary processes,
labelled Segmented Local Stationary, which possess a spectrum that varies both over frequencies and
time. It is allowed to change either slowly and continuously and/or abruptly at some time points,
thereby encompassing most nonstationary models used in applied work. We introduce a double kernel
estimator (DK-HAC) that applies a smoothing over both lagged autocovariances and time. The
optimal kernels and bandwidth sequences are derived under a mean-squared error criterion. The
data-dependent bandwidths rely on the “plug-in” approach using approximating parametric models
having time-varying parameters estimated with standard methods applied to local data. Our method
yields tests with good size and power under both stationary and nonstationary, thereby encompassing
previous methods. In particular, the power gains are achieved without notable size distortions, the
exact size being as good as those delivered by the best fixed-b approach, when the latter works well.
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evolutionary spectra theory for har inference

1 Introduction

The literature on heteroskedasticity and autocorrelation robust (HAR) inference is extensive and

quite mature by now. For concreteness, consider the linear model where xt is a vector of regressors

and et is an unobservable disturbance, which can be serially correlated. It is now common practice

to use OLS and correct the standard errors. This entails the estimation of the covariance matrix

(referred to as the long-run variance, LRV) of Vt = xtet or (2π times) the spectral density of Vt

at frequency zero when the latter is stationary (of course, in general, the relevant process Vt can

be generated from a more complex model; e.g., a moment condition in a GMM context). Early

important contributions in econometrics are Newey andWest (1987; 1994) and Andrews (1991) who

proposed heteroskedasticity and autocorrelation consistent (HAC) estimators with some optimal

properties. This approach aims at devising good estimate of the LRV of Vt. An alternative method

foregoes that aim and concentrates on having a test with a pivotal non-normal limit distribution

that is obtained through an inconsistent estimate of the LRV of Vt that keeps the bandwidth

at a fixed fraction of the sample size. This is the so-called fixed-b HAR inference initiated by

Kiefer, Vogelsang and Bunzel (2000) and Kiefer and Vogelsang (2002; 2005). The drawback of

this approach is that the limit distribution changes depending on the context and critical values

are to be obtained numerically on a case by case basis. The literature since then has focused on

providing various refinements, mostly to have tests having exact sizes closer to the nominal level.1

Most of this literature relies on stationarity with exception of the consistency results in Newey

and West (1987) and of some results in Andrews (1991) which, however, do not provide accurate

approximations. Yet, another strand of the literature has argued convincingly that the processes

governing economic data {xt} and the errors in the relevant regressions {et} are nonstationary.2

This can occur for several reasons: changes in the moments of xt induced by changes in the model

parameters that govern the data [cf. Perron (1989), Stock and Watson (1996) and the surveys of

Ng and Wright (2013) and Giacomini and Rossi (2015)]; changes in the moments of et (think about

the Great Moderation with the decline in variance for many macroeconomic variables or the effects

of the COVID-19 pandemic); smooth changes in the distributions governing either processes that

arise from transitory dynamics; and so on. All these induces nonstationarity in {Vt}, which then

1The fixed-b or post-HAC literature is vast; see Dou (2019), Lazarus, Lewis and Stock (2020), Lazarus et al.
(2018), de Jong and Davidson (2000), Ibragimov and Müller (2010), Jansson (2004), Müller (2007; 2014), Phillips
(2005), Politis (2011), Preinerstorfer and Pötscher (2016), Pötscher and Preinerstorfer (2018), Rho and Vogelsang
(2020), Robinson (1998), Sun (2013; 2014a; 2014b), Sun, Phillips and Jin (2008) and Zhang and Shao (2013).

2By nonstationary we mean non-constant moments. As in the literature, we consider processes whose sum of
absolute autocovariances is finite. That is, we rule out processes with unbounded second moments (e.g., unit root).
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makes E(VtV
′

t−k) depend on both k and t. Furthermore, even if the data and primitive shocks {et}
are stationary, many HAR testing problems are such that the relevant process {Vt} is stationary

under the null hypothesis but is affected by changes in means (or other forms of nonstationarity)

under the alternative. This occurs, for instance, when using tests involving structural breaks based

on estimating the model under the null hypothesis; e.g., popular tests for forecast evaluation [e.g.,

Diebold and Mariano (1995)], tests for forecast instability [cf. Casini (2018), Giacomini and Rossi

(2009) and Perron and Yamamoto (2021)], tests for structural change [cf. Casini and Perron (2019)

and Perron (2006)]. When standardized by classical HAC estimators such tests may suffer from

issues such as non-monotonic power, i.e., power that goes to zero as the alternative gets farther

away from the null value. Various forms of misspecication and/or nonstationarity generate low

frequency contamination and make the series or residuals appear much more persistent. As a

consequence, HAC standard errors are too large and when used as normalizing factors of test

statistics, the tests lose power [see Casini, Deng and Perron (2021) for formal details].3 This

applies even more forcefully to the fixed-b type methods and to the recent refinements by Lazarus

et al. (2020) and Lazarus et al. (2018), since they involve more lagged autocovariances (or long

bandwidths) and, hence, larger contaminations.

This points to the importance of extending the methods for HAR inference so that they have

the correct size and good power even under nonstationarity. This is the aim of the paper. We first

develop a theoretical framework under which to analyze the statistical properties of our suggested

estimate. We introduce a class of nonstationary processes which possess a spectrum that varies

both over frequencies and time, thereby encompassing the nonstationary models used in applied

work. We work in an infill asymptotic setting akin to the one used in nonparametric regression

[cf. Robinson (1989)]. For a process Vt, its spectrum at frequency ω and time u = t/T , denoted

by f (u, ω), is allowed to change slowly yet continuously as well as to change abruptly in u at a

finite number of time points; the latter allows for structural breaks in the spectrum of Vt. We label

this class as Segmented Locally Stationary (SLS). It is related to the locally stationary processes

introduced by Dahlhaus (1997) that have the characterizing property of behaving as a stationary

process in a small neighborhood of u. This is achieved via smoothness of f (u, ω) in u. By allowing

discontinuities across some segments, we can deal with relevant features such as structural change,

regime switching-type and threshold models [cf. Bai and Perron (1998), Casini and Perron (2019,

3A partial list of works that present evidence of power issues with HAR inference is Altissimo and Corradi
(2003), Casini and Perron (2019, 2021c, 2020), Chan (2020), Crainiceanu and Vogelsang (2007), Juhl and Xiao
(2009), Kim and Perron (2009), Martins and Perron (2016), Perron and Yamamoto (2021), Shao and Zhang (2010),
Vogelsang (1999), Xu (2013), Zhang and Lavitas (2018).
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2021c, 2020 and 2021b), Hamilton (1989) and Hansen (2000)]. The SLS class extends some of

the analysis of Dahlhaus (1997) to processes having a more general time-varying spectrum.4 Our

framework is of independent interest and can be useful in many contexts in econometrics if one is

interested in deriving the properties of estimators or inference under nonstationarity.

Under this framework, we introduce a double kernel HAC (DK-HAC) estimator in order to

flexibly account for nonstationarity and we show that it is robust to low frequency contamination

and other misspecifications. This entails an extension of the classical HAC estimators since in addi-

tion to the usual smoothing procedure over lagged autocovariances, it applies a second smoothing

over time for each lagged autocovariance, involving a second kernel and bandwidth. If {Vt} is

Segmented Locally Stationary, E(VtV
′

t−k) changes smoothly in t, as long as t is away from the

change-points in the spectrum f (t/T, ω). Thus, the smoothing over time yields good estimates

for the time path of E(VtV
′

t−k) for all k. We determine the optimal kernels and optimal values for

both bandwidth sequences under a mean-squared error (MSE) criterion. We establish new MSE

bounds that show how nonstationarity affects the bias-variance trade-off and are more informative

than previously established MSE bounds. We use them to construct data-dependent bandwidths

relying on the “plug-in” approach. Unlike Andrews (1991), our candidate parametric models have

time-varying parameters which can be estimated by applying standard methods to local data,

akin to using rolling regressions. The procedure depends on three elements: the bandwidths for

the smoothing over autocovariances and over time, and a block size to separate the regimes. In

this paper, we consider a sequential bandwidth selection procedure by first deriving the optimal

bandwidth for smoothing over time, then conditioning on this to obtain the optimal bandwidth

for smoothing over autocovariances.

The DK-HAC estimators can result in HAR tests that are oversized when there is high tempo-

ral dependence in the data, a well-known problem for all methods, though for ours these distortions

are relatively minor compared to, e.g., the methods of Newey and West (1987) and Andrews (1991).

Still, in order to improve the size control of HAR tests, Casini and Perron (2021d), using the the-

ory of this paper, propose a nonparametric nonlinear VAR prewhitened DK-HAC estimators. This

form of prewhitening differs from those discussed previously [e.g., Andrews and Monahan (1992)

4A few authors used a notion of local stationarity that allows for breaks [see, e.g., Dahlhaus (2009) and Last
and Shumway (2008)]. However, none of these works was concerned with HAR inference. Dahlhaus (2009) pre-
sented some results for local spectral density estimation and required smoothness (see Example 4.2 there). Last
and Shumway (2008) considered testing for change-points in a locally stationary series which under the alternative
hypothesis results in a piecewise locally stationary series. Furthermore, our notion of SLS processes and related
framework are more general from a theoretical standpoint since we provide precise definitions and establish theo-
retical results about the identification of the local spectral density when there are discontinuities.
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and Rho and Shao (2013)] in that it accounts explicitly for nonstationarity. HAR tests based

on prewhitened DK-HAC estimators have size control competitive to fixed-b HAR tests when the

latter work well (i.e., under stationarity). Notably, non-prewhitened and prewhitened DK-HAC

have excellent power properties even when existing HAR tests have serious issues with power.

Comparison to Existing Literature

There are two main approaches to HAR inference differing on whether the LRV estimator is

consistent or not. The classical approach relies on consistency, which results in HAC estimators

[cf. Newey and West (1987; 1994), Andrews (1991) and Hansen (1992)], and on bandwidths

chosen via MSE criterion. Inference is standard because HAR tests follow asymptotically standard

distributions. The researcher then uses corrected standard errors and asymptotic critical values.

It was shown early that classical HAC standard errors can result in oversized tests when there

is substantial temporal dependence. This stimulated a second approach based on inconsistent

LRV estimators that keep the bandwidth at some fixed fraction of the sample size [cf. Kiefer

et al. (2000)]. Because of the inconsistency, inference is nonstandard and HAR tests do not

asymptotically follow standard distributions. Critical values are to be obtained numerically. Long

bandwidths/fixed-b methods require stationarity and reduce the oversize problem of HAR tests.

The bandwidth choice is often based on testing-oriented criteria [e.g., Sun et al. (2008)]. Our

approach falls in the first category; we propose HAC estimators and standard HAR inference.

We now compare in detail our approach to the existing literature. We believe that a fair

comparison has to consider the following four criteria: (1) applicability to general HAR inference

tests; (2) size of HAR tests; (3) power of HAR tests; (4) theoretical validity under stationarity/non-

stationarity. In terms of (1), it is clear that the HAC and DK-HAC estimators are generally and

immediately applicable to any HAR inference test and that they are simple to use in practice. This

also explains why the classical HAC estimators have become the standard practice in econometrics

and statistics. Methods that rely on long bandwidths/fixed-b do not share the same property. They

are not generally applicable to HAR inference tests because a researcher would first need to derive

a new asymptotic non-standard fixed-b distribution. This can be challenging/unfeasible in non-

standard testing problems [e.g., tests for parameter instability, etc.]. Turning to (2), all existing

HAR inference tests are known to be oversized when there is strong serial dependence. However,

fixed-b HAR tests (or versions thereof) are less oversized than other tests based on the classical

HAC estimators. The stronger is the temporal dependence the larger is the difference in size be-

tween the two approaches. Our prewhitened DK-HAC estimators are competitive with fixed-b HAR
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tests in controlling the size. Moving to (3), prewhitened and non-prewhitened DK-HAC estimators

have excellent power under either stationarity or nonstationarity whereas existing methods have

serious problems with power under nonstationarity or under nonstationary alternative hypotheses.

These problems result in non-monotonic power and little or no power in relevant circumstances

especially in HAR tests outside the stable linear regression model. Fixed-b or long bandwidths

methods suffer most from these problems. Finally, turning to (4), our method like the classical

HAC approach is valid under nonstationarity whereas methods using long bandwidths/fixed-b are

only valid under stationarity. It should be mentioned that the fixed-b approach is shown to achieve

(pointwise) higher-order refinements under stationarity while the MSE-based optimality of the

HAC or DK-HAC estimators pertains only to the first-order but it holds under nonstationarity.5

Recently, Lazarus et al. (2020) and Lazarus et al. (2018) made some progress to generalize

the applicability of fixed-b methods. They showed that the t-test in the linear model using a LRV

estimator based on equally-weighted cosine (EWC) under fixed-b asymptotics can achieve a t-

distribution with the degrees of freedom depending on the bandwidth choice. However, Casini and

Perron (2021d) showed that EWC is oversized relative to the original fixed-b of Kiefer et al. (2000)

and to the prewhitened DK-HAC when there is strong dependence. Lazarus et al. (2020) relied on

the Neyman-Pearson Lemma or simply “apple-to-apple comparison” to compare HAR tests. This

is certainly a reasonable criterion. The lemma suggests to compare the power of tests that have an

empirical size no greater than the significance level. However, the Neyman-Pearson Lemma alone

does not suffice to find the “best” test in this context because all tests are oversized when there is

strong dependence. Indeed, it does not even apply in this context. We face a trade-off between

size and power. Our proposed method is competitive with the existing methods which is least

oversized [i.e., original fixed-b of Kiefer et al. (2000)] and has excellent power even when existing

HAR tests do not have any. We believe that our method strikes a good balance with respect to

criteria (1)-(4).

Our approach is different from methods based on subsampling of t-statistics [see, e.g., Ibragi-

mov and Müller (2010)]. The latter rely on splitting the sample in subsamples and estimating the

model within each subsample. Under the assumption that the estimates from the subsamples are

asymptotically independent, the test statistic based on an average of estimates across subsamples

follows asymptotically a t-distribution. In terms of point (1) above, this approach is not general

enough compared to the HAC/DK-HAC approach because this changes the test statistic and its

5Pointwise means that higher-order refinements of fixed-b hold only for a given data-generating process. These
results have been established for t- and F -test in a baseline linear model with stationary Gaussian errors. Preiner-
storfer and Pötscher (2016) pointed out some limitations of this approach [e.g., no uniform (over DGPs) refinements].
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asymptotic distribution. Also, subsampling test statistics which are not t-tests can be challeng-

ing/unfeasible and would require at best extra work in general HAR inference contexts to derive

the new distribution. Finally, our simulation experience (not reported) suggests that this method

suffers from the same finite-sample issues about size and power as the fixed-b methods.

Related Work

This paper is part of a set of papers on HAR inference by the author and collegues. The cur-

rent paper provides the core theoretical and empirical elements that are used in all other papers,

which can be viewed as providing extensions or refinements. Casini and Perron (2021d) used our

theoretical framework to derive minimax MSE bounds for LRV estimation that are sharper than

previously established and extended some of our theoretical results to general nonstationarity. As

a finite-sample refinement, they also developed a new prewhitening procedure robust to nonsta-

tionarity for DK-HAC estimators. Even though the latter procedure is included in our simulations,

we established the corresponding theoretical results in a separate paper because of the extent of

the work needed in the analysis. Casini et al. (2021) showed analytically that the poor finite-

sample performance of existing LRV-based HAR tests under nonstationarity and misspecification

is induced by low frequency contamination. Belotti et al. (2021) used our theoretical framework to

propose alternative data-dependent bandwidths for DK-HAC estimators that are optimal under a

global MSE criterion. Casini and Perron (2021a) considered change-point detection in time series

with evolutionary spectra. Initially, it was intended to be used in the method suggested in this

paper to improve the finite-sample size and power properties, given that we work with segmented

locally stationary processes. However, it turns out that the current method to select the blocks

(see Section 4.4) is able to handle even abrupt structural change.

The remainder of the paper is organized as follows. Section 2 introduces the statistical setting

and the new HAC estimator. Section 3 presents consistency, rates of convergence and the asymp-

totic MSE results for the DK-HAC estimators. Asymptotically optimal kernels and bandwidths

are derived in Section 4. A data-dependent method for choosing the bandwidths and its asymp-

totic properties are discussed in Section 5. Section 6 presents a Monte Carlo study. Section 7

concludes the paper. The supplemental materials [cf. Casini (2021) and an additional supplement

not for publication] contain some implementation details and all mathematical proofs. The code to

implement our methods is provided in Matlab, R and Stata languages through a Github repository.
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2 The Statistical Environment

To motivate our approach, consider the linear regression model estimated by least-squares (LS):

yt = x′
tβ0 + et (t = 1, . . . , T ), where β0 ∈ Θ ⊂ R

p, yt is an observation on the dependent variable,

xt is a p-vector of regressors and et is an unobserved disturbance. The LS estimator is given by

β̂ = (X ′X)−1X ′Y , where Y = (y1, . . . , yT )′ and X = (x1, . . . , xT )′. Classical inference about β0

requires estimation of Var(
√

T (β̂ − β0)) where

Var(
√

T (β̂ − β0)) , E




(
T −1

T∑

t=1

xtx
′
t

)−1

T −1
T∑

s=1

T∑

t=1

esxs(etxt)
′

(
T −1

T∑

t=1

xtx
′
t

)−1

 ,

where “,” is used for definitional equivalence. Consistent estimation of Var(
√

T (β̂ − β0)) relies

on consistent estimation of limT →∞T −1 ∑T
s=1

∑T
t=1 E(esxs(etxt)

′). More generally, one needs a

consistent estimate of J , limT →∞JT where JT = T −1 ∑T
s=1

∑T
t=1 E(Vs(β0) Vt(β0)

′) with Vt(β)

being a random p-vector for each β ∈ Θ. For the linear regression model, Vt(β) = (yt − x′
tβ)xt.

For HAR tests outside the regression model Vt(β) takes different forms.6 Hence, our problem is to

estimate J when {Vt} is a Segmented Locally Stationary process, as defined in Section 2.1.7 Such

estimate can then be used to conduct HAR inference in the usual way using the theory developed

below. By a change of variables, JT can be rewritten as

JT =
T −1∑

k=−T +1

ΓT,k, where ΓT,k =





T −1 ∑T
t=k+1 E(VtV

′
t−k) for k ≥ 0

T −1 ∑T
t=−k+1 E(Vt+kV ′

t ) for k < 0
,

and Vt = Vt (β0). The rest of this section is structured as follows. In Section 2.1 we intro-

duce a new class of nonstationary time series that we use as the underlying framework for our

theoretical analysis. Section 2.2 presents the DK-HAC estimator. We adopt the following nota-

tional conventions. The jth element of a vector x is indicated by x(j) while the (j, l)th element

of a matrix X is indicated by X(j, l). tr(·) denotes the trace and ⊗ denotes the tensor prod-

uct. The p2 × p2 matrix Cpp is a commutation matrix that transforms vec (A) into vec (A′), i.e.,

Cpp =
∑p

j=1

∑p
l=1 ιjι

′
l ⊗ ιlι

′
j, where ιj is the jth elementary p-vector. λmax (A) denotes the largest

eigenvalue of A. W and W̃ are used for p2 × p2 weight matrices. C is used for the set of complex

6If one suspects that β0 may not be constant, one can use appropriate tests for parameter instability. However,
our discussions and methods still apply because these tests are HAR inference tests and one needs a LRV estimate
of J based on the appropriate Vt.

7Casini and Perron (2021d) extended the results to the case where {Vt} is generally nonstationary (i.e., {Vt} is
a sequence of unconditionally heteroskedastic random variables).
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numbers. A is used for the complex conjugate of A ∈ C. Let 0 = λ0 < . . . < λm+1 = 1. A function

G (·, ·) : [0, 1] × R → C is said to be piecewise (Lipschitz) continuous with m + 1 segments if

it is (Lipschitz) continuous within each segment (e.g., it is piecewise Lipschitz continuous if for

each j = 1, . . . , m + 1 it satisfies supu Ó=v |G (u, ω) − G (v, ω)| ≤ K |u − v| for any ω ∈ R with

λj−1 < u, v ≤ λj for some K < ∞). We define Gj (u, ω) = G (u, ω) for λj−1 < u ≤ λj. If

we say piecewise Lipschitz continuous with index ϑ > 0, then the above inequality is replaced by

supu Ó=v |G (u, ω) − G (v, ω)| ≤ K |u − v|ϑ. A function G (·, ·) : [0, 1] × R → C is said to be left-

differentiable at u0 if ∂G (u0, ω) /∂−u , limu→u−

0
(G (u0, ω) − G (u, ω)) / (u0 − u) exists ∀ω ∈ R.

2.1 Segmented Locally Stationary Processes

Suppose {Vt}T
t=1 is defined on an abstract probability space (Ω, F , P), where Ω is the sample

space, F is the σ-algebra and P is a probability measure. In order to introduce a framework

to analyze time series models with a time-varying spectrum it is necessary to introduce an infill

asymptotic setting whereby we rescale the original discrete time horizon [1, T ] by dividing each t

by T. Letting u = t/T and T → ∞, this defines a new time scale u ∈ [0, 1] which we interpret as

saying that as T → ∞ we observe more and more realizations of Vt close to time t, i.e., we observe

the rescaled process VT u on the interval [u − ε, u + ε], where ε > 0 is a small number.

In order to define a general class of nonstationary processes, we shall start from processes

that have a time-varying spectral representation specified by:

Vt,T = µ (t/T ) +

✂ π

−π

exp (iωt) A (t/T, ω) dξ (ω) , (2.1)

where i ,
√

−1, µ (t/T ) is the trend function, A (t/T, ω) is the transfer function and ξ (ω) is some

stochastic process whose properties are specified below. Observe that this representation is simi-

lar to the spectral representation of stationary processes [see Anderson (1971), Brillinger (1975),

Hannan (1970) and Priestley (1981)]. We shall see that the main difference is that A (t/T, ω)

and µ (t/T ) are not constant in t.8 Dahlhaus (1997) used the time-varying spectral representation

to define the so-called locally stationary processes which are characterized, broadly speaking, by

smoothness conditions on µ (·) and A (·, ·). Locally stationary processes have been used widely

in both statistics and economics, though in the latter field they are best known as time-varying

8In HAR inference, a minimal assumption on Vt under the null hypothesis is that it has zero mean (i.e.,
µ (t/T ) = 0 for all t). However, in this subsection we allow for arbitrary µ (t/T ) so as to introduce a general
framework, also applicable under various alternative hypotheses in both within and outside the regression model.

8



evolutionary spectra theory for har inference

parameter processes [see, e.g., Cai (2007) and Chen and Hong (2012)]. The smoothness restrictions

exclude many prominent models that account for time variation in the parameters. For example,

structural change and regime switching-type models do not belong to this class because parame-

ter changes occur suddenly at a particular point in time. We propose a class of nonstationarity

processes which allow both continuous and discontinuous changes in the parameters. Stationarity

and local stationarity are recovered as special cases.

Definition 2.1. A sequence of stochastic processes {Vt,T }T
t=1 is called Segmented Locally Stationary

(SLS) with m0 + 1 regimes, transfer function A0 and trend µ, if there exists a representation

Vt,T = µj (t/T ) +

✂ π

−π

exp (iωt) A0
j,t,T (ω) dξ (ω) ,

(
t = T 0

j−1 + 1, . . . , T 0
j

)
, (2.2)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T and the following holds:

(i) ξ (ω) is a stochastic process on [−π, π] with ξ (ω) = ξ (−ω) and

cum {dξ (ω1) , . . . , dξ (ωr)} = ϕ




r∑

j=1

ωj


 gr (ω1, . . . , ωr−1) dω1 . . . dωr,

where cum {·} is the cumulant of rth order, g1 = 0, g2 (ω) = 1, |gr (ω1, . . . , ωr−1)| ≤ Mr < ∞ and

ϕ (ω) =
∑∞

j=−∞ δ (ω + 2πj) is the period 2π extension of the Dirac delta function δ (·).
(ii) There exists a constant K > 0 and a piecewise continuous function A : [0, 1] × R → C

such that, for each j = 1, . . . , m0 + 1, there exists a 2π-periodic function Aj : (λ0
j−1, λ0

j ] × R → C

with Aj (u, −ω) = Aj (u, ω), λ0
j , T 0

j /T and for all T,

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (2.3)

sup
1≤j≤m0+1

sup
T 0

j−1<t≤T 0
j , ω

∣∣∣A0
j,t,T (ω) − Aj (t/T, ω)

∣∣∣ ≤ KT −1. (2.4)

(iii) µj (t/T ) is piecewise continuous.

The smoothness properties of A in u guarantees that Vt,T has a piecewise locally stationary

behavior. Later we will require additional smoothness properties for A.

Example 2.1. (i) Suppose Xt is a stationary process with spectral representation Xt =
✁ π

−π
exp (iωt)

A (ω) dξ (ω) , and µ, σ : [0, 1] → R are piecewise continuous. Then, Vt,T = µj (t/T ) + σj (t/T ) Xt,

with T 0
j−1 < t ≤ T 0

j (1 ≤ j ≤ m0 + 1) is a SLS process with m0 + 1 regimes where A0
j,t,T (ω) =

Aj (t/T, ω) = σj (t/T ) A (ω). Within each segment, Vt,T is locally stationary. When t = Tu is away

9
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from the change-points, as T → ∞ more and more realizations of VT u,T with u ∈ [u − ε, u + ε] are

observed, that is, realizations with amplitude close to σj (u) for the appropriate j.

(ii) Suppose et is an i.i.d. sequence and Vt,T =
∑∞

k=0 aj,k (t/T ) et−k, T 0
j−1 < t ≤ T 0

j (1 ≤ j ≤
m0 + 1). Then, Vt,T is SLS with A0

j,t,T (ω) = Aj (t/T, ω) =
∑∞

k=0 aj,k (t/T ) exp (−iωk) .

(iii) Autoregressive processes with time-varying coefficients, known as TVAR, augmented

with structural breaks are SLS. In this case, we do not have the exact relationship A0
j,t,T (ω) =

Aj (t/T, ω) but only the approximate relationship (2.4).

If there is only a single regime (i.e., m0 = 0) then Vt,T is locally stationary [cf. Dahlhaus

(1997)]. If µ and A0 do not depend on t, then Vt,T is stationary and the spectral representation of

stationary processes applies. However, m0 = 0 rules out structural change and regime switching

models. With m0 > 0, we propose a framework where parameter variation can occur either

smoothly or abruptly, both being relevant for economic data.9

Let ⌊·⌋ denote the largest smaller integer function and let T , {T 0
1 , . . . , T 0

m0
}. We define the

spectrum of Vt,T in (2.1) (for fixed T ) as

fj,T (u, ω) ,





(2π)−1 ∑∞
s=−∞ Cov

(
V⌊T u−3|s|/2⌋,T , V⌊T u−|s|/2⌋,T

)
exp (−iωs) , Tu ∈ T , u = λ0

j

(2π)−1 ∑∞
s=−∞ Cov

(
V⌊T u−s/2⌋,T , V⌊T u+s/2⌋,T

)
exp (−iωs) , Tu /∈ T , u ∈ (λ0

j−1, λ0
j)

with A0
1,t,T (ω) = A1 (0, ω) for t < 1 and A0

m0+1,t,T (ω) = Am0+1 (1, ω) for t > T . Our definition

coincides with the Wigner-Ville spectrum [cf. Martin and Flandrin (1985)] when there are no

change-points (i.e., m0 = 0). Below we show that fj,T (u, ω) tends in mean-squared to fj (u, ω) ,

|Aj (u, ω)|2 for T 0
j−1/T < u = t/T ≤ T 0

j /T which is the spectrum that corresponds to the spectral

representation. Therefore, we call fj (u, ω) the time-varying spectral density matrix of the process.

Assumption 2.1. A (u, ω) is piecewise Lipschitz continuous in the first component and uniformly

Lipschitz continuous in the second component, with index ϑ > 1/2 for both.

Theorem 2.1. Assume Vt,T is Segmented Locally Stationary with m0 + 1 regimes and Assumption

2.1 holds. Then, for all u ∈ (0, 1),
✁ π

−π

∑m0+1
j=1 |fj,T (u, ω) − fj (u, ω)|2 dω = o (1).

9Some authors have used alternative notions of local stationarity that allow for discontinuities (i.e., piecewise
locally stationary) and have established some results in other contexts which are not related to HAR inference [see,
e.g., Dahlhaus (2009), Last and Shumway (2008) and Zhou (2013)]. In particular, our framework is more general
because we also define (and work with) the covariance between observations belonging to different regimes whereas
previous works considered only the covariance between observations belonging to the same regime thereby using
smoothness which restricts the framework substantially.

10
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Let f (u, ω) = fj (u, ω) if Tu ∈ (T 0
j−1, T 0

j ] so as to suppress the subscript j from f . It is well-

known that, even when m0 = 0, the spectral representation (2.2) is not unique [cf. Priestley (1981),

Chapter 11.1]. A consequence of Theorem 2.1 is that {fj (u, ω) = |Aj (u, ω)|2 , j = 1, . . . , m0 + 1}
is uniquely determined from the whole triangular array {Vt,T }.

For Tu /∈ T with T 0
j−1/T < u = t/T < T 0

j /T , only the realizations of Vt,T in the time interval

u ∈ [u − n/T, u + n/T ] with n → ∞ contribute to fj (u, ω). Since this interval is fully contained

in a segment j where Aj (u, ω) is smooth, and given that the length of this interval tends to zero,

Vt,T becomes “asymptotically stationary” on this interval. The length of the interval in which Vt,T

can be considered stationary is given by n ln n/T ϑ → 0 . For Tu ∈ T , the arguments are different.

Suppose Tu = T 0
j . The spectrum fj,T (u, ω) is defined in such a way that only observations

prior to T 0
j are used in order to construct an approximation to fj (u, ω). Since the length of this

interval tends to zero and Aj (u, ω) is left-Lipschitz continuous, then those observations become

“asymptotically stationary” and thus provide the same information about fj (u, ω).

Given f (u, ω) , we can define the local covariance of Vt,T at rescaled time u with Tu /∈ T and

lag k ∈ Z as

c (u, k) ,

✂ π

−π

eiωkf (u, ω) dω.

The same definition is also used when Tu ∈ T and k ≥ 0. For Tu ∈ T and k < 0 it is defined as

c (u, k) ,
✁ π

−π
eiωkA (u, ω) A (u − k/T, −ω) dω.

2.2 DK-HAC Estimation

In model (2.2), if m0 = 0 and A0 is constant in its first argument, then {Vt,T } is second-order

stationary. Its spectral density matrix is then equal to f (ω) , (2π)−1 ∑∞
k=−∞ Γ (k) e−iωk where

Γ (k) , E(Vt,T V ′
t−k,T ). When evaluated at frequency ω = 0 it plays a prominent role because

limT →∞ JT = 2πf (0) . Nonstationarity implies that the spectral density is time-varying since

E(VtV
′

t−k) now depends on k as well as on t. The SLS processes introduced above accommodate

this property because they have a time-varying spectrum f (u, ω). Accordingly, we introduce the

notation Γu (k) , E(VT u,T V ′
T u−k,T ) where u = t/T . We show below that Γu (k) = c (u, k)+O (T −1)

uniformly in 1 ≤ j ≤ m + 1, Tu ≤ T 0
j and k ∈ Z. Under the rescaling u = t/T, u ∈ [0, 1], the limit

of JT for SLS processes is given by,

J , lim
T →∞

JT =

✂ 1

0

c (u, 0) du +
∞∑

k=1

✂ 1

0

(
c (u, k) + c (u, k)′

)
du.

11
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Using the definition of f (u, ω) it can be shown that J = 2π
✁ 1

0
f (u, 0) du. Dahlhaus (2009)

discussed how to estimate f (u, ω) for the scalar case under smoothness in both arguments using

the smoothed local periodogram. Our goals are to estimate J using a time-domain method and

to relax the smoothness assumption in u. This is different from Dahlhaus’ work that considered

local problems (i.e., estimation of f (u, ω) under smoothness) and not full-sample problems (i.e.,

estimation of J). The class of estimators of J relies on double kernel smoothing over lags and time,

ĴT = ĴT (b1,T , b2,T ) ,
T

T − p

T −1∑

k=−T +1

K1 (b1,T k) Γ̂ (k) , with

Γ̂ (k) ,
nT

T − nT

⌊(T −nT )/nT ⌋∑

r=0

ĉT (rnT /T, k) ,

where K1 (·) is a real-valued kernel in the class K1 defined below, b1,T is a bandwidth sequence

discussed below, nT → ∞ satisfying the conditions given below, and

ĉT (rnT /T, k) ,





(Tb2,T )−1 ∑T
s=k+1 K∗

2

(
((r+1)nT −(s−k/2))/T

b2,T

)
V̂sV̂

′
s−k, k ≥ 0

(Tb2,T )−1 ∑T
s=−k+1 K∗

2

(
((r+1)nT −(s+k/2))/T

b2,T

)
V̂s+kV̂ ′

s , k < 0
, (2.5)

with K∗
2 being a real-valued kernel and b2,T is a bandwidth sequence discussed below. ĉT (u, k) is

an estimate of the local autocovariance c (u, k) of lag k at time u = rnT /T . Estimation of c (u, k)

for locally stationary processes was considered by Dahlhaus (2012). For positive semi-definiteness,

it is necessary that K∗
2 takes the following form:

K∗
2

(
(r + 1) nT − (s − k/2)

Tb2,T

)
=

(
K2

(
(r + 1) nT − s

Tb2,T

)
K2

(
(r + 1) nT − (s − k)

Tb2,T

))1/2

for k ≥ 0,

K∗
2

(
(r + 1) nT − (s + k/2)

Tb2,T

)
=

(
K2

(
(r + 1) nT − s

Tb2,T

)
K2

(
(r + 1) nT − (s + k)

Tb2,T

))1/2

for k < 0.

Setting K2 (x) = (
✁ 1

0
h (x)2 dx)−1h (x + 1/2)2 and NT = Tb2,T , we see that positive semi-definiteness

requires the use of a data taper h (·) with length NT . This follows because we need each V̂t

(t = 1, . . . , T ) to be assigned the same weight across different k for any given r. Then, letting

V̂ ➦

t = (K2 (((r + 1) nT − t) /Tb2,T ))1/2 V̂t we can use the same arguments as in Andrews (1991)

applied now to V̂ ➦

t to show that JT is positive semi-definite for the appropriate choice of K1.

The estimator ĴT involves two kernels: K1 smooths the lagged sample autocovariances, akin

to the classical HAC estimators, while K2 applies smoothing over time. The factor T/ (T − p) is

12



evolutionary spectra theory for har inference

an optional small-sample degrees of freedom adjustment. In Section 3-4, we consider estimators

ĴT for which b1,T and b2,T are given sequences. In Section 5, we consider adaptive estimators ĴT

for which b1,T and b2,T are data-dependent. Observe that the optimal b2,T actually depends on the

properties of {Vt,T } in any given block. Since the order of b2,T (·) is the same across blocks, we

omit this notation for the developments of the asymptotic results. However, when we determine

the data-dependent estimate of b2,T (·), we will estimate b2,T (rnT /T ) for each r. We consider the

following class of kernels [cf. Andrews (1991)],

K1 = {K1 (·) : R → [−1, 1] : K1 (0) = 1, K1 (x) = K1 (−x) , ∀x ∈ R (2.6)
✁ ∞

−∞
K2

1 (x) dx < ∞, K1 (·) is continuous at 0 and at all but finite numbers of points}.

Examples of kernels in K1 include the Truncated, Bartlett, Parzen, Quadratic Spectral (QS) and

Tukey-Hanning kernel. We shall show below that the QS kernel has certain optimality properties:

KQS
1 (x) =

25

12π2x2

(
sin (6πx/5)

6πx/5
− cos (6πx/5)

)
.

3 HAC Estimation with Predetermined Bandwidths

In Section 3.1 we present some asymptotic properties of ĉ (·, ·). We use them in Section 3.2 in order

to establish consistency, rate of convergence and MSE properties of predetermined bandwidths

HAC estimators. Let J̃T denote the pseudo-estimator identical to ĴT but based on {Vt,T } =

{Vt,T (β0)} rather than on {V̂t,T } = {Vt,T (β̂)}. We first require some smoothness of A (u, ·) in u.

Assumption 3.1. (i) {Vt,T } is a mean-zero SLS process with m0 + 1 regimes; (ii) A (u, ω) is twice

continuously differentiable in u at all u Ó= λ0
j (j = 1, . . . , m0 + 1) with uniformly bounded deriva-

tives (∂/∂u) A (u, ·) and (∂2/∂u2) A (u, ·), and Lipschitz continuous in the second component with

index ϑ = 1; (iii) (∂2/∂u2) A (u, ·) is Lipschitz continuous at all u Ó= λ0
j (j = 1, . . . , m0 + 1); (iv)

A (u, ω) is twice left-differentiable in u at u = λ0
j , (j = 1, . . . , m0 + 1) with uniformly bounded

derivatives (∂/∂−u) A (u, ·) and (∂2/∂−u2) A (u, ·) , and has piecewise Lipschitz continuous deriva-

tive (∂2/∂−u2) A (u, ·).

We also need to impose conditions on the temporal dependence of Vt = Vt,T . Let

κ
(a,b,c,d)
V,t (u, v, w) , κ(a,b,c,d) (t, t + u, t + v, t + w) − κ

(a,b,c,d)
N

(t, t + u, t + v, t + w)

, E(V
(a)

t V
(b)

t+uV
(c)

t+vV
(d)

t+w) − E(V
(a)
N ,tV

(b)
N ,t+uV

(c)
N ,t+vV

(d)
N ,t+w),

13



alessandro casini

where {VN ,t} is a Gaussian sequence with the same mean and covariance structure as {Vt}.
κ

(a,b,c,d)
V,t (u, v, w) is the time-t fourth-order cumulant of (V

(a)
t , V

(b)
t+u, V

(c)
t+v, V

(d)
t+w) while κ

(a,b,c,d)
N

(t, t+

u, t + v, t + w) is the time-t centered fourth moment of Vt if Vt were Gaussian.

Assumption 3.2. (i)
∑∞

k=−∞ supu∈[0, 1] ‖c (u, k)‖ < ∞,
∑∞

k=−∞ supu∈[0, 1] ‖(∂2/∂u2) c (u, k)‖ < ∞
and

∑∞
k=−∞

∑∞
j=−∞

∑∞
l=−∞ supu∈[0, 1] |κ(a,b,c,d)

V,⌊T u⌋ (k, j, l) | < ∞ for all a, b, c, d ≤ p. (ii) For all

a, b, c, d ≤ p there exists a function κ̃a,b,c,d : [0, 1]×Z×Z×Z → R such that supu∈(0, 1) |κ(a,b,c,d)
V,⌊T u⌋ (k, s, l)

−κ̃a,b,c,d (u, k, s, l) | ≤ KT −1 for some constant K; the function κ̃a,b,c,d (u, k, s, l) is twice differen-

tiable in u at all u Ó= λ0
j , (j = 1, . . . , m0+1) with uniformly bounded derivatives (∂/∂u) κ̃a,b,c,d (u, ·, ·, ·)

and (∂2/∂u2) κ̃a,b,c,d (u, ·, ·, ·), and twice left-differentiable in u at u = λ0
j (j = 1, . . . , m0 + 1) with

uniformly bounded derivatives (∂/∂−u) κ̃a,b,c,d (u, ·, ·, ·) and (∂2/∂−u2) κ̃a,b,c,d (u, ·, ·, ·) , and piece-

wise Lipschitz continuous derivative (∂2/∂−u2) κ̃a,b,c,d (u, ·, ·, ·).

If {Vt,T } is stationary then the cumulant condition of Assumption 3.2-(i) reduces to the

standard one used in the time series literature [see also Assumption A in Andrews (1991)]. We do

not require fourth-order stationarity but only that the time-t = Tu fourth order cumulant is locally

constant in a neighborhood of u. One can show that α-mixing and moment conditions imply that

the cumulant condition of Assumption 3.2 holds.

3.1 Estimation of the Local Covariance

Let c̃T (u, k) denote the estimator that uses {Vt,T }. We consider the following class of kernels:

K2 = {K2 (·) : R → [0, ∞] , K2 (x) = K2 (1 − x) ,
✁

K2 (x) dx = 1, (3.1)

K2 (x) = 0, for x /∈ [0, 1] , K2 (·) is continuous}.

Lemma 3.1. Suppose that Assumption 3.1-3.2 hold. If b2,T → 0 and Tb5
2,T → η ∈ (0, ∞), then

c̃T (u0, k) − c (u0, k) = OP(
√

Tb2,T ) for all u0 ∈ (0, 1).

3.2 Results on DK-HAC Estimation with Predetermined Bandwidths

Following Parzen (1957), we define K1,q , limx↓0 (1 − K1 (x)) / |x|q for q ∈ [0, ∞); q increases

with the smoothness of K1 (·) with the largest value being such that K1,q < ∞. When q is an

even integer, K1,q = − (dqK1 (x) /dxq) |x=0/q! and K1,q < ∞ if and only if K1 (x) is q times dif-

ferentiable at zero. We define the index of smoothness of f (u, ω) at ω = 0 by f (q) (u, 0) ,

14
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(2π)−1 ∑∞
k=−∞ |k|q c (u, k), for q ∈ [0, ∞). If q is even, then f (q) (u, 0) = (−1)q/2 (dqf (u, ω) /dωq) |ω=0.

Further, ||f (q) (u, 0) || < ∞ if and only if f (u, ω) is q times differentiable at ω = 0. We define

MSE
(
Tb1,T b2,T , J̃T , W

)
= Tb1,T b2,TE

[
vec

(
J̃T − JT

)′
Wvec

(
J̃T − JT

)]
. (3.2)

Theorem 3.1. Suppose K1 (·) ∈ K1, K2 (·) ∈ K2, Assumption 3.1-3.2 hold, b1,T , b2,T → 0, nT →
∞, nT /T → 0 and 1/Tb1,T b2,T → 0. We have: (i)

lim
T →∞

Tb1,T b2,T Var
[
vec

(
J̃T

)]

= 4π2

✂

K2
1 (y) dy

✂ 1

0

K2
2 (x) dx (I + Cpp)

(
✂ 1

0

f (u, 0) du

)
⊗

(
✂ 1

0

f (v, 0) dv

)
.

(ii) If 1/Tbq
1,T b2,T → 0, nT /Tbq

1,T → 0 and b2
2,T /bq

1,T → 0 for some q ∈ [0, ∞) for which K1,q,

||
✁ 1

0
f (q) (u, 0) du|| ∈ [0, ∞), then limT →∞ b−q

1,TE(J̃T − JT ) = −2πK1,q

✁ 1

0
f (q) (u, 0) du.

(iii) If nT /Tbq
1,T → 0, b2

2,T /bq
1,T → 0 and Tb2q+1

1,T b2,T → γ ∈ (0, ∞) for some q ∈ [0, ∞) for

which K1,q, ||
✁ 1

0
f (q) (u, 0) du|| ∈ [0, ∞), then

lim
T →∞

MSE
(
Tb1,T b2,T , J̃T , W

)
= 4π2

[
γK2

1,qvec

(
✂ 1

0

f (q) (u, 0) du

)′

Wvec

(
✂ 1

0

f (q) (u, 0) du

)

+

✂

K2
1 (y) dy

✂

K2
2 (x) dx tr

(
W (Ip2 + Cpp)

(
✂ 1

0

f (u, 0) du

)
⊗

(
✂ 1

0

f (v, 0) dv

))]
.

If b2
2,T /bq

1,T → ν < ∞ replaces b2
2,T /bq

1,T → 0 in part (ii), then the asymptotic bias for the case

of locally stationary processes becomes

lim
T →∞

b−q
1,TE(J̃T − JT ) = −2πK1,q

✂ 1

0

f (q) (u, 0) du +
ν

2

✂ 1

0

x2K2 (x)
∞∑

k=−∞

✂ 1

0

∂2

∂u2
c (u, k) du. (3.3)

For the general case of SLS processes the term involving (∂2/∂2u) c (u, k) is different. The second

summand on the right-hand side of (3.3) cancels when
✁ 1

0
(∂2/∂2u) c (u, k) du = 0. The latter

occurs when the process is stationary. Dahlhaus (2012) presented MSE results for a pointwise

estimate of f (u, ω) under continuity in both components by applying smoothing over u and ω. His

results depends on the local behavior of f (u, ω) at time u and frequency ω whereas in our problem

the MSE results depend on properties of the full time path of f (u, 0). The theorem suggests that

the optimal choice of b1,T hinges on the degree of nonstationary in the data, a feature that does not

appear from the corresponding results in the literature. The results are derived as nT → ∞. It is
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possible and indeed easier to keep nT fixed, in which case the results are unchanged. However, the

case with nT fixed can have some disadvantages when the spectrum is discontinuous because then

the estimator would be often dealing with observations from different regimes, which as explained

above might lead to low frequency contamination. We now move to the results concerning ĴT .

Assumption 3.3. (i)
√

T (β̂ − β0) = OP (1); (ii) supu∈[0, 1] E||V⌊T u⌋||2 < ∞; (iii) supu∈[0, 1] E supβ∈Θ

|| (∂/∂β′) V⌊T u⌋ (β) ||2 < ∞; (iv)
✁ ∞

−∞
|K1 (y)| dy,

✁ 1

0
|K2 (x)| dx < ∞.

Assumption 3.3-(i,iii) is the same as Assumption B in Andrews (1991). As remarked above,

we interpret β0 as the pseudo-true parameter β∗ when the model is misspecified. Part (iv) of the

assumption is satisfied by most commonly used kernels. In order to obtain rate of convergence

results we replace Assumption 3.2 with the following assumptions.

Assumption 3.4. (i) Assumption 3.2 holds with Vt,T replaced by

(
V ′

t , vec

((
∂

∂β′
Vt (β0)

)
− E

(
∂

∂β′
Vt (β0)

))′)′

.

(ii) supu∈[0, 1] E(supβ∈Θ || (∂2/∂β∂β′) V
(a)

⌊T u⌋ (β) ||2) < ∞ for all a = 1, . . . , p.

Assumption 3.5. Let WT denote a p2 × p2 weight matrix such that WT
P→ W .

Theorem 3.2. Suppose K1 (·) ∈ K1, K2 (·) ∈ K2, b1,T , b2,T → 0, nT → ∞, nT /Tb1,T → 0, and

1/Tb1,T b2,T → 0. We have:

(i) If Assumption 3.1-3.3 hold,
√

Tb1,T → ∞, b2,T /b1,T → 0 then ĴT −JT
P→ 0 and ĴT −J̃T

P→ 0.

(ii) If Assumption 3.1, 3.3-3.4 hold, nT /Tbq
1,T → 0, 1/Tbq

1,T b2,T → 0, b2
2,T /bq

1,T → 0 and

Tb2q+1
1,T b2,T → γ ∈ (0, ∞) for some q ∈ [0, ∞) for which K1,q, ||

✁ 1

0
f (q) (u, 0) du|| ∈ [0, ∞), then√

Tb1,T b2,T (ĴT − JT ) = OP (1) and
√

Tb1,T (ĴT − J̃T ) = oP (1) .

(iii) Under the conditions of part (ii) and Assumption 3.5,

lim
T →∞

MSE
(
Tb1,T b2,T , ĴT , WT

)
= lim

T →∞
MSE

(
Tb1,T b2,T , J̃T , W

)
.

The consistency result of ĴT in part (i) applies to kernels K1 (·) with unbounded support

and to bandwidths b1,T and b2,T such that 1/b1,T b2,T grows at rate o(
√

T/b2,T ). Part (ii) yields the

consistency of ĴT with b1,T only required to be o (Tb2,T ). This rate is slower than the corresponding

rate o (T ) of the classical kernel HAC estimators as shown by Andrews (1991) in his Theorem 1-(b).

However, this property is of little practical import because optimal growth rates typically are less
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than T 1/2; for the QS kernel HAC estimator the optimal growth rate is T 1/5 while it is T 1/3 for the

Newey-West HAC estimator. Part (ii) of the theorem presents the rate of convergence of ĴT which

is
√

Tb2,T b1,T . In Section 4, we compare the rate of convergence of ĴT with that of the classical

HAC estimators when the respective optimal bandwidths are used.

4 Optimal Kernels, Bandwidths and Choice of nT

In this section, we show the optimality of quadratic-type kernels under MSE criterion.10 For K1,

the result states that the QS kernel minimizes the asymptotic MSE for any K2 (·). Let

MSE(b−4
2,T , ĉT (u0, k, ) , W̃T )

, b−4
2,TE [vec (ĉT (u0, k) − c (u0, k))]′ W̃T [vec (ĉT (u0, k) − c (u0, k))] ,

where W̃T is some p × p positive semidefinite matrix. The optimal bandwidths bopt
1,T and bopt

2,T satisfy

the following sequential MSE criterion:

MSE
(
Tbopt

1,T b
opt

2,T , ĴT

(
bopt

1,T , b
opt

2,T

)
, WT

)
≤ MSE

(
Tbopt

1,T b
opt

2,T , ĴT

(
b1,T , b

opt

2,T

)
, WT

)
(4.1)

where b
opt

2,T =

✂ 1

0

bopt
2,T (u) du

and bopt
2,T (u) = argmin

b2,T

MSE
(
b−4

2,T , ĉT (u0, k) , W̃T

)
.

The first inequality above has to hold as T → ∞. The above criterion determines the globally

optimal bopt
1,T given the integrated locally optimal bopt

2,T (u). Thus, bopt
1,T and b

opt

2,T need not be the same

as the bandwidths (b̃opt
1,T , b̃opt

2,T ) that jointly minimize the global asymptotic MSE,

lim
T →∞

MSE
(
Tb1,T b2,T , ĴT (b1,T , b2,T ) , WT

)
. (4.2)

Theorem 3.1-(ii) states that, under the condition b2
2,T /bq

1,T → 0, the bias only depends on the

smoothing over lagged autocovariances but not on b2,T . Then, the global solution b̃opt
2,T would be

trivial: b2,T affects the MSE only through the variance term and optimality requires to set the

bandwidth as large as possible. In contrast, the MSE criterion (4.1) based on the MSE given

10Besides Andrews (1991) and Newey and West (1987) in the context of LRV estimation, the MSE-optimality
criterion was also used more recently by Whilelm (2015) in a GMM context to determine the optimal bandwidth
of the nonparametric estimator of the optimal weighting matrix.

17



alessandro casini

in Theorem 3.1-(iii) leads to a unique solution which can be obtained analytically. Under the

condition b2
2,T /bq

1,T → ν < ∞, Belotti et al. (2021) determined the bandwidths (b̃opt
1,T , b̃opt

2,T ) that

jointly minimize (4.2). They showed that b̃opt
1,T , b̃opt

2,T = O(T −1/6) while the optimal bandwidths

(bopt
1,T , b

opt

2,T ) from (4.1) satisfy bopt
1,T = O(T −4/25) and b

opt

2,T = O(T −1/5). Thus, the criterion (4.1) leads

to a slightly shorter block length relative to the global criterion (4.2) (i.e., Tb
opt

2,T < T b̃opt
2,T ). A

shorter bock length is beneficial if there is substantial nonstationarity and implies less sensitivity

to low frequency contamination from not properly accounting for nonstationarity [cf. Casini et al.

(2021)]. For a throughout comparison between the two criteria see Belotti et al. (2021).

4.1 Optimal K2 (·) and b2,T

Let F (K2) ,
✁ 1

0
K2

2 (x) dx, H (K2) = (
✁ 1

0
x2K2 (x) dx)2, and for any k ∈ Z,

D1 (u0) , vec
(
∂2c (u0, k) /∂u2

)′
W̃ vec

(
∂2c (u0, k) /∂u2

)
,

D2 (u0) , trW̃ (Ip2 + Cpp)
∞∑

l=−∞

c (u0, l) ⊗ [c (u0, l) + c (u0, l + 2k)] .

Proposition 4.1. Suppose Assumption 3.1, 3.3-3.4 hold and W̃T
P→ W̃ . We have for all a, b ≤ p,

MSE
(
1, ĉ

(a,b)
T (u0, k) , 1

)

=
1

4
b4

2,T

(
✂ 1

0

xK2 (x) dx

)2 (
∂2

∂2u
c(a,b) (u0, k)

)2

+
1

Tb2,T

✂ 1

0

K2
2 (x) dx

∞∑

l=−∞

c(a,b) (u0, l)
[
c(a,b) (u0, l) + c(a,b) (u0, l + 2k)

]

+
1

Tb2,T

✂ 1

0

K2
2 (x) dx

∞∑

h1=−∞

κ
(a,b,a,b)
V,⌊T u0⌋ (−k, h1, h1 − k) + o

(
b4

2,T

)
+ O

(
1/ (b2,T T )2

)
.

MSE(b−4
2,T , ĉT (u0, k) − c (u0, k) , W̃T ) is minimized with

bopt
2,T (u0) = [H

(
Kopt

2

)
D1 (u0)]

−1/5
(
F

(
Kopt

2

)
(D2 (u0) + D3 (u0))

)1/5
T −1/5,

where D3 (u0) depends on κ̃ (for p = 1, D3 (u0) =
∑∞

h1=−∞ κV,⌊T u0⌋ (−k, h1, h1 − k)), and Kopt
2 (x) =

6x (1 − x) , 0 ≤ x ≤ 1. In addition if Vt is Gaussian, then D3 (u0) = 0, for u0 ∈ (0, 1).

The optimal kernel Kopt
2 (x) is a transformation of the Epanechnikov kernel. Optimality of

quadratic kernels under a MSE criterion has been shown in many contexts [cf. Epanechnikov
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(1969) and Priestley (1981)]. The optimal bandwidth sequence decreases at rate T −1/5 which is

the same optimal rate derived in the context of parameter estimation of locally stationary processes

[see e.g., Dahlhaus and Giraitis (1998)]. The term D1 (u0) is due to nonstationary, while the term

D2 (u0) measures the variability of ĉT (u0, k). The bandwidth bopt
2,T converges to zero at a slower

rate as the process becomes closer to stationary (i.e., as the square root of D1 (u0) decreases).

4.2 Optimal K1 (·)
We next determine the optimal kernel K1 and the optimal bandwidth sequence b1,T given any K2

and any b2,T of order O(T −1/5), i.e., the same order of bopt
2,T (u) for any u ∈ [0, 1]. Let ĴQS

T denote

ĴT when the latter is based on the QS kernel. For some results below, we consider a subset of

K1. Let K̃1 = {K1 (·) ∈ K1| K̃ (ω) ≥ 0 ∀ ω ∈ R}
}
where K̃ (ω) = (2π)−1 ✁ ∞

−∞
K1 (x) e−ixωdx. The

function K̃ (ω) is referred to as the spectral window generator. The set K̃1 contains all kernels K1

that necessarily generate positive semidefinite estimators in finite samples.

We adopt the notation ĴT (b1,T ) = ĴT (b1,T , b2,T , K2) to denote the estimator ĴT that uses

b1,T , b2,T = b
opt

2,T + o
(
T −1/5

)
and K2 (·). We then compare two kernels K1 using comparable

bandwidths b1,T which are defined as follows. Given K1 (·) ∈ K̃1, the QS kernel KQS
1 (·), and

a bandwidth sequence {b1,T } to be used with the QS kernel, define a comparable bandwidth

sequence {b1,T,K1} for use with K1 (·) such that both kernel/bandwidth combinations have the

same asymptotic variance when scaled by the same factor Tb1,T b2,T . This means that

lim
T →∞

MSE(Tb1,T b2,T , ĴQS
T (b1,T ) − E(J̃QS

T (b1,T )) + JT , WT )

= lim
T →∞

MSE(Tb1,T b2,T , ĴT (b1,T,K1) − E(J̃T (b1,T,K1)) + JT , WT ).

This definition yields b1,T,K1 = b1,T /(
✁

K2
1 (x) dx) and b1,T,QS = b1,T since

✁

(
KQS

1

)2
(x) dx = 1.

Theorem 4.1. Suppose Assumption 3.1, 3.3-3.5 hold,
✁ 1

0
||f (2) (u, 0) ||du < ∞, b2,T → 0, b5

2,T T →
η ∈ (0, ∞), (vec(

✁ 1

0
f (q) (u, 0) du))′Wvec(

✁ 1

0
f (q) (u, 0) du) > 0 and W is positive semidefinite. For

any bandwidth sequence {b1,T } such that b2,T /b1,T → 0, nT /Tb2
1,T → 0 and Tb5

1,T b2,T → γ ∈ (0, ∞),

and for any kernel K1 (·) ∈ K̃1 used to construct ĴT , the QS kernel is preferred to K1 (·) in the
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sense that

lim
T →∞

(
MSE

(
Tb1,T b2,T , ĴT (b1,T,K1) , WT

)
− MSE

(
Tb1,T b2,T , ĴQS

T (b1,T ) , WT

))

= 4γπ2

(
vec

(
✂ 1

0

f (2) (u, 0) du

))′

Wvec

(
✂ 1

0

f (2) (u, 0) du

)
✂ 1

0

(
Kopt

2 (x)
)2

dx

×

K2

1,2

(
✂

K2
1 (y) dy

)4

−
(
KQS

1,2

)2


 ≥ 0.

The inequality is strict if K1 (x) Ó= KQS
1 (x) with positive Lebesgue measure.

The requirement
✁ 1

0
||f (2) (u, 0) ||du < ∞ is not stringent and it reduces to the one used by

Andrews (1991) when {Vt,T } is stationary. If
✁ 1

0
||f (q) (u, 0) ||du < ∞ only for some 1 ≤ q < 2, one

can show that any kernel with K1,q = 0 has smaller asymptotic MSE than a kernel with K1,q > 0.

The QS, Parzen, and Tukey-Hanning kernels have K1,q = 0 for 1 ≤ q < 2, whereas the Bartlett has

K1,q > 0 for 1 ≤ q < 2. Thus, the asymptotic superiority of the former kernels over the Bartlett

kernel holds even if
✁ 1

0
||f (q) (u, 0) ||du < ∞ only for 1 ≤ q < 2.

4.3 Optimal Predetermined Bandwidth Sequence b1,T

We now present the predetermined bandwidth sequence that minimizes the asymptotic MSE given

b2,T = O(bopt
2,T ) and K2 = Kopt

2 . This optimality result applies to each kernel K1 (·) ∈ K1 for which

K1,q ∈ (0, ∞) for some q ∈ (0, ∞). Thus, most commonly used kernels are allowed with the

exception of the truncated kernel. Let

φ (q) =
vec

(
✁ 1

0
f (q) (u, 0) du

)′
Wvec

(
✁ 1

0
f (q) (u, 0) du

)

trW (Ip2 + Cpp)
(
✁ 1

0
f (u, 0) du

)
⊗

(
✁ 1

0
f (v, 0) dv

) .

The optimal bandwidth is bopt
1,T = (2qK2

1,qφ (q) Tbopt
2,T /(

✁

K2
1 (y) dy

✁ 1

0
K2

2 (x) dx))−1/(2q+1), where

φ (q) is a function of the unknown spectral density f (·, ·). Hence, the optimal bandwidth bopt
1,T

is unknown in practice, and we consider data-dependent estimates of φ (q) in Section 5.

Condition 1. b1,T , b2,T → 0 with b2,T /b1,T → 0, and Tb2q+1
1,T b2,T → γ ∈ (0, ∞) for some q ∈ [0, ∞)

for which K1,q, ||
✁ 1

0
f (q) (u, 0) du|| ∈ [0, ∞), where b2,T = O(T −1/5).

Corollary 4.1. Suppose Assumption 3.1, 3.3-3.5 hold, ||
✁ 1

0
f (q) (u, ω) du|| < ∞, φ (q) ∈ (0, ∞),

and W is positive definite. Consider K1 (·) ∈ K1 for which K1,q ∈ (0, ∞) for some q ∈ (0, ∞).
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Then, {bopt
1,T } is optimal among the sequences {b1,T } that satisfy Condition 1 in the sense that,

lim
T →∞


MSE

((
Tb2,T

)2q/(2q+1)
, ĴT (b1,T , b2,T ) , WT

)

− MSE
((

Tb2,T

)2q/(2q+1)
, ĴT

(
bopt

1,T , b2,T

)
, WT

)
 ≥ 0.

The inequality is strict unless b1,T = bopt
1,T + o((Tb2,T )−1/(2q+1)).

In Corollary 4.1, q = 2 for the QS kernel and so bopt
1,T = 0.6584(φ (2) Tbopt

2,T )−1/5(
✁ 1

0
K2

2 (y) dy)1/5.

For K2 (y) = Kopt
2 (y) , the latter reduces to,

bopt
1,T = 0.6828(φ (2) Tbopt

2,T )−1/5. (4.3)

The optimal bandwidth is of order T −4/25. Thus, the optimal bandwidth sequence decreases to

zero at a slower rate than the optimal bandwidth sequence for the QS kernel-based HAC estimator

of Andrews (1991), for which the rate is of order T −1/5. The slower rate is due to the fact that

our estimator smooths the spectrum over time through K2 (·) and this restricts the smoothing of

K1 (·). In particular, the optimal choice of b1,T hinges on the degree of nonstationary through bopt
2,T .

The more nonstationary are the data, the smaller is bopt
2,T and the large is bopt

1,T which means that less

weight is given to Γ̂ (k) for k Ó= 0. In contrast, the optimal choice of b1,T for the methods proposed

in the literature is independent of the degree of nonstationarity. When b1,T and b2,T are chosen

optimally, the convergence rate from Theorem 3.2 reduces to T 8/25. Thus, the rate is slower than the

corresponding one for the QS kernel HAC estimator considered in Andrews (1991). However, it is

misleading to compare our DK-HAC estimator with the classical HAC estimators only on the basis

of the rate of convergence. In fact, the DK-HAC estimators account flexibly for nonstationarity and

are robust to low frequency contamination induced by nonstationarity/misspecification whereas the

classical HAC estimators are not in general [cf. Casini et al. (2021)].

4.4 Choice of nT

Our MSE analysis does not indicate an optimal value for nT . It only suggests growth rate bounds.

When KQS
1 is used, nT cannot grow faster than T 2/3. We set nT = T 0.66 for the QS kernel. That

is, we choose nT to be the largest possible value allowed by the condition. Our sensitivity analysis

(not reported) suggests that choosing a smaller nT might result in excessive overlapping of regimes
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when the process is SLS (i.e., m0 > 0). See Belotti et al. (2021) for more details.

5 Data-Dependent Bandwidths

In this section we consider estimators ĴT that use bandwidths b1,T and b2,T whose values are de-

termined via data-dependent methods. We use the “plug-in” method which is characterized by

plugging-in estimates of unknown quantities into an asymptotic formula for an optimal bandwidth

parameter (i.e., the expressions for bopt
1,T and bopt

2,T from Section 4). Section 5.1 explains how to con-

struct the automatic bandwidths while Section 5.2 presents the corresponding theoretical results.

5.1 Implementation

Let us begin with bopt
1,T and then move to bopt

2,T . The first step for the construction of data-

dependent bandwidth parameters is to specify p univariate parametric models for the elements

of Vt = (V
(1)

t , . . . , V
(p)

t )′. The second step involves the estimation of the parameters. In our con-

text, the logical estimation methods to use are local (weighted) least-squares (LS) (i.e., LS method

applied to rolling windows) and nonparametric kernel methods. In a third step, we replace the

unknown parameters in φ (q) with corresponding estimates. Such estimate φ̂ (q) is then substituted

into the expression for bopt
1,T to yield the data-dependent bandwidth b̂1,T :

b̂1,T =

(
2qK2

1,qφ̂ (q) T b̂2,T /

(
✂

K2
1 (y) dy

✂ 1

0

K2
2 (x) dx

))−1/(2q+1)

, (5.1)

where b̂2,T = (nT /T )
∑⌊T/nT ⌋−1

r=1 b̂2,T (rnT /T ). b̂2,T is an average of the estimates b̂2,T (·). Since b2,T

depends on u, it is more efficient to estimate it for each block as its optimal value can change over

time. In practice, a reasonable candidate for an approximating parametric model is the class of

first order autoregressive [AR(1)] models for {V
(r)

t }, r = 1, . . . , p (with different parameters for

each r) or a first order vector autoregressive [VAR(l)] model for {Vt}. These classes were also used

by Andrews (1991). However, in our context it is reasonable to allow the parameters of the AR(1)

model to be time-varying. For parsimony, we consider a time-varying AR(1) with no breaks in

f (u, ω), i.e., V
(r)

t = a1 (t/T ) V
(r)

t−1 + u
(r)
t , where the u

(r)
t need not be independent across r.

The use of p univariate parametric models requires a simple form for the weight matrix W .
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In particular, W has to be a diagonal matrix which in turn implies that φ (q) reduces to

φ (q) = 2−1
p∑

r=1

W (r,r)

(
✂ 1

0

f (q)(r,r) (u, 0) du

)2

/
p∑

r=1

W (r,r)

(
✂ 1

0

f (r,r) (u, 0) du

)2

.

The usual choice is W (r,r) = 1 for all r except that which corresponds to an intercept for which

it is set to zero. An estimate of f (r,r) (u, 0) is f̂ (r,r) (u, 0) = (2π)−1 (σ̂(r) (u))2(1 − â
(r)
1 (u))−2 while

f (2)(r,r) (u, 0) can be estimated by f̂ (2)(r,r) (u, 0) = 3π−1 ((σ̂(r) (u))2â
(r)
1 (u))(1 − â

(r)
1 (u))−4 where

â
(r)
1 (u) and σ̂(r) (u) are the LS estimates computed using local data to the left of u = t/T :

â
(r)
1 (u) =

∑⌊T u⌋
j=⌊T u⌋−n2,T +1 V̂

(r)
j V̂

(r)
j−1

∑⌊T u⌋
j=⌊T u⌋−n2,T +1

(
V̂

(r)
j−1

)2 , (5.2)

σ̂(r) (u) =




⌊T u⌋∑

j=⌊T u⌋−n2,T +1

(
V̂

(r)
j − â

(r)
1 (u) V̂

(r)
j−1

)2




1/2

,

where n2,T → ∞. Then, for the QS kernel K1,

φ̂ (2) =
p∑

r=1

W (r,r)


18




n3,T

T

⌊T/n3,T ⌋−1∑

j=0

(
σ̂(r) ((jn3,T + 1) /T ) â

(r)
1 ((jn3,T + 1) /T )

)2

(
1 − â

(r)
1 ((jn3,T + 1) /T )

)4




2

 /

p∑

r=1

W (r,r)




n3,T

T

⌊T/n3,T ⌋−1∑

j=0

(
σ̂(r) ((jn3,T + 1) /T )

)2

(
1 − â

(r)
1 ((jn3,T + 1) /T )

)2




2

.

For most of the results below we can take n3,T = n2,T = nT . After plugging-in φ̂ (2) into the formula

(4.3), we have b̂1,T = 0.6828(φ̂ (2) T b̂2,T )−1/5.

We now propose a data-dependent procedure for b2,T (ur) , where ur = rnT /T for r =

1, . . . , ⌊(T − nT ) /nT ⌋. We assume that the parameters of the approximating time-varying AR(1)

models change slowly such that the smoothness of f (·, ω) and thus of c (·, k) is the same as the

one that would arise if a1 (u) = 0.8 (cos 1.5 + cos 4πu) and σ (u) = σ = 1 for all u ∈ [0, 1] [cf.

Dahlhaus (2012)]. The reason for imposing this condition is that it is otherwise difficult to es-

timate (∂2/∂u2) c (u, k), which enters D1 (u), from the data. Under the above specification, the
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exact expression of D1 (u) can be computed analytically:

D1 (u) , (

✂ π

−π

[
3

π
(1 + 0.8 (cos 1.5 + cos 4πu) exp (−iω))−4 (0.8 (−4π sin (4πu))) exp (−iω)

− 1

π
|1 + 0.8 (cos 1.5 + cos 4πu) exp (−iω)|−3

(
0.8

(
−16π2 cos (4πu)

))
exp (−iω)

]
dω)2.

An estimate of D1 (u) is given by

D̂1 (u) , ([Sω]−1
∑

s∈Sω

[
3

π
(1 + 0.8 (cos 1.5 + cos 4πu) exp (−iωs))

−4 (0.8 (−4π sin (4πu))) exp (−iωs)

− 1

π
|1 + 0.8 (cos 1.5 + cos 4πu) exp (−iωs)|−3

(
0.8

(
−16π2 cos (4πu)

))
exp (−iωs)

]
)2,

where [Sω] is the cardinality of Sω and ωs+1 > ωs with ω1 = −π, ω[Sω ] = π. In our simulations

we use Sω = {−π, −3, −2, −1, 0, 1, 2, 3, π}. Note that we have computed D̂1 (u) for k = 0

because it makes the computation simpler. Further, this is consistent with our sequential MSE

criterion because k = 0 is the only lag for which K1(0) = 1 for all K1 so that the choice of K1 does

not influence bopt
2 (·). It remains to derive an estimate of D2 (u) since F (K2) and H (K2) can be

computed for a given K2 (·). We assume that the innovations of the approximating time-varying

AR(1) model satisfy E(u
(r)
t ) = 0, E((u

(r)
t )2) = σ2 and E((u

(r)
t )4) = 3σ4 so that D3 (u) = 0 for

all u ∈ (0, 1). That is, the term involving the cumulant drops from bopt
2 (u). In practice this is

convenient because it is complex to deal with consistent estimation of cumulant terms. Note also

that D3 (u) = 0 if ut is Gaussian. Since c (u, k) can be consistently estimated by ĉT (u, k), an

estimate of D2 (u) is given by

D̂2 (u0) , p−1
p∑

r=1

⌊T 4/25⌋∑

l=−⌊T 4/25⌋
ĉ

(r,r)
T (u0, l)

[
2ĉ

(r,r)
T (u0, l)

]
,

where the number of summands grows at the same rate as (bopt
1,T )−1; a different choice is allowed as

long as it grows at a slower rate than T 2/5. Hence, the estimate of the optimal b2,T is given by

b̂2,T (ur) = 1.6786
(
D̂1 (ur)

)
−1/5(D̂2 (ur))

1/5T −1/5, where ur = rnT /T.
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5.2 Theoretical Results

Next, we establish consistency, rate of convergence and asymptotic MSE results for the estimator

ĴT (b̂1,T , b̂2,T ) that uses the data-dependent bandwidths b̂1,T and b̂2,T . As in Andrews (1991), we

need to restrict the class of admissible kernels to the following class:

K3 = {K3 (·) ∈ K1 : (i) |K1 (x)| ≤ C1 |x|−b with b > max (1 + 1/q, 3) (5.3)

for |x| ∈ [xL, DT hT xU ] , b2
1,T hT → ∞, DT > 0, xL, xU ∈ R, 1 ≤ xL < xU , and

with b > 1 + 1/q for |x| /∈ [xL, DT hT xU ] , and some C1 < ∞, where q ∈ (0, ∞)

is such that K1,q ∈ (0, ∞) , (ii) |K1 (x) − K1 (y)| ≤ C2 |x − y| ∀x, y ∈ R for some

costant C2 < ∞, and (iii) q < 34/4}.

Let θ̂ denote the estimator of the parameter of the approximate (time-varying) parametric model(s)

introduced above. For example, with univariate AR(1) approximating parametric models, θ̂ =

(
✁ 1

0
â

(1)
1 (u) du,

✁ 1

0
(σ̂(1) (u))2du, . . . ,

✁ 1

0
â

(p)
1 (u) du,

✁ 1

0
(σ̂(p) (u))2du)′. Let θ∗ denote the probability

limit of θ̂. φ̂ (q) is the value of φ (q) with θ̂ instead of θ. Its probability limit is denoted by φθ∗ .

Assumption 5.1. (i) φ̂ (q) = OP (1) and 1/φ̂ (q) = OP (1); (ii) inf{T/n3,T ,
√

n2,T }(φ̂ (q) − φθ∗) =

OP (1) for some φθ∗ ∈ (0, ∞) where n2,T /T + n3,T /T → 0, n
10/6
2,T /T → [c2, ∞), n

10/6
3,T /T → [c3, ∞)

with 0 < c2, c3 < ∞; (iii) supu∈[0, 1] λmax(Γu (k)) ≤ C3k
−l for all k ≥ 0 for some C3 < ∞ and

some l > max {2, 1 + 48q/ (46 + 20q) , 1 + q/ (3/4 + q/2)}, where q is as in K3; (iv) uniformly in

u ∈ [0, 1], D̂1 (u) , D̂2 (u) = OP (1) and 1/D̂1 (u) , 1/D̂2 (u) = OP (1); (v) |ωs+1 − ωs| = O (T −1)

and [Sω] = O (T ); (vi)
√

Tb2,T (u)(D̂2 (u) − D2 (u)) = OP (1) for all u ∈ [0, 1]; (vii) K2 includes

kernels that satisfy |K2 (x) − K2 (y) | ≤ C4 |x − y| for all x, y ∈ R and some constant C4 < ∞.

Parts (i)-(ii) of Assumption 5.1 are the nonparametric analogue to Assumption E and F,

respectively, in Andrews (1991). Part (iii) is satisfied if {Vt} is strong mixing with mixing numbers

that are less stringent than those sufficient for the cumulant condition in Assumption 3.2-(i). Part

(iv) and (vi) extend (i)-(ii) to D̂1 and D̂2. Part (v) is needed to apply the convergence of Riemann

sums. Part (vi) follows from the asymptotic results about ĉT (u, k). Part (vii) requires K2 to

satisfy Lipschitz continuity. Note that φθ∗ coincides with the optimal value φ (q) only when the

approximate parametric model indexed by θ∗ corresponds to the true data-generating mechanism.

Let bθ1,T = (2qK2
1,qφθ∗Tbθ2,T /

✁

K2
1 (y) dy

✁ 1

0
K2

2 (x) dx)−1/(2q+1), where bθ2,T ,
✁ 1

0
bopt

2,T (u) du.

The asymptotic properties of ĴT (b̂1,T , b̂2,T ) are shown to be equivalent to those of ĴT (bθ1,T , bθ2,T ).
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Theorem 5.1. Suppose K1 (·) ∈ K3, q is as in K3, K2 (·) ∈ K2, nT → ∞, nT /Tbθ1,T → 0, and

||
✁ 1

0
f (q) (u, 0) du|| < ∞. Then,

(i) If Assumption 3.1-3.3 and 5.1-(i,iv,vii) hold, n3,T = n2,T = nT , and q > 1/2, then

ĴT (b̂1,T , b̂2,T ) − JT
P→ 0.

(ii) If Assumption 3.1, 3.3-3.4 and 5.1-(ii,iii,v,vi,vii) hold and nT /Tb2
θ1,T → 0, then

√
Tbθ1,T bθ2,T

(ĴT (b̂1,T , b̂2,T ) − JT ) = OP (1) and
√

Tbθ1,T bθ2,T (ĴT (b̂1,T , b̂2,T ) − ĴT (bθ1,T , bθ2,T )) = oP (1).

(iii) Let γθ = 2qK2
1,qφθ/(

✁

K2
1 (y) dy

✁ 1

0
K2

2 (x) dx). If Assumption 3.1, 3.3-3.5 and 5.1-

(ii,iii,v,vi,vii) hold, then

lim
T →∞

MSE
(

T 4q/10(2q+1), ĴT

(
b̂1,T , b̂2,T

)
, WT

)

= lim
T →∞

MSE
(
Tbθ1,T bθ2,T , ĴT (bθ1,T , bθ2,T ) , WT

)

= 4π2

[
γθK

2
1,qvec

(
✂ 1

0

f (q) (u, 0) du

)′

Wvec

(
✂ 1

0

f (q) (u, 0) du

)]

+

✂

K2
1 (y) dy

✂

K2
2 (x) dx tr

(
W (Ip2 − Cpp)

(
✂ 1

0

f (u, 0) du

)
⊗

(
✂ 1

0

f (v, 0) dv

))
.

When the chosen parametric model indexed by θ is correct, it follows that φθ∗ = φ (q) and

φ̂ (q)
P→ φ (q). The theorem then implies that ĴT (b̂1,T , b̂2,T ) exhibits the same optimality properties

presented in Theorem 4.1 and Corollary 4.1. We omit the details.

6 Small-Sample Evaluations

We conduct a Monte Carlo analysis to evaluate the properties of HAR inference based on the HAC

estimator ĴT . We consider HAR tests in the linear regression model as well as HAR tests used in

the forecast evaluation literature, namely the Diebold and Mariano’s (1995) test and the forecast

breakdown test of Giacomini and Rossi (2009). The linear regression models have an intercept and

a stochastic regressor. We focus on the t-statistics tr =
√

T (β̂(r) − β
(r)
0 )/

√
Ĵ

(r,r)
X,T where

ĴX,T =

(
T −1

T∑

t=1

xtx
′
t

)−1

ĴT

(
T −1

T∑

t=1

xtx
′
t

)−1

,

is a consistent estimate of the limit of Var(
√

T (β̂ − β0)) and r = 1, 2. t1 is the t-statistic for

the parameter associated with the intercept while t2 is associated with the stochastic regressor

xt. Results for the F -test are qualitatively similar [see Casini (2019)]. Six basic regression models
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are considered. We run a t-test on the intercept in model M1 and M5 whereas a t-test on the

coefficient of xt is run in model M2-M4 and M6. The models are based on,

yt = β
(1)
0 + δ + β

(2)
0 xt + et, t = 1, . . . , T, (6.1)

for the t-test on the intercept (i.e., t1) and

yt = β
(1)
0 +

(
β

(2)
0 + δ

)
xt + et, t = 1, . . . , T, (6.2)

for the t-test on β
(2)
0 (i.e., t2) where δ = 0 under the null hypotheses. In Model M1 et =

0.5et−1 + ut, ut ∼ i.i.d. N (0, 0.5) , xt ∼ i.i.d. N (1, 1), β
(1)
0 = 0 and β

(2)
0 = 1.11 Model M2

involves et = 0.8et−1 + ut, ut ∼ i.i.d. N (0, 1) , xt ∼ i.i.d. N (1, 1), and β
(1)
0 = β

(2)
0 = 0. In

Model M3 we have segmented locally stationary errors et = ρtet−1 + ut, ut ∼ i.i.d. N (0, 1) , ρt =

max {0, −1 (cos (1.5 − cos (5t/T )))} for t < 4T/5 and et = 0.9et−1 + ut, ut ∼ i.i.d. N (0, 1) for

t ≥ 4T/5, and xt = 0.4xt−1 + uX,t, uX,t ∼ i.i.d. N (0, 1). Note that ρt varies smoothly between 0

and 0.8071. Model M4 involves some misspecification that induces nonstationarity in the errors,

yt = β
(1)
0 +

(
β

(2)
0 + δ

)
xt + wt1 {t ≥ 4T/5} + et, t = 1, . . . , T,

where et = ρtet−1+ut, ut ∼ i.i.d. N (0, 1) , ρt as in M3, xt ∼ i.i.d. N (1, 1), and wt ∼ i.i.d. N (2, 1)

independent from xt. Model M5 involves misspecification under H1 via a smooth change in the

coefficient β
(2)
0 toward the end of the sample. This situation is very common in practice and it

is motivated by the model for the variable “cay” from Bianchi, Lettau and Ludvigson (2018) (cf.

Figure 3 in their paper). The model is given by

yt = β
(1)
0 + δ +

(
β

(2)
0 + dt1 {t ≥ 4.5T/5}

)
xt + et, t = 1, . . . , T,

where dt = 1.5δ (t − 4.5T/5) /T , et = ρtet−1 + ut, ut ∼ i.i.d. N (0, 1) , ρt = 0.8(cos(1.5 − cos(t/

2T ))) for t ∈ {1, . . . , T/2 − 1}∪{T/2 + T/4 + 1, . . . , T} and et = 0.2et−1+2ut, ut ∼ i.i.d. N (0, 1)

for T/2 ≤ t ≤ T/2 + T/4, and xt = 2 + 0.5xt−1 + uX,t, uX,t ∼ i.i.d. N (0, 1). That is, ρt

varies smoothly between 0 and 0.7021. Model M6 is given by (6.2) where et = ρtet−1 + ut, ut ∼
i.i.d. N (0, 1) , ρt = max {0, 0.3 (cos (1.5 − cos (t/5T )))} for t ∈ {1, . . . , T/2 − 1} ∪ {T/2 + 4, . . . ,

T − 16} and et = 0.99et−1 + 2ut, ut ∼ i.i.d. N (0, 1) for T/2 ≤ t ≤ T/2 + 3 and et = 0.9et−1 +

2ut, ut ∼ i.i.d. N (0, 1) for T − 15 ≤ t ≤ T , and xt ∼ i.i.d. N (1, 1). Note that ρt ∈ [0, 0.2633].

11For the results with AR coefficient 0.9 see Table 1 in Casini and Perron (2021d) and footnote 12 below.
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Next, we move to the forecast evaluation tests. The Diebold-Mariano test statistic is defined

as tDM ,
√

Tn dL/
√

ĴdL,T , where dL is the average of the loss differentials between two competing

forecast models, ĴdL,T is an estimate of the asymptotic variance of the the loss differential series

and Tn is the number of observations in the out-of-sample. Throughout we use the quadratic loss.

In model M7, we consider an out-of-sample forecasting exercise with a fixed scheme where, given

a sample of T observations, 0.5T observations are used for the in-sample and the remaining half

is used for prediction. The true model for the target variable is given by yt = β
(1)
0 + β

(2)
0 x

(0)
t−1 + et

where x
(0)
t−1 ∼ i.i.d. N (1, 1), et = 0.3et−1 + ut with ut ∼ i.i.d. N (0, 1) and we set β

(1)
0 = β

(2)
0 = 1.

The two competing models both involve an intercept but differ on the predictor used in place

of x
(0)
t . The first forecast model uses x

(1)
t while the second uses x

(2)
t where x

(1)
t and x

(2)
t are

independent i.i.d. N (1, 1) sequences, both independent from x
(0)
t . Each forecast model generates

a sequence of τ (= 1)-step ahead out-of-sample losses L
(i)
t (i = 1, 2) for t = T/2 + 1, . . . , T − τ.

Then dt , L
(2)
t − L

(1)
t denotes the loss differential at time t. The Diebold-Mariano test rejects the

null of equal predictive ability when (after normalization) d is sufficiently far from zero.

Finally, we consider model M8 which we use to investigate the performance of a t-test for

forecast breakdown [cf. Giacomini and Rossi (2009)]. Suppose we want to forecast a variable yt

following the equation yt = β
(1)
0 +β

(2)
0 xt−1+et where xt ∼ i.i.d. N (1, 1.5) and et = 0.3et−1+ut with

ut ∼ i.i.d. N (0, 1). For a given forecast model and forecasting scheme, the test of Giacomini and

Rossi (2009) (GR) detects a forecast breakdown when the average of the out-of-sample losses differs

significantly from the average of the in-sample losses. The in-sample is used to obtain estimates

of β
(1)
0 and β

(2)
0 which are in turn used to construct out-of-sample forecasts ŷt = β̂

(1)
0 + β̂

(2)
0 xt−1.

We set β
(1)
0 = β

(2)
0 = 1. We consider a fixed forecasting scheme and one-step ahead forecasts. The

GR’s (2009) test statistic is defined as tGR ,
√

TnSL/
√

ĴSL where SL , T −1
n

∑T −τ
t=Tm

SLt+τ , SLt+τ

is the surprise loss at time t + τ , i.e., the difference between the time t + τ out-of-sample loss and

in-sample loss, SLt+τ = Lt+τ − Lt+τ , Tn is the sample size in the out-of-sample, Tm is the sample

size in the in-sample and ĴSL is an HAC estimator. We restrict attention to τ = 1.

Throughout our study we consider the following LRV estimators: ĴT with automatic band-

widths; ĴT with automatic bandwidths and the prewhitening of Casini and Perron (2021d); An-

drews’s (1991) HAC estimator with automatic bandwidth; Andrews’s (1991) HAC estimator with

automatic bandwidth and the prewhitening procedure of Andrews and Monahan (1992); Newey

and West’s (1987) HAC estimator with the automatic bandwidth as proposed in Newey and West

(1994); Newey and West’s (1987) HAC estimator with the automatic bandwidth as proposed in

Newey and West (1994) and the prewhitening procedure; Newey-West with the fixed-b method of
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Kiefer et al. (2000).12 Casini and Perron (2021d) proposed three forms of prewhitening: (1) ĴT,pw,1

uses a stationary model to whiten the data; (2) ĴT,pw,SLS uses a nonstationary model to whiten the

data; (3) ĴT,pw,SLS,µ is the same as ĴT,pw,SLS but it adds a time-varying intercept in the VAR to

whiten the data. For model M7 we also report results using ĴT and ĴT,pw,SLS with the pre-test for

breaks in the spectrum as developed in Casini and Perron (2021a). We do not report the results for

the pre-test for model M1-M6 and M8 because they are equivalent to those without the pre-test.

For all versions of ĴT we use Kopt
1 and Kopt

2 . We set nT = T 0.66 as explained in Section 4.4 and

n2,T = n3,T = nT . We consider the following sample sizes for M1-M6: T = 200, 400. Simulation

results for additional data-generating processes involving ARMA, ARCH and heteroskedastic errors

are not discussed here because the results are qualitatively equivalent [see, e.g., Casini (2019) and

Casini and Perron (2021d)]. The significance level is α = 0.05 throughout the study.

6.1 Empirical Sizes of HAR Inference Tests

Table 1-4 report the rejection rates for model M1-M8. We begin with the t-test in the linear

regression models. As a general pattern, we confirm previous evidence that the Newey-West’s

(1987) and Andrews’ (1991) HAC estimators lead to t-tests that are oversized when the data

are stationary [cf. model M1-M2]. The same problem occurs for the Newey-West (1987) HAC

estimator using the usual “rule” to determine the number of lags (not reported). For extreme

temporal dependence, simulations in Casini and Perron (2021d) showed that the size distortions

can be even larger especially for the t-test on the intercept. Prewhitening is often effective in helping

the HAC estimators to better control the size under stationarity. However, the simulation results

in Casini and Perron (2021d) and in the literature show that the prewhitened HAC estimators can

lead to oversized tests when there is high serial dependence. The rejection rates of tests normalized

by the Newey-West estimator with fixed-b are the most accurate in model M1-M2 for T = 200.

Overall, the results in the literature along with those in Casini (2019) and Casini and Perron

(2021d) showed that under stationarity the original fixed-b method of KVB is in general the least

oversized across different degrees of dependence among all existing methods. Table 1 shows that

for the t-test on the intercept the non-prewhitened DK-HAC leads to HAR tests that are oversized

12To save space, we do not report results for the Empirical Weighted Periodogram (EWP) or Empirical Weighted
Cosine (EWC) of Lazarus et al. (2020) and Lazarus et al. (2018), respectively. Their performance is similar to
the method of Kiefer et al. (2000). Indeed, the LRV estimator of Kiefer et al. (2000) leads to HAR tests that have
better size control. Casini and Perron (2021d) showed that EWC leads to oversized tests when there is strong
dependence in the data relative to the fixed-b method of Kiefer et al. (2000) and to the prewhitened DK-HAC. The
power properties of tests normalized by the EWP and EWC are similar to those using the method of Kiefer et al.
(2000).
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while they are accurate for the t-test on the coefficient on the stochastic regressor. The table

also shows that the prewhitened DK-HAC estimators are competitive with the KVB’s fixed-b in

controlling the size. ĴT,pw,1 is the most accurate among the DK-HAC estimators. Since ĴT,pw,1 uses

a stationarity VAR model to whiten the data, it works better than ĴT,pw,SLS and ĴT,pw,SLS,µ when

stationarity actually holds which is consistent with the results of Table 1.

Turning to nonstationarity, Table 2 casts concerns about the performance of existing methods

in this context. For both model M3 and M4, existing LRV estimators lead to HAR tests that have

either size equal or close to zero. The methods that use long bandwidths (i.e., many lags) such

as KVB’s fixed-b suffer most from this problem relative to the classical HAC estimators. This is

consistent with the argument in Casini et al. (2021) who showed analytically that nonstationarity

induces a positive bias for each sample autocovariance. That bias is constant across different

lags. Since existing LRV estimators are weighted sum of sample autocovariances, the larger the

bandwidth (i.e., the more lagged autocovariances are included) the larger the positive bias. Thus,

LRV estimators are inflated and HAR tests have rejection rates lower than the significance level.

This mechanism has consequences for power as well, as we show below that traditional HAR tests

have low power. In model M3-M4 the non-prewhitened DK-HAC and the prewhitened DK-HAC

(except ĴT,pw,1) perform well. ĴT,pw,1 suffers from the same problem as the existing estimators

because it uses stationarity and when this is violated its performance is affected. In model M5, the

classical HAC estimators yield HAR tests that are oversized. Also the non-prewhitened DK-HAC

is oversized. In contrast, the KVB’s fixed-b and the prewhitened DK-HAC have rejection rates

close to the significance level. In model M6, the KVB’s fixed-b HAR tests tend to be undersized

whereas the HAC and DK-HAC estimators lead to tests that control the size more accurately.

Turning to the HAR tests for forecast evaluations, Table 4 shows that for model M7 the KVB’s

fixed-b HAR test has size essentially equal to zero while the classical HAC estimators yield HAR

tests that are somewhat oversized. In contrast, the tests normalized by the prewhitened DK-HAC

estimators have most accurate rejection rates. In model M8, the KVB’s fixed-b HAR tests are

well-sized whereas the classical HAC estimators lead to tests that are severely undersized. The

DK-HAC estimators control the size reasonably well.

In summary, the prewhitened DK-HAC estimators yield t-tests in regression models with

rejection rates that are relatively close to the nominal size. The non-prewhitened DK-HAC can lead

to oversized tests for the t-tests on the intercept if there is high dependence. Our results confirm

the oversize problem of the HAR tests normalized by the classical HAC estimators documented in

the literature under stationarity. The Fixed-b HAR tests control the size well when the data are
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stationary but can show severe undersized issues under nonstationarity, a problem also affecting

the tests normalized by the classical HAC estimators. Thus, with regards to size control, the

prewhitened DK-HAC estimators are competitive with fixed-b methods under stationarity and

they also perform well when the data are nonstationary.

6.2 Empirical Power of HAR Inference Tests

For model M1-M6 we report the values of the power in Table 5-10. The sample size is T = 200.

Power functions for the Diebold-Maraino and for the forecast breakdown test are presented next.

For model M1, the non-prewhitened HAC and DK-HAC lead to tests that have the highest power

but they were more oversized than the other methods. The KVB’s fixed-b LRV leads to t-tests that

sacrify some power relative to the prewhitened HAC and DK-HAC estimators. In model M2, a

similar picture arises. HAR tests normalized by either classical HAC or DK-HAC estimators have

similarly good power while HAR tests based on KVB’s fixed-b have relatively less power. In model

M3, the prewhitening HAC estimators and ĴT,pw,1 (which uses a stationary model to whiten the

data) have low power. The best power is achieved by tests normalized by Andrews’ (1991) HAC

estimator and ĴT , followed by ĴT,pw,SLS and ĴT,pw,SLS,µ. The KVB’s fixed-b leads to relatively less

power than the latter methods. The Newey-West’s (1987) estimator leads to tests that have good

power but they were shown to be oversized. Similar comments apply to model M4. Here Andrews’

(1991) HAC estimator leads to tests that have better power for small to medium breaks while tests

based on ĴT have better power for large breaks. In model M5, prewhitening HAC estimators and

KVB’s fixed-b lead to HAR tests that have non-monotonic power and reach zero as δ increases.

This does not occur for the classical HAC estimators which, however, were oversized. HAR tests

based on ĴT,QS, ĴT,pw,SLS and ĴT,pw,SLS,µ perform best for this model. ĴT,pw,1 results in HAR tests

that have lower power relative to the tests based on the other DK-HAC because stationarity is

violated. In model M6, all HAR tests enjoy monotonic power with small differences.

Next, let us move to the evaluation of the power properties of the t-tests used in the forecasting

literature. We begin with the Diebold-Mariano test. For this test, the separation between the null

and alternative hypotheses does not depend on the value of a single parameter. Thus, the data-

generating mechanism is different from the one under the null. The two competing forecast models

are as follows: the first model uses the actual true data-generating process while the second model

differs in that in place of x
(0)
t−1 it uses x

(2)
t−1 = x

(0)
t−1 + uX2,t for t ≤ 3T/4 and x

(2)
t−1 = δ + x

(0)
t−1 + uX2,t

for t > 3T/4 with uX2,t ∼ i.i.d. N (0, 1). Evidently, the null hypothesis of equal predictive ability

should be rejected by the Diebold-Mariano test whenever δ > 0. Table 11 reports the power
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for several values of δ. The HAR tests based on existing estimators have lower power relative to

the ĴT DK-HAC estimators for small values of δ. When we raise δ the tests based on the HAC

estimators of Andrews (1991) and Newey and West (1987), and KVB’s fixed-b method display

non-monotonic power gradually converging to zero. In contrast, the DK-HAC estimators lead to

tests that have monotonic power that reach and maintain unit power. The only exception is the

test based on ĴT,pw,1 that has lower power because stationarity is violated. The table also reports

ĴT and ĴT,pw,SLS with the pre-test for breaks in the spectrum [cf. Casini and Perron (2021a)] that is

used for choosing more efficiently how to split the sample in blocks to compute Γ̂ (k). The pre-test

yields HAR tests with higher power while having the same size as the corresponding HAR tests

with no pre-test. We have not reported the results with the pre-test for model M1-M6 and M8

because they are the same as with no pre-test.

Finally, we move to the t-test of Giacomini and Rossi (2009). The data-generating process un-

der H1 : E

(
SL

)
Ó= 0 is given by yt = 1+xt−1 +δxt−11 {t > T 0

1 }+et, where xt−1 ∼ i.i.d. N (1.5, 1),

et = 0.3et−1 + ut, ut ∼ i.i.d.N (0, 1) and T 0
1 = Tλ0

1 with λ0
1 = 0.8. Under this specification there is

a break in the coefficient associated to the predictor xt−1. Thus, there is a forecast failure and the

test of Giacomini and Rossi (2009) should reject H0. From Table 12 it appears that all versions of

the classical HAC estimators of Andrews (1991) and Newey and West (1987), and KVB’s fixed-b

lead to t-tests that have, essentially, zero power for all δ. The only exception is Andrews’ (1991)

HAC estimator with prewhitening that shows some power but it is not monotonic. In contrast, the

t-test based on the DK-HAC estimators have good power. The failure of existing LRV estimators

cannot be attributed to the sample size because as we raise the sample size to 400 or 800, the tests

still display no power [see Casini (2019)].

The failure of the HAR tests based on the existing LRV estimators occurring in some of the

data-generating mechanisms reported here can be simply reconciled with the fact that in such

models the spectrum of Vt is not constant. In other words, the autocovariance of Vt depends

not only on the lag order but also on t. Existing LRV estimators estimate an average of a time-

varying spectrum. Because of this instability in the spectrum, they overestimate the extent of the

dependence or variation in Vt. This is explained analytically in Casini et al. (2021) who showed

in a general setting that nonstationarity/misspecification alters the low frequency components of

a time series making the latter appear as more persistent. Since traditional LRV estimators are a

weighted sum of a large number of low frequency periodogram ordinates, these estimates turn to

be inflated. Similarly, LRV estimators using long bandwidths (i.e., fixed-b) are weighted sum of

a large number of sample autocovariances. Each sample autocovariance is biased upward so that
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the latter estimates are even more inflated than the classical HAC estimators that use a smaller

number of sample autocovariances. This explains why KVB’s fixed-b HAR tests are subject to

more power problems, even though the classical HAC estimators are also largely affected.

The introduction of the smoothing over time in the DK-HAC estimators avoids the low fre-

quency contamination because observations belonging to different regimes are not mixed up when

computing sample autocovariances. This guarantees good power properties also under nonstation-

arity/misspecification or under nonstationary alternative hypotheses (e.g., HAR tests for forecast

evaluation discussed above). Casini et al. (2021) reconciled this issue with some results in the unit

root and long memory literature. Tests for a unit root are known to struggle to reject the unit

root hypotheses if a process is second-order stationary (i.e., no unit root) but it is contaminated

by breaks in the mean or trend [cf. Perron (1989, 1990)]. Similarly, a short memory sequence con-

taminated by structural breaks can approximate a long memory series in that the autocorrelation

function has the same properties as that of a long memory series [cf. Diebold and Inoue (2001),

Hillebrand (2005), McCloskey and Hill (2017) and Mikosch and Stărica (2004)].

7 Conclusions

Economic time series are highly nonstationary. Methods constructed under the assumption of sta-

tionarity might then have undesirable properties. This paper developed a theoretical framework

for inference in settings where the data may be nonstationary. A new class of double kernel het-

eroskedasticity and autocorrelation consistent (DK-HAC) estimators was presented. In addition

to the usual smoothing procedure over lagged autocovariances, the estimator applies smoothing

over time. This is important in order to account flexibly for the variation over time of the struc-

tural properties of the economic time series. Optimality results under MSE criterion concerning

bandwidths and kernels have been established. A data-dependent method based on the “plug-in”

approach has been proposed. There are empirical relevant circumstances where HAR tests, either

in linear regression models or other contexts, standardized by existing LRV estimators perform

poorly. These may result in size distortions as well as significant power losses, even when the sam-

ple size is large. In contrast, when the proposed DK-HAC estimator is used the same HAR tests

do not suffer from those issues. DK-HAC estimators lead to HAR tests that have competitive size

control relative to fixed-b HAR tests, when the latter work well, and have good power, irrespective

of whether there is weak or strong dependence in the data.
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A Appendix

Table 1: Empirical small-sample size for model M1-M2
Model M1, t1 Model M2, t2

5% nominal size T = 200 T = 400 T = 200 T = 400

ĴT 0.086 0.067 0.054 0.038

ĴT,pw,1 0.052 0.047 0.060 0.043

ĴT,pw,SLS 0.053 0.041 0.069 0.037

ĴT,pw,SLS,µ 0.048 0.044 0.065 0.039

Andrews (1991) 0.081 0.060 0.082 0.072

Andrews (1991), prewhite 0.059 0.048 0.062 0.047

Newey-West (1987) 0.091 0.068 0.058 0.052

Newey-West (1987), prewhite 0.073 0.054 0.071 0.064

Newey-West (1987), fixed-b (KVB) 0.057 0.054 0.059 0.059

Table 2: Empirical small-sample size for model M3-M4
Model M3, t2 Model M4, t2

5% nominal size T = 200 T = 400 T = 200 T = 400

ĴT 0.063 0.056 0.064 0.054

ĴT,pw,1 0.013 0.011 0.008 0.000

ĴT,pw,SLS 0.062 0.061 0.063 0.043

ĴT,pw,SLS,µ 0.056 0.054 0.034 0.042

Andrews (1991) 0.047 0.025 0.043 0.016

Andrews (1991), prewhite 0.013 0.019 0.000 0.000

Newey-West (1987) 0.072 0.064 0.023 0.032

Newey-West (1987), prewhite 0.014 0.016 0.000 0.000

Newey-West (1987), fixed-b (KVB) 0.003 0.001 0.000 0.000
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Table 3: Empirical small-sample size for model M5-M6
M5, t1 M6, t2

5% nominal size T = 200 T = 400 T = 200 T = 400

ĴT 0.095 0.093 0.065 0.060

ĴT,pw,1 0.057 0.056 0.044 0.049

ĴT,pw,SLS 0.064 0.059 0.056 0.052

ĴT,pw,SLS,µ 0.067 0.065 0.059 0.056

Andrews (1991) 0.081 0.058 0.049 0.048

Andrews (1991), prewhite 0.069 0.051 0.040 0.044

Newey-West (1987) 0.111 0.084 0.052 0.048

Newey-West (1987), prewhite 0.078 0.057 0.048 0.045

Newey-West (1987), fixed-b (KVB) 0.063 0.054 0.034 0.035

Table 4: Empirical small-sample size for model M7-M8
DM test GR test

5% nominal size Tn = 200 Tn = 400 Tn = 240 Tn = 380

ĴT 0.035 0.063 0.029 0.043

ĴT,pw,1 0.026 0.031 0.028 0.033

ĴT,pw,SLS 0.045 0.042 0.036 0.039

ĴT,pw,SLS,µ 0.043 0.046 0.047 0.045

Andrews (1991) 0.083 0.085 0.000 0.000

Andrews (1991), prewhite 0.082 0.085 0.000 0.003

Newey-West (1987) 0.080 0.083 0.000 0.000

Newey-West (1987), prewhite 0.079 0.083 0.000 0.000

Newey-West (1987), fixed-b (KVB) 0.002 0.002 0.068 0.049

Table 5: Empirical small-sample power for model M1

5% nominal size, T = 200 δ = 0.2 δ = 0.4 δ = 0.8 δ = 1.6

ĴT 0.481 0.924 1.000 1.000

ĴT,pw,1 0.394 0.887 1.000 1.000

ĴT,pw,SLS 0.381 0.907 1.000 1.000

ĴT,pw,SLS,µ 0.370 0.907 1.000 1.000

Andrews (1991) 0.479 0.943 1.000 1.000

Andrews (1991), prewhite 0.436 0.899 1.000 1.000

Newey-West (1987) 0.549 0.961 1.000 1.000

Newey-West (1987), prewhite 0.454 0.934 1.000 1.000

Newey-West (1987), fixed-b (KVB) 0.323 0.769 0.998 1.000

A-2



evolutionary spectra theory for har inference

Table 6: Empirical small-sample power for model M2

5% nominal size, T = 200 δ = 0.1 δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8

ĴT 0.153 0.403 0.906 0.996 1.000

ĴT,pw,1 0.150 0.366 0.858 0.987 1.000

ĴT,pw,SLS 0.177 0.390 0.878 0.992 1.000

ĴT,pw,SLS,µ 0.175 0.388 0.876 0.990 1.000

Andrews (1991) 0.203 0.503 0.930 0.997 0.999

Andrews (1991), prewhite 0.148 0.416 0.914 0.997 1.000

Newey-West (1987) 0.163 0.448 0.925 0.998 1.000

Newey-West (1987), prewhite 0.178 0.463 0.924 0.997 1.000

Newey-West (1987), fixed-b (KVB) 0.133 0.332 0.781 0.957 0.995

Table 7: Empirical small-sample power for model M3

5% nominal size, T = 200 δ = 0.1 δ = 0.2 δ = 0.4 δ = 0.8 δ = 1.6 δ = 2.5

ĴT 0.165 0.230 0.488 0.811 0.975 1.000

ĴT,pw,1 0.020 0.047 0.189 0.545 0.913 1.000

ĴT,pw,SLS 0.080 0.131 0.303 0.661 0.954 1.000

ĴT,pw,SLS,µ 0.068 0.105 0.275 0.651 0.931 1.000

Andrews (1991) 0.097 0.242 0.570 0.836 0.967 1.000

Andrews (1991), prewhite 0.026 0.074 0.254 0.599 0.874 1.000

Newey-West (1987) 0.108 0.195 0.448 0.793 0.976 1.000

Newey-West (1987), prewhite 0.035 0.094 0.298 0.627 0.874 1.000

Newey-West (1987), fixed-b (KVB) 0.012 0.061 0.254 0.605 0.882 0.996

Table 8: Empirical small-sample power for model M4

5% nominal size, T = 200 δ = 0.1 δ = 0.2 δ = 0.4 δ = 0.8 δ = 1.6 δ = 3

ĴT 0.112 0.135 0.310 0.645 0.969 1.000

ĴT,pw,1 0.010 0.021 0.073 0.339 0.856 1.000

ĴT,pw,SLS 0.064 0.089 0.166 0.431 0.874 1.000

ĴT,pw,SLS,µ 0.039 0.051 0.104 0.332 0.832 1.000

Andrews (1991) 0.108 0.218 0.484 0.749 0.915 0.995

Andrews (1991), prewhite 0.000 0.000 0.007 0.186 0.708 0.956

Newey-West (1987) 0.031 0.071 0.200 0.538 0.931 1.000

Newey-West (1987), prewhite 0.000 0.000 0.033 0.280 0.740 0.965

Newey-West (1987), fixed-b (KVB) 0.000 0.009 0.096 0.398 0.753 0.952
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Table 9: Empirical small-sample power for model M5

5% nominal size, T = 200 δ = 0.2 δ = 0.4 δ = 0.8 δ = 1.6 δ = 2.5

ĴT 0.365 0.705 0.935 0.977 1.000

ĴT,pw,1 0.213 0.446 0.717 0.795 0.890

ĴT,pw,SLS 0.232 0.511 0.792 0.908 1.000

ĴT,pw,SLS,µ 0.242 0.542 0.804 0.902 1.000

Andrews (1991) 0.249 0.427 0.532 0.816 0.718

Andrews (1991), prewhite 0.214 0.320 0.122 0.035 0.340

Newey-West (1987) 0.319 0.737 0.849 0.918 0.937

Newey-West (1987), prewhite 0.212 0.563 0.146 0.062 0.403

Newey-West (1987), fixed-b (KVB) 0.095 0.108 0.127 0.132 0.143

Table 10: Empirical small-sample power for model M6
M6, t2

5% nominal size, T = 200 δ = 0.1 δ = 0.2 δ = 0.4 δ = 0.8 δ = 1.6

ĴT 0.186 0.504 0.945 1.000 1.000

ĴT,pw,1 0.112 0.360 0.888 0.995 1.000

ĴT,pw,SLS 0.103 0.339 0.884 0.996 1.000

ĴT,pw,SLS,µ 0.102 0.334 0.888 0.996 1.000

Andrews (1991) 0.201 0.564 0.936 0.998 1.000

Andrews (1991), prewhite 0.169 0.499 0.916 0.996 1.000

Newey-West (1987) 0.223 0.543 0.935 0.990 1.000

Newey-West (1987), prewhite 0.215 0.530 0.925 0.996 1.000

Newey-West (1987), fixed-b (KVB) 0.131 0.368 0.776 0.974 1.000
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Table 11: Empirical small-sample power of the DM (1995) test
Model M7

5% nominal size, T = 400 δ = 0.2 δ = 0.5 δ = 2 δ = 5 δ = 10

ĴT 0.323 0.451 0.925 0.970 1.000

ĴT,pw,1 0.245 0.365 0.914 0.964 0.972

ĴT,pw,SLS 0.351 0.505 0.922 0.962 1.000

ĴT,pw,SLS,µ 0.341 0.499 0.934 1.000 1.000

ĴT , auto, pretest 0.329 0.457 0.932 1.000 1.000

ĴT,pw,SLS, pretest 0.372 0.516 0.942 1.000 1.000

Andrews (1991) 0.300 0.350 0.151 0.000 0.000

Andrews (1991), prewhite 0.293 0.345 0.371 0.080 0.000

Newey-West (1987) 0.297 0.350 0.598 0.817 0.782

Newey-West (1987), prewhite 0.288 0.314 0.191 0.000 0.000

Newey-West (1987), fixed-b (KVB) 0.231 0.201 0.000 0.000 0.000

Table 12: Empirical small-sample power of the GR (2009) test
Model M8

5% nominal size, T = 800 δ = 0.2 δ = 0.4 δ = 0.8 δ = 1.6 δ = 2.5

ĴT 0.066 0.496 0.999 1.000 1.000

ĴT,pw,1 0.059 0.491 0.997 1.000 1.000

ĴT,pw,SLS 0.082 0.406 0.995 1.000 1.000

ĴT,pw,SLS,µ 0.104 0.560 0.996 1.000 1.000

Andrews (1991) 0.000 0.350 0.000 0.000 0.000

Andrews (1991), prewhite 0.000 0.345 0.133 0.591 0.742

Newey-West (1987) 0.000 0.350 0.598 0.000 0.000

Newey-West (1987), prewhite 0.000 0.314 0.191 0.000 0.000

Newey-West (1987), fixed-b (KVB) 0.026 0.201 0.000 0.000 0.000

B Supplemental Materials

The supplement for online publication [cf. Casini (2021)] reviews how to apply the proposed DK-

HAC estimator in GMM and IV contexts and contains the proofs of the results of Section 3. An

additional supplement, not for publication, includes the proofs of the results of Section 2 and 4-5.
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S.A Appendix: Proofs of the Results of Section 3

In the proofs below, we discard the degrees of freedom adjustment T/ (T − p) from the derivations since
asymptotically it does not play any role. Similarly, we use T/nT in place of (T − nT ) /nT in the expression
for Γ̂ (k). In some of the proofs below we first consider the locally stationary case under Assumption
S.A.1-S.A.2 and then extend the results to the SLS case. Note that Assumption S.A.1-S.A.2 are implied
by Assumption 3.1-3.2 since the former are weaker because local stationarity does not allow for break
points in the spectrum. A function G (·, ·) : [0, 1] × R → C is said to be right-differentiable at u0 if
∂G (u0, ω) /∂+u , limu→u+

0
(G (u0, ω) − G (u, ω)) / (u − u0) exists for any ω ∈ R. We sometimes use

∑
t

omitting the limits of the summation for the sum in c̃T (u, k).

Assumption S.A.1. {Vt,T } is a mean-zero locally stationary process, A (u, ω) is twice differentiable in u
with uniformly bounded and Lipschitz continuous derivatives (∂/∂u) A (u, ·) and

(
∂2/∂u2

)
A (u, ·), and

Lipschitz continuous in the second component with index ϑ = 1.

Assumption S.A.2. (i)
∑∞

k=−∞ supu∈[0, 1] ‖c (u, k)‖ < ∞,
∑∞

k=−∞ supu∈[0, 1]

∥∥(
∂2/∂u2

)
c (u, k)

∥∥ < ∞ and
∑∞

k=−∞

∑∞
j=−∞

∑∞
l=−∞ supu∈[0, 1] κ

(a,b,c,d)
V,⌊T u⌋ (k, j, l) < ∞ for all a, b, c, d ≤ p; (ii) For all a, b, c, d ≤

p there exists a function κ̃a,b,c,d : [0, 1] × Z × Z × Z → R such that supu∈[0, 1] |κ(a,b,c,d)
V,⌊T u⌋ (k, s, l) −

κ̃a,b,c,d (u, k, s, l) | ≤ KT −1 for some constant K; the function κ̃a,b,c,d (u, k, s, l) is twice differentiable in
u with uniformly bounded and Lipschitz continuous derivative

(
∂2/∂u2

)
κ̃a,b,c,d (u, ·, ·, ·).

S.A.1 Preliminary Lemmas

Lemma S.A.1. Under Assumption 3.1-3.2,

sup
u∈{{(0, 1)}/{λ0

j , j=1,..., m0}}

sup
k∈Z

∥∥∥Cov
(
V⌊T u⌋,T , V⌊T u⌋−k,T

)
− c (u, k)

∥∥∥ = O(T −1),

sup
u∈(0, 1)

sup
k≥0

∥∥∥Cov
(
V⌊T u⌋,T , V⌊T u⌋−k,T

)
− c (u, k)

∥∥∥ = O(T −1),

max
u=λ0

j , j=1,..., m0

sup
k<0

∥∥∥Cov
(
V⌊T u⌋,T , V⌊T u⌋−k,T

)
− c (u, −k)

∥∥∥ = O(T −1).

Proof of Lemma S.A.1. It is sufficient to consider the scalar case p = 1. Consider first Tu /∈ T , λ0
j−1 <

u < λ0
j . Using the spectral representation (2.2), (2.4) and Assumption 2.1 leads to

Cov
(
V⌊T u⌋,T , V⌊T u⌋−k,T

)
=

✂ π

−π
exp (iωk) A0

j,⌊T u⌋,T (ω) A0
j,⌊T u⌋−k,T (−ω) dω

=

✂ π

−π
exp (iωk) Aj (u, ω) Aj (u − k/T, −ω) dω + O(T −1)

= c (u, k) + O(T −1), (S.1)

where the O(T −1) term is uniform in u ∈ {{(0, 1)}/{λ0
j , j = 1, . . . , m0}} and k. Now consider the case

Tu ∈ T , u = T 0
j /T and k ≥ 0. Using (2.2) and (2.4) yields

Cov
(
V⌊T u⌋,T , V⌊T u⌋−k,T

)
=

✂ π

−π
exp (iωk) A0

j,⌊T u⌋,T (ω) A0
j+1,⌊T u⌋−k,T (−ω) dω
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=

✂ π

−π
exp (iωk) Aj (u, ω) Aj+1 (u − k/T, −ω) dω + O(T −1)

= c (u, −k) + O(T −1), (S.2)

where the O
(
T −1

)
term is uniform in u and k ≥ 0. The argument for the case Tu ∈ T and k < 0 is the

same as for the case Tu /∈ T . �

Lemma S.A.2. Under Assumption S.A.1-S.A.2, supu∈(0, 1) supv, k∈Z ||Γu (v) − Γu+k/T (v) || = O(T −1).

Proof of Lemma S.A.2. We know that Γu (v) = c (u, v) + O(T −1) uniformly in u and v by Lemma S.A.1
where c (u, v) =

✁ π
−π eiωvf (u, ω) dω. Using Assumption S.A.1,

c (u, v) =

✂ π

−π
eiωvf (u + k/T, ω) dω + O (k/T )

= c (u + k/T, v) + O (k/T )

= Γu+k/T (v) + O (k/T ) + O(T −1),

uniformly in u ∈ (0, 1) and v, k ∈ Z. �

Let

MSE (c̃T (u0, k)) = Tb2,TE

[
vec (c̃T (u0, k) − c (u0, k))′ Wvec (c̃T (u0, k) − c (u0, k))

]
,

where W is some p2 × p2 weight matrix.

Lemma S.A.3. Suppose Assumption S.A.1-S.A.2 hold and b2,T → 0 as T → ∞. Then, for all u0 ∈ (0, 1),

E [c̃T (u0, k)] = c (u0, k) +
1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

[
∂2

∂2u
c (u0, k)

]
+ o

(
b2

2,T

)
+ O (1/ (Tb2,T )) , (S.3)

and for all j, l, r, w ≤ p,

Cov
[
c̃

(j,l)
T (u0, k) , c̃

(r,w)
T (u0, k)

]
(S.4)

=
1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

l=−∞

[
c(j,r) (u0, l) c(l,w) (u0, l) + c(j,w) (u0, l) c(l,r) (u0, l + 2k)

]

+
1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

h1=−∞

κ̃j,l,r,w (u0, −k, h1, h1 − k) + o

(
1

Tb2,T

)
.

If Tb5
2,T → η ∈ (0, ∞), then, for all u0 ∈ (0, 1), c̃T (u0, k) − c (u0, k) = OP

(√
Tb2,T

)
.

If in addition Vt,T is Gaussian, then for all u0 ∈ (0, 1),

Cov
[
c̃

(j,l)
T (u0, k) , c̃

(r,w)
T (u0, k)

]

=
1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

l=−∞

[
c(j,r) (u0, l) c(l,w) (u0, l) + c(j,w) (u0, l) c(l,r) (u0, l + 2k)

]
(S.5)

+ o (1/ (Tb2,T )) ,
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and if Tb5
2,T → η ∈ (0, ∞), then

lim
T →∞

MSE (c̃T (u0, k)) =
η

4

(
✂ 1

0
x2K2 (x) dx

)2 [
∂2

∂2u
vec (c (u0, k))

]′

W

[
∂2

∂2u
vec (c (u0, k))

]

+

✂ 1

0
K2

2 (x) dx trW
∞∑

l=−∞

vec (c (u0, l))
[
vec (c (u0, l))′ + vec (c (u0, l + 2k))′

]
.

Proof of Lemma S.A.3. The bias expression follows from Dahlhaus (1997). For the second moment and
MSE of c̃T (u0, k), we first present the proof for the case where Vt,T is Gaussian and p = 1. Evaluating
the expectation, we have for k < 0,

Var [c̃T (u0, k)]

=
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
E (Vt,T Vs,T )E (Vt+k,T Vs+k,T )

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
E (Vt,T Vt+k,T )E (Vs,T Vs+k,T )

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
E (Vt,T Vs+k,T )E (Vs,T Vt+k,T )

− [E (c̃T (u0, k))]2 .

Using the continuity of K2, (s − t) /T → 0 for fixed s and t, the smoothness of Γu (·) and Lemma S.A.1,
implies that the first term on the right-hand side is equal to

1

Tb2,T

✂ 1

0
x2K2 (x) dx

∞∑

l=−∞

c (u0, l)2.

For the second and third terms we use a similar argument with in addition Lemma 6.2.1 in Fuller (1995)
so that

Var [c̃T (u0, k)]

=
1

Tb2,T

✂ 1

0
x2K2 (x) dx

∞∑

l=−∞

c (u0, l)2 +
1

Tb2,T

✂ 1

0
x2K2 (x) dx

∞∑

l=−∞

c (u0, l) c (u0, l + 2k) + o

(
1

Tb2,T

)
.

(S.6)

Next, (S.5) follows similarly. We have

Cov
[
c̃

(j,l)
T (u0, k) , c̃

(r,w)
T (u0, k)

]

=
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
E

(
V

(j)
t,T V

(r)
s,T

)
E

(
V

(l)
t+k,T V

(w)
s+k,T

)

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
E

(
V

(j)
t,T V

(w)
s+k,T

)
E

(
V

(l)
t+k,T V

(r)
s,T

)
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=
1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

l=−∞

[
c(j,r) (u0, l) c(l,w) (u0, l) + c(j,w) (u0, l) c(l,r) (u0, l + 2k)

]
+ o (1/ (Tb2,T )) .

Using a standard bias-variance argument, we have c̃T (u0, k) − c (u0, k) = oP (1). If Tb5
2,T → η ∈ (0, ∞),

the asymptotic MSE of c̃T (u0, k) is given by

lim
T →∞

MSE (c̃T (u0, k)) =
η

4

(
✂ 1

0
x2K2 (x) dx

)2 [
∂2

∂2u
c (u0, k)

]2

+

✂ 1

0
K2

2 (x) dx
∞∑

l=−∞

c (u0, l) [c (u0, l) + c (u0, l + 2k)] . (S.7)

The latter suggests that if Tb5
2,T → η ∈ (0, ∞), then c̃T (u0, k)−c (u0, k) = OP

(√
Tb2,T

)
for all u0 ∈ (0, 1).

The MSE expression for the multivariate case follows from (S.7).
Consider now the second moment of c̃T (u0, k) for the general case. When Vt,T is non-Gaussian,

there is an extra term in Cov[c̃
(j,l)
T (u0, k) , c̃

(r,w)
T (u0, k)], namely

1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
κ

(j,l,r,w)
V,t (−k, s − t, s − t − k).

By Assumption S.A.2 with u = t/T,

sup
u∈(0, 1)

∣∣∣κ(j,l,r,w)
V,T u (−k, s − Tu, s − Tu − k) − κ̃j,l,r,w (u, −k, s − Tu, s − Tu − k)

∣∣∣ = O(T −1).

Taking a second-order Taylor’s expansion of κ
(j,l,r,w)
V,T u around u0 we have

1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
κ

(j,l,r,w)
V,T u (−k, s − Tu, s − Tu − k)

=
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)

× κ̃j,l,r,w (u0, −k, s − Tu0, s − Tu0 − k)

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)

× ∂κ̃j,l,r,w

∂u
(u0, −k, s − Tu0, s − Tu0 − k) (u0 − u)

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)

× ∂2κ̃j,l,r,w

∂u2
(u0, −k, s − Tu0, s − Tu0 − k) (u0 − u)2

=
1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

h1=−∞

κ̃j,l,r,w (u0, −k, h1, h1 − k) + o

(
1

Tb2,T

)
.�
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Lemma S.A.4. Suppose Assumption 3.1-3.2 hold and b2,T → 0 as T → ∞. For each Tλ0
j = Tu0 ∈ T

(j = 1, . . . , m0) and |k| /Tb2,T → η2 ∈ (0, λ0
j+1 − λ0

j ),

E [c̃T (u0, k)] = c (u0, k) +
1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

×
✂ π

−π
exp (iωk) (C1 (u0, ω) + C2 (u0, ω) + C3 (u0, ω)) dω + O

(
1

Tb2,T

)
+ o

(
b2

2,T

)
,

where

C1 (u0, ω) = 2
∂Aj (u0, −ω)

∂−u

∂Aj+1 (v0, ω)

∂+v
, C2 (u0, ω) =

∂2Aj+1 (v0, ω)

∂+v2
Aj (u0, −ω)

C3 (u0, ω) =
∂2Aj (u0, ω)

∂−u2
Aj+1 (v0, ω) ,

and v0 = u0 − k/2T . For Tu0 /∈ T or for Tu0 ∈ T and |k| /Tb2,T → 0, (S.3) and (S.4) hold. For all
u0 ∈ (0, 1) , limT →∞ b−2

2,T E [c̃T (u0, k) − c (u0, k)] < ∞, and if further it holds that Tb5
2,T → η ∈ (0, ∞) ,

then limT →∞ Tb2,T Var [c̃T (u0, k)] < ∞. Furthermore, we have ĉT (u0, k) − c (u0, k) = OP

(√
Tb2,T

)
for

all u0 ∈ (0, 1).

Proof of Lemma S.A.4. If Tu0 /∈ T then the result follows from Lemma S.A.3. Suppose Tu0 ∈ T and
k/Tb2,T → 0 (the case k < 0 is similar and omitted). We omit the subscript j from A0

j,s−k,T (ω) and from
Aj ((s − k) /T, ω) since the value j is determined by s and s − k, respectively, and can thus be omitted.
Using (2.2) we have,

E [c̃T (u0, k)] =
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s − k/2) /T

b2,T

)
✂ π

−π
exp (iωk) A0

s−k,T (ω) A0
s,T (−ω) dω.

Since K2 (x) = 0 for x < 0, the above sum runs up to s = Tu0 + k/2T . Hence, the behavior of A0
s,T (ω)

only matters on a left neighborhood of u0. Using (2.4) we have,

E [c̃T (u0, k)] =
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s − k/2) /T

b2,T

)
✂ π

−π
exp (iωk) A

(
s − k

T
, ω

)
A

(
s

T
, −ω

)
dω + O

(
T −1

)
.

By the definition of f (·, ·), it follows that,

E [c̃T (u0, k)] =
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s − k/2) /T

b2,T

)
✂ π

−π
exp (iωk) f

(
s − k/2

T
, ω

)
dω + O

(
T −1

)
.

Let uǫ,T = u0 − ǫT , where ǫT > 0. Since f (u, ω) is twice differentiable in u at u Ó= λ0
j (cf. Assumption

3.1), by taking a second-order Taylor’s expansion of f around uǫ,T we have

E [c̃T (u0, k)] =
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s − k/2) /T

b2,T

)
✂ π

−π
exp (iωk) f (uǫ,T , ω) dω
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+
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s − k/2) /T

b2,T

)
✂ π

−π
exp (iωk)

∂f (uǫ,T , ω)

∂u

(
s − k/2

T
− uǫ,T

)
dω

+
1

2

1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s − k/2) /T

b2,T

)
✂ π

−π
exp (iωk)

∂2f (uǫ,T , ω)

∂u2

(
s − k/2

T
− uǫ,T

)2

dω

+ o
(
b2

2,T

)
+ O

(
1

Tb2,T

)
.

Choose ǫT = oP(max{b2
2,T , 1/(Tb2,T )}). Using

✁ 1
0 K2 (x) dx = 1, K2 (x) = K2 (1 − x) and the definition

of c (uǫ,T , k), the right-hand side above is equal to

c (uǫT , k) +
1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

✂ π

−π
exp (iωk)

∂2f (uǫT , ω)

∂u2
dω + O

(
1

Tb2,T

)
+ o

(
b2

2,T

)
.

Since c (u0, k) and ∂2f (u0, ω) /∂u2 are left-Lipschitz continuous by Assumption 3.1-(iii),

c (uǫT , k) − c (u0, k) = OP (ǫT ) ,
∂2f (uǫT , ω)

∂u2
− ∂2f (u0, ω)

∂−u2
= OP (ǫT ) .

Then,

E [c̃T (u0, k) − c (u0, k)] =
1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

✂ π

−π
exp (iωk)

∂2f (u0, ω)

∂−u2
dω + O

(
1

Tb2,T

)
+ o

(
b2

2,T

)
.

It remains to consider the case Tu0 = Tλ0
j ∈ T and |k| /T → η2 ∈ (0, λ0

j+1 − λ0
j ). Suppose k < 0 (the

case k > 0 is similar and omitted). The derivations for the bias expression are different. Again, using
(2.2) we have,

E [c̃T (u0, k)] =
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)
✂ π

−π
exp (iωk) A0

s+k,T (ω) A0
s,T (−ω) dω.

Using (2.4), we have

E [c̃T (u0, k)] =
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)
✂ π

−π
exp (iωk) A

(
s + k

T
, ω

)
A

(
s

T
, −ω

)
dω + O

(
T −1

)
.

We cannot use the property fj (u, ω) = |Aj (u, ω)|2 for T 0
j−1/T < u = t/T ≤ T 0

j /T because now u0 =
s+k/2 implies s = Tu0 −k/2 > Tu0. That is, Aj ((s + k) /T, ω) Aj+1 (s/T, −ω) cannot be approximated
by fj (s − k/2, ω) for those s such that s > T 0

j . However, by taking a second-order Taylor’s expansion of
Aj about u0 − ǫ1,T and of Aj+1 about v0 + ǫ2,T where v0 = u0 − k/2T and ǫ1,T , ǫ2,T > 0, we have

E [c̃T (u0, k)]

=
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)
✂ π

−π
exp (iωk) Aj+1 (v0 + ǫ2,T , ω) Aj (u0 − ǫ1,T , −ω) dω
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+
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)
✂ π

−π
exp (iωk)

[
∂Aj+1 (v0 + ǫ2,T , ω)

∂v

× Aj (u0 − ǫ1,T , −ω)

(
s

T
− v0 − ǫ2,T

)

+
∂Aj (u0 − ǫ1,T , −ω)

∂u
Aj+1 (v0 + ǫ2,T , ω)

(
s + k/2

T
− u0 + ǫ1,T

)]
dω

+
1

2

1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)
✂ π

−π
exp (iωk)

[
∂2Aj+1 (v0 + ǫ2,T , ω)

∂v2

× Aj (u0 − ǫ1,T , −ω)

(
s

T
− v0 − ǫ2,T

)2

+
∂2Aj (u0 − ǫ1,T , −ω)

∂u2
Aj+1 (v0 + ǫ2,T , ω)

(
s + k/2

T
− u0 + ǫ1,T

)2
]

dω

+
1

Tb2,T

T∑

s=k+1

K∗
2

(
u0 − (s + k/2) /T

b2,T

)

×
✂ π

−π
exp (iωk)

[
∂Aj+1 (v0 + ǫ2,T , ω)

∂v

∂Aj (u0 − ǫ1,T , −ω)

∂u

(
s

T
− v0 − ǫ2,T

) (
s + k/2

T
− u0 + ǫ1,T

)]
dω

(S.8)

+ o
(
b2

2,T

)
.

By Assumption 3.1, Aj (u, −ω), ∂Aj (u, −ω) /∂u and ∂2Aj (u, −ω) /∂u2 are left-continuous at u = u0,
and Aj+1 (u, ω), ∂Aj+1 (u, ω) /∂u and ∂2Aj+1 (u, ω) /∂u2 are right-continuous at u = v0, thus we have,

Aj (u0 − ǫ1,T , −ω) − Aj (u0, −ω) = OP (ǫ1,T ),
∂Aj (u0 − ǫ1,T , −ω)

∂u
− ∂Aj (u0, −ω)

∂−u
= OP (ǫ1,T ) ,

∂2Aj (u0 − ǫ1,T , −ω)

∂u2
− ∂2Aj (u0, −ω)

∂−u2
= OP (ǫ1,T )

Aj+1 (v0 + ǫ2,T , ω) − Aj+1 (v0, ω) = OP (ǫ2,T ),
∂Aj+1 (v0 + ǫ2,T , ω)

∂v
− ∂Aj+1 (v0, ω)

∂+v
= OP (ǫ2,T ) ,

∂2Aj+1 (v0 + ǫ2,T , ω)

∂v2
− ∂2Aj+1 (v0, ω)

∂+v2
= OP (ǫ2,T ) .

Choose ǫ1,T = oP(max{b2
2,T , 1/ (Tb2,T )}) and ǫ2,T = oP(max{b2

2,T , 1/ (Tb2,T )}). Using the definition of
c (u0, k) for k < 0, (S.8) is equal to,

c (u0, k) + b2
2,T

✂ 1

0
x2K2 (x) dx

✂ π

−π
exp (iωk) (C1 (u0, ω) + C2 (u0, ω) + C3 (u0, ω)) dω

+ O

(
1

Tb2,T

)
+ o

(
b2

2,T

)
.

For Tu0 /∈ T , (S.3) and (S.4) follow by a similar proof as for Lemma S.A.3. Next, let us consider
Var [c̃T (u0, k)] for p = 1 and Vt,T Gaussian. Assume u0 = λ0

j and |k| /Tb2,T → η2 ∈ (0, λ0
j+1 − λ0

j ), we
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have for k < 0,

Var [c̃T (u0, k)]

=
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

b2,T

)
K∗

2

(
u0 − (s + k/2) /T

b2,T

)
E (Vt,T Vs,T )E (Vt+k,T Vs+k,T )

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

b2,T

)
K∗

2

(
u0 − (s + k/2) /T

b2,T

)
E (Vt,T Vs+k,T )E (Vs,T Vt+k,T ) .

By (2.4), A0
s+k,T (ω) A0

t,T (−ω) = Aj ((s + k) /T, ω) Aj+1 (t/T, −ω) + O(T −1) and A0
t,T (ω) A0

s,T (−ω) =

Aj+1 (t/T, ω) Aj+1 (s/T, −ω)+O(T −1) for s, t = Tu0 −k/2. Now take a second order Taylor’s expansion
of Aj+1 around v0 = u0 − k/2T + ǫ2,T and of Aj around uǫ,T = u0 − ǫT , where ǫ2,T , ǫT > 0. Applying the
manipulations in (S.8) involving Aj and Aj+1 combined with the same derivations that led to (S.6) we
obtain,

Var [c̃T (u0, k)] =

✂ 1

0
K2 (x)2 dx





∞∑

l=−∞

[c (v0, l) c (u0, l + 2k)]

+
0∑

l=−∞

[c (u0, l) c (u0, l)] +
∞∑

l=1

[c (v0, l) c (v0, l)]



 , (S.9)

where c (u0, ·) in the second line above takes the form [cf. the definition of c (u0, l) for l < 0 at the end
of Section 2.1],

c (u0, l) =

✂ π

−π
exp (iωl) Aj (u0, ω) Aj+1 (u0 − l/T, ω) dω.

When Vt,T is non-Gaussian, there is an extra term in Cov[c̃
(j,l)
T (u0, k) , c̃

(r,w)
T (u0, k)], namely

1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)
κ

(j,l,r,w)
V,t (−k, s − t, s − t − k). (S.10)

By Assumption 3.2 with u = t/T,

sup
1≤j≤m0+1

sup
λ0

j−1<u≤λ0
j

∣∣∣κ(j,l,r,w)
V,T u (−k, s − Tu, s − Tu − k) − κ̃j,l,r,w (u, −k, s − Tu, s − Tu − k)

∣∣∣ = O
(
T −1

)
.

Taking a second-order Taylor’s expansion of κ
(j,l,r,w)
V,T u with respect to the first argument around v0 =

u0 − k/2T + ǫ2,T with ǫ2,T > 0, we have

1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

b2,T

)
K∗

2

(
u0 − (s + k/2) /T

b2,T

)
κ

(j,l,r,w)
V,t (−k, s − t, s − t − k)

=
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

b2,T

)
K∗

2

(
u0 − (s + k/2) /T

b2,T

)
(S.11)
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× κ̃j,l,r,w (v0, −k, s − Tv0, s − Tv0 − k)

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

b2,T

)
K∗

2

(
u0 − (s + k/2) /T

b2,T

)

× ∂κ̃j,l,r,w

∂v
(v0, −k, s − Tv0, s − Tv0 − k) (v0 − t/T )

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

b2,T

)
K∗

2

(
u0 − (s + k/2) /T

b2,T

)

× ∂2κ̃j,l,r,w

∂v2
(v0, −k, s − Tv0, s − Tv0 − k) (v0 − t/T )2 + O

(
T −1

)
.

Let ǫ2,T = oP(max{b2
2,T , 1/ (Tb2,T )}). Since κ̃j,l,r,w (v0, ·, ·, ·) is uniformly piecewise Lipschitz continuous

by Assumption 3.2-(ii), the first term on the right-hand side above is equal to

1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
u0 − (t + k/2) /T

bT

)
K∗

2

(
u0 − (s + k/2) /T

bT

)

×
(
κ̃j,l,r,w (v0, −k, s − Tv0, s − Tv0 − k) + O

(
T −1

))
.

The second and third term of (S.11) are of smaller order o (1/Tb2,T ) . Thus, (S.10) is equal to

1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

h1=−∞

κ̃j,l,r,w (v0, −k, h1, h1 − k) + o

(
1

Tb2,T

)
.

It remains to derive the expressions for Var [c̃T (u0, k)] and Cov[c̃
(j,l)
T (u0, k) , c̃

(r,w)
T (u0, k)] for the case

|k| /Tb2,T → 0. As seen when studying the bias, the behavior of A0
·,T (·) only matters on a left neighborhood

of u0 and thus the result remains the same as in the locally stationary case. The argument involves using
first a Taylor’s expansion around u0 − ǫ1,T with ǫ1,T > 0 and then exploiting left-Lipschitz continuity. As
in the proof of Lemma S.A.3, basic manipulations lead to the bound for the MSE. Then, consistency and
the rate of convergence follow from the same arguments used there. �

Lemma S.A.5. Cosnider p = 1. Under Assumption 3.1-3.2, supk≥1 Tb2,T Var(Γ̃(k)) = O (1) .

Proof of Lemma S.A.5. We have for k ≥ 0,

Var
(
Γ̃ (k)

)
=

(
nT

T

)2 ⌊T/nT ⌋∑

r=0

⌊T/nT ⌋∑

w=0

Cov (c̃T (rnT /T, k) , c̃T (wnT /T, k)) ,

with

Cov (c̃T (rnT /T, k) , c̃T (wnT /T, k))

=
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
rnT /T − (t + k/2) /T

bT

)
K∗

2

(
wnT /T − (s + k/2) /T

bT

)

× E (Vt,T Vt+k,T Vs,T Vs+k,T )

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
rnT /T − (t + k/2) /T

bT

)
K∗

2

(
wnT /T − (s + k/2) /T

bT

)
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× E (Vt,T Vs,T )E (Vt+k,T Vs+k,T )

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
rnT /T − (t + k/2) /T

bT

)
K∗

2

(
wnT /T − (s + k/2) /T

bT

)

× E (Vt,T Vt+k,T )E (Vs,T Vs+k,T )

+
1

(Tb2,T )2

∑

t

∑

s

K∗
2

(
rnT /T − (t + k/2) /T

bT

)
K∗

2

(
wnT /T − (s + k/2) /T

bT

)

× E (Vt,T Vs+k,T )E (Vs,T Vt+k,T ) − E (c̃T (rnT /T, k))E (c̃T (wnT /T, k)) .

Proceeding as in the proof of Lemma S.A.4, we have

Cov (c̃T (rnT /T, k) , c̃T (wnT /T, k))

=
1

Tb2,T

✂ 1

0
K2 (x) dx

∞∑

h1=−∞

κ̃ (rnT /T, −k, h1, h1 − k)

+
1

Tb2,T

✂ 1

0
x2K2 (x) dx

∞∑

l=−∞

c (rnT /T, l) c (wnT /T, l)

+
1

Tb2,T

✂ 1

0
x2K2 (x) dx

∞∑

l=−∞

c (rnT /T, l) c (wnT /T, l + 2k) + o

(
1

Tb2,T

)
,

where κ̃ = κ̃1,1,1,1 is the cumulant for the univariate case. Note that

∞∑

l=−∞

c (rnT /T, l) c (wnT /T, l + 2k) ≤
∞∑

l=−∞

|c (rnT /T, l)|
∞∑

s=−∞

|c (wnT /T, s + 2k)|

≤
∞∑

l=−∞

|c (rnT /T, l)|
∞∑

s=−∞

|c (wnT /T, s)| .

The desired result then follows by Assumption 3.2-(i) and the convergence of approximation to Riemann
sums. �

S.A.2 Proofs of the Results of Section 3

S.A.2.1 Proof of Lemma 3.1

It follows by Lemma S.A.4. �

S.A.2.2 Proof of Theorem 3.1

We first prove the result for the locally stationary case (i.e., m = 0) and then extend it to the general
case m > 0. We begin with the result for the scalar case (p = 1) and then extend it to the vector case.

Lemma S.A.6. Suppose p = 1, K1 (·) ∈ K1, K2 (·) ∈ K2, Assumption S.A.1-S.A.2 hold, b1,T , b2,T → 0,
nT → ∞, nT /T → 0 and 1/Tb1,T b2,T → 0. We have:

(i) limT →∞ Tb1,T b2,T Var(J̃T ) = 4π2
✁

K2
1 (y) dy

✁ 1
0 K2

2 (x) dx(
✁ 1

0 f (u, 0) du)2.
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(ii) If 1/Tbq
1,T b2,T → 0, nT /Tbq

1,T → 0 and b2
2,T /bq

1,T → 0 for some q ∈ [0, ∞) for which K1,q, |
✁ 1

0

f (q) (u, 0) du| ∈ [0, ∞), then limT →∞ b−q
1,T [E(J̃T − JT )] = −2πK1,q

✁ 1
0 f (q) (u, 0) du.

(iii) If nT /Tbq
1,T → 0, b2

2,T /bq
1,T → 0 and Tb2q

1,T b2,T → γ ∈ (0, ∞) for some q ∈ [0, ∞) for which

K1,q, |
✁ 1

0 f (q) (u, 0) du| ∈ [0, ∞), then

lim
T →∞

MSE
(
Tb1,T b2,T , ĴT , 1

)

= 4π2


γK2

1,q

(
✂ 1

0
f (q) (u, 0) du

)2

+

✂

K2
1 (y) dy

✂

K2
2 (x) dx

(
✂ 1

0
f (u, 0) du

)2

 .

Proof of Lemma S.A.6. We begin with part (i). Note that for any fixed non-negative τ1, τ2 ∈ R,

Cov (VsVs−τ1 , VlVl−τ2)

= E [(VsVs−τ1 − E (VsVs−τ1)) (VlVl−τ2 − E (VlVl−τ2))]

= E (VsVs−τ1VlVl−τ2) − Γs/T (τ1) Γl/T (τ2) − Γs/T (τ1) Γl/T (τ2) − Γl/T (l − s) Γ(l−τ2)/T (l − s − τ2 + τ1)

− Γ(l−τ2)/T (l − s − τ2) Γl/T (l − s + τ1) + Γs/T (τ1) Γl/T (τ2) + Γl/T (l − s) Γ(l−τ2)/T (l − s − τ2 + τ1)

+ Γ(l−τ2)/T (l − s − τ2) Γl/T (l − s + τ1)

= κV,s (−τ1, l − s, l − s − τ2) + Γs/T (s − l) Γ(l−τ2)/T (l − s − τ2 + τ1)

+ Γs/T (s − l + τ2) Γl/T (l − s + τ1)

= κV,s (−τ1, l − s, l − s − τ2) + Γl/T (l − s) Γ(l−τ2)/T (l − s − τ2 + τ1)

+ Γ(l−τ2)/T (l − s − τ2) Γl/T (l − s + τ1) .

For large T , we have by Lemma S.A.2: Γ(l−τ2)/T (k) − Γl/T (k) = O (τ2/T ), and Γ(s−τ1)/T (k) = Γs/T (k) +
O (τ1/T ) uniformly in k, l and s. Apply the changes in variables w = s − l and v = l, then

T∑

s=τ1+1

T∑

l=τ2+1

Cov (VsVs−τ1 , VlVl−τ2)

=
T∑

s=τ1+1

T∑

l=τ2+1

κV,s (−τ1, l − s, l − s − τ2)

+
T∑

v=τ2+1

T −v∑

w=τ1+1−v

[
Γv/T (−w) Γv/T (−w + τ2 − τ1) + Γv/T (−w − τ2) Γv/T (−w + τ1)

]

+
T∑

v=τ2+1

T −v∑

w=τ1+1−v

[
Γv/T (−w) O (τ2/T ) + O (τ2/T ) Γv/T (−w + τ1)

]
. (S.12)

A bound for the term involving Γv/T (−w) O (τ2/T ) in (S.12) is

T∑

v=τ2+1

T −v∑

w=τ1+1−v

∣∣∣Γv/T (−w)
∣∣∣ O (τ2/T ) ≤ O (τ2/T )

T∑

v=τ2+1

T −v∑

w=τ1+1−v

sup
(v/T )∈[0, 1]

∣∣∣Γv/T (w)
∣∣∣

≤ O
(
T −1

)
, (S.13)
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where we have used Assumption S.A.2-(i). The argument for the term involving O (τ2/T ) Γv/T (−w + τ1)
is analogous. We next evaluate the covariance of c̃T (t/T, k). For any 1 ≤ t1, t2 ≤ T and (without loss of
generality) non-negative integers τ1, τ2 ∈ R, apply the following changes in variables w = s − l and v = l,
so that

Tb2,T Cov [c̃T (t1/T, τ1) , c̃T (t2/T, τ2)]

= Tb2,T

(
1

Tb2,T

)2 T∑

s=τ1+1

T∑

l=τ2+1

× K∗
2

(
(t1 − (s − τ1/2)) /T

b2,T

)
K∗

2

(
(t2 − (l − τ2/2)) /T

b2,T

)
Cov (VsVs−τ1 , VlVl−τ2)

=
1

Tb2,T

T∑

v=τ2+1

T −v∑

w=τ1+1−v

K∗
2

(
(t1 − (v + w − τ1/2)) /T

b2,T

)
K∗

2

(
(t2 − (v − τ2/2)) /T

b2,T

)

×
{[

Γv/T (−w) Γv/T (−w + τ2 − τ1) + Γv/T (−w − τ2) Γv/T (−w + τ1)
]}

+
1

Tb2,T

T∑

s=τ1+1

T∑

l=τ2+1

K∗
2

(
(t1 − (s − τ1/2)) /T

b2,T

)

× K∗
2

(
(t2 − (v − τ2/2)) /T

b2,T

)
κV,s (−τ1, l − s, l − s − τ2) + AT ,

where

AT ,
1

Tb2,T

T∑

v=τ2+1

T −v∑

w=τ1+1−v

K∗
2

(
(t1 − (v + w − τ1/2)) /T

b2,T

)
K∗

2

(
(t2 − (v − τ2/2)) /T

b2,T

)

×
{[

Γv/T (w) O (τ2/T ) + O (τ2/T ) Γv/T (w + τ1)
]}

.

Using (S.13), we have AT = o
(
T −1

)
. Then, using the change of variable z = v/Tb2,T ,

Tb2,T Cov [c̃T (t1/T, τ1) , c̃T (t2/T, τ2)]

=
1

Tb2,T

T∑

v=τ2+1

T −v∑

w=τ1+1−v

K∗
2

(
(t1 − v − w + τ1/2 + v − v) /T

b2,T

)
K∗

2

(
(t2 − v + τ2/2) /T

b2,T

)

× {[Γv (−w) Γv (−w + τ2 − τ1) + Γv (−w − τ2) Γv (−w + τ1)]}

+
1

Tb2,T

T∑

s=τ1+1

T∑

l=τ2+1

K∗
2

(
(t1 − (s − τ1/2)) /T

b2,T

)
K∗

2

(
(t2 − (v − τ2/2)) /T

b2,T

)

× κV,s (−τ1, l − s, l − s − τ2) + AT

=
1

Tb2,T

1/b2,T∑

z=(τ2+1)/T b2,T

T −T b2,T z∑

w=τ1+1−T b2,T z

K∗
2

(
(t1 + w + τ1/2) /T

b2,T
− z

)
K∗

2

(
(t2 + τ2/2) /T

b2,T
− z

)

(S.14)

×
{[

ΓzT b2,T
(−w) ΓzT b2,T

(−w + τ2 − τ1) + ΓzT b2,T
(−w − τ2) ΓzT b2,T

(−w + τ1)
]}
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+
1

Tb2,T

T∑

s=τ1+1

T∑

l=τ2+1

K∗
2

(
(t1 − (s + τ1/2)) /T

b2,T

)
K∗

2

(
(t2 − (v + τ2/2)) /T

b2,T

)

× κV,s (−τ1, l − s, l − s − τ2) + AT .

Thus, with u = t1/T and v = t2/T , the limit of the first term of (S.14) is equal to

✂ 1

0
K2

2 (x) dx

{
∞∑

w=−∞

[Γu (w) Γv (−w + τ2 − τ1) + Γu (w + τ2) Γv (−w + τ1)]

}
.

When τ1 = τ2 = k and t = t1 = t2, we have

Tb2,T Var (c̃T (t/T, k)) =

✂ 1

0
K2 (x)2 dx

{
∞∑

w=−∞

[Γu (w) Γu (w) + Γu (w + k) Γu (w − k)]

}

=

✂ 1

0
K2 (x)2 dx





∞∑

h=−∞

[Γu (h) Γu (h) + Γu (h + 2k) Γu (h)]



 ,

where u = t/T and we have used the change in variable h = w − k. Next, we consider Cov[Γ̃ (τ1) , Γ̃ (τ2)].
Note that,

Tb2,T Cov
[
Γ̃ (τ1) , Γ̃ (τ2)

]

→
✂ 1

0
K2

2 (x) dx

✂ 1

0

✂ 1

0





∞∑

h=−∞

[Γu (h) Γu (h − τ2 + τ1) + Γv (−h − τ2) Γv (−h − τ1)]



 dvdu.

The latter can be used to evaluate Var[
∑T −1

k=−T +1 K1 (b1,T k) Γ̃ (k)] as follows,

Tb1,T b2,T Var




T −1∑

k=−T +1

K1 (b1,T k) Γ̃ (k)




= 2b1,T

T −1∑

k=−T +1

T −1∑

j=0

K1 (b1,T k) K1 (b1,T j) (S.15)

×
(

nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

1

Tb2,T

T∑

s=k+1

T∑

l=j+1

K∗
2

(
(rnT + 1) − (s + k/2)

Tb2,T

)
K∗

2

(
(bnT + 1) − (l + j/2)

Tb2,T

)

×
([

Γl/T (l − s) Γl/T (l − s − j + k) + Γl/T (−s + l − τ2) Γl/T (−s + l + k)
]

+ κV,s (−k, l − s, l − s − j)

)
+ o (1) ,

where the o (1) term follows from AT = o (b1,T /T ). The term involving κV,s (−k, l − s, l − s − j) is
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dominated by

Cb1,T

∣∣∣∣∣∣

∞∑

k=−∞

∞∑

j=0

∞∑

w=−∞

sup
s

κV,s (−k, −w, −w − j)

∣∣∣∣∣∣
= O (b1,T ) ,

where C < ∞ and we have used Assumption S.A.2-(i). Now let w = s − l and v = l and rewrite (S.15) as

Tb1,T b2,T Var




T −1∑

k=−T +1

K1 (b1,T k) Γ̃ (k)




= 2b1,T

T −1∑

k=−T +1

T −1∑

j=0

K1 (b1,T k) K1 (b1,T j)

×
(

nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

1

Tb2,T

T∑

v=j+1

T −v∑

w=k+1−v

× K∗
2

(
(rnT + 1) − (w + v − k/2)

Tb2,T

)
K∗

2

(
(bnT + 1) − (v − j/2)

Tb2,T

)

×
[
Γv/T (−w) Γv/T (−w + j − k) + Γv/T (−w − j) Γv/T (−w + k)

]
+ o (1) + O (b1,T ) .

We next show that the term involving Γv/T (−w − j) Γv/T (−w + k) vanishes in the limit. Using a change
in variables z1 = j + k and z = w + j, the latter is bounded by

4b1,T

T −1∑

j=0

T −1+j∑

z1=j

K1 (b1,T (z1 − j)) K1 (b1,T j)

(
nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

× 1

Tb2,T

T∑

v=j+1

T −v+j∑

z=(z1−j)+1−v+j

K∗
2

(
(rnT + 1) − (z − j + v − (z1 − j) /2)

Tb2,T

)

× K∗
2

(
((bnT + 1) − (v − j/2)) /T

b2,T

) [
Γv/T (−z) Γv/T (−z + z1)

]
. (S.16)

Making the change in variable z2 = jb1,T , (S.16) can be expressed as,

4b1,T

(T −1)/b1,T∑

z2=0

T −1+z2/b1,T∑

z1=z2/b1,T

K1 (b1,T (z1 − z2/b1,T )) K1 (z2)

(
nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

× 1

Tb2,T

T∑

v=z2/b1,T +1

T −v+z2/b1,T∑

z=z1+1−v

K∗
2

(
(rnT + 1) − (z − z2/b1,T + v − (z1 − z2/b1,T ) /2)

Tb2,T

)

× K∗
2

(
((bnT + 1) − (v − z2/2b1,T )) /T

b2,T

) [
Γv/T (−z) Γv/T (−z + z1)

]
,

which converges to zero because the range of summation over z1 tends to infinity.
Next, let us consider the term of (S.15) involving Γv/T (−w) Γv/T (−w + j − k). With the changes

S-14



evolutionary spectra theory for har inference

in variables u1 = k − j and u2 = j, this term becomes

b1,T

T −1∑

u2=−T +1

T −1−u2∑

u1=−u2−T +1

K1 (b1,T (u2 + u1)) K1 (b1,T u2)

(
nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

1

Tb2,T

T∑

v=u2+1

T −v∑

w=u2+u1+1−v

(S.17)

× K∗
2

(
(rnT + 1) − (w + v − (u1 + u2) /2)

Tb2,T

)
K∗

2

(
(bnT + 1) − (v − u2/2)

Tb2,T

)

×
[
Γv/T (w) Γv/T (−w − u1)

]
.

Apply the change in variable z = b1,T u2 and consider the lattice points zn = nb1,T , where n = −T, . . . , T .
As T → ∞, the distance between the lattice points zn = nb1,T converges to zero and the highest lattice
point converges to infinity. Hence, (S.17) can be expressed as,

(T −1)b1,T∑

zn=−(T −1)b1,T

T −1−zn/b1,T∑

u1=−zn/b1,T −T +1

K1 (b1,T u1 + zn) K1 (zn) (S.18)

×
(

nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

1

Tb2,T

×
T∑

v=zn/b1,T +1

T −v∑

w=zn/b1,T +u1+1−v

K2

(
((rnT + 1) − (w + v − (zn/b1,T + u1) /2)) /T

b2,T

)

× K2

(
((bnT + 1) − (v − z/2b1,T )) /T

b2,T

) [
Γv/T (w) Γv/T (−w − u1)

]
.

By Lemma S.A.1, Γv/T (w) Γv/T (−w − u1) = c (v/T, −w) c (v/T, w + u1) + O
(
T −1

)
. By taking a second

order Taylor’s expansion of c (v/T, −w) around rnT /T and of c ((v − u1/1) /T, w + u1/2) around bnT /T ,
we have

T∑

v=zn/b1,T +1

T −v∑

w=zn/b1,T +u1+1−v

K2

(
((rnT + 1) − (w + v − (zn/b1,T + u1) /2)) /T

b2,T

)

× K2

(
((bnT + 1) − (v − z/2b1,T )) /T

b2,T

)
[c (v/T, −w) c (v/T, w + u1)]

=

✂ 1

0
K2 (x)2 dx c (rnT /T, −w) c (bnT /T, w + u1)

+ b2
2,T

✂ 1

0
x2K2 (x)2 dx

∂

∂v
c (v, −w) |v=rnT /T

∂

∂v
c (v, w + u1) |v=bnT /T

+ 2−1b2
2,T

✂ 1

0
x2K2 (x)2 dx

∂2

∂v2
c (v, −w) |v=rnT /T c (bnT /T, w + u1)

+ 2−1b2
2,T

✂ 1

0
x2K2 (x)2 dx c (rnT /T, −w)

∂2

∂v2
c (v, w + u1) |v=bnT /T
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+ o
(
b2

2,T

)
+ O

(
1

Tb2,T

)
.

We can now use Lemma S.A.1 backward to show that the limit of (S.18) is equal to

✂

K1 (y)2 dy

✂ 1

0
K2 (x)2 dx

✂ 1

0

✂ 1

0

∞∑

u1=∞

∞∑

w=−∞

[Γu (w) Γa (w + u1)] duda

=4π2

✂

K1 (y)2 dy

✂ 1

0
K2 (x)2 dx

(
✂ 1

0
f (u, 0) du

) (
✂ 1

0
f (a, 0) da

)
.

This proves the result of part (i). We now move to part (ii). Let

Jc,T ,

✂ 1

0
c (u, 0) + 2

T −1∑

k=1

✂ 1

0
c (u, k) du.

We begin with the following relationship,

E

(
J̃T − JT

)
=

T −1∑

k=−T +1

K1 (b1,T k)E
(
Γ̃ (k)

)
− Jc,T + (Jc,T − JT ) .

Using Lemma S.A.3, we have for any −T + 1 ≤ k ≤ T − 1,

E


nT

T

T/nT∑

r=0

c̃T (rnT /T, k) −
✂ 1

0
c (u, k) du




=
nT

T

T/nT∑

r=0

(
c (rnT /T, k) +

1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

∂2

∂2u
c (u, k) |u=rnT /T + o

(
b2

2,T

)
+ O

(
1

b2,T T

))

−
✂ 1

0
c (u, k) du

= O

(
nT

T

)
+

1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

✂ 1

0

∂2

∂2u
c (u, k) du + o

(
b2

2,T

)
+ O

(
1

Tb2,T

)
,

where the last equality follows from the convergence of approximations to Riemann sums. This leads to,

b−q
1,TE

(
J̃T − Jc,T

)

= −b−q
1,T

T∑

k=−T +1

(1 − K1 (b1,T k))

✂ 1

0
c (u, k) du

+
1

2

b2
2,T

bq
1,T

✂ 1

0
x2K2 (x) dx

T∑

k=−T +1

K1 (b1,T k)

✂ 1

0

∂2

∂2u
c (u, k) du + O

(
1

Tbq
1,T b2,T

)
+ O

(
nT

Tbq
1,T

)

= −b−q
1,T

T∑

k=−T +1

(1 − K1 (b1,T k))

✂ 1

0
c (u, k) du
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− 1

2
b2

2,T

✂ 1

0
x2K2 (x) dxO (1) +

1

2

b2
2,T

bq
1,T

✂ 1

0
x2K2 (x) dxO (1) + O

(
1

Tbq
1,T b2,T

)
+ O

(
nT

Tbq
1,T

)
,

since | ∑∞
k=−∞ |k|q

✁ 1
0

(
∂2/∂2u

)
c (u, k) du| < ∞ by Assumption S.A.2-(i). Since Jc,T − JT = O

(
T −1

)
, we

conclude that

lim
T →∞

b−q
1,TE

(
J̃T − JT

)
= −2πK1,q

✂ 1

0
f (q) (u, 0) du,

because b2
2,T /bq

1,T → 0. It remains to show part (iii). Note that Tb1,T b2,T = Tb1,T b2,T b2q
1,T /b2q

1,T =

b−2q
1,T /(1/Tb2q+1

1,T b2,T ) = b−2q
1,T / (1/ (γ + o (1))) . Hence, using part (i)-(ii), we deduce the desired result,

namely,

lim
T →∞

MSE
(
Tb1,T b2,T , J̃T , 1

)

= lim
T →∞

b−2q
1,T E

[(
J̃T − JT

)2
]

(γ + o (1)) + lim
T →∞

Tb1,T b2,T Var
(
J̃T

)

= 4π2


γK2

1,q

(
✂ 1

0
f (q) (u, 0) du

)2

+

✂

K2
1 (y) dy

✂ 1

0
K2

2 (x) dx

(
✂ 1

0
f (u, 0) du

)2

 . �

Lemma S.A.7. Suppose K1 (·) ∈ K1, K2 (·) ∈ K2, Assumption S.A.1-S.A.2 hold, b1,T , b2,T → 0, nT →
∞, nT /T → 0 and 1/Tb1,T b2,T → 0. Then, part (i)-(iii) of Theorem 3.1 hold.

Proof of Lemma S.A.7. We begin with part (i). We provide the expression for the asymptotic covariance
between the (a, l) and (m, n) elements of J̃T :

Tb1,T b2,T Cov




T −1∑

k=−T +1

K1 (b1,T k) Γ̃(a,l) (k) ,
T −1∑

j=−T +1

K1 (b1,T j) Γ̃(m,n) (j)




= 4b1,T

T −1∑

k=0

T −1∑

j=0

K1 (b1,T k) K1 (b1,T j)

(
nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

1

Tb2,T

T∑

s=k+1

T∑

h=j+1

(S.19)

× K∗
2

(
((rnT + 1) − (s − k/2)) /T

b2,T

)
K∗

2

(
((bnT + 1) − (h − j/2)) /T

b2,T

)

×
{

κ
(a,l,m,n)
V,s (−k, h − s, h − s − j)

+
[
Γ

(a,m)
h/T (h − s) Γ

(l,n)
h/T (h − s − j + k) + Γ

(a,n)
h/T (h − s − j) Γ

(l,m)
h/T (h − s + k)

]}
+ o (1) ,

where the o (1) term follows from using (S.13). The term involving κ
(a,l,m,n)
V,s (−k, h − s, h − s − j) is

negligible as for the scalar case. The limit of the term involving Γ
(a,m)
h/T (h − s) Γ

(l,n)
h/T (h − s + j − k) is,

according to the derivations to prove part (i) of Lemma S.A.6,

4π2

✂

K1 (y)2 dy

✂ 1

0
K2 (x)2 dx

(
✂ 1

0
f (a,m) (u, 0) du

) (
✂ 1

0
f (l,n) (v, 0) dv

)
. (S.20)
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Similarly, the limit of the term involving Γ
(a,n)
h/T (s − h − j) Γ

(l,m)
h/T (s − h + k) is the same as (S.20) but

with m and n interchanged. The commutation-tensor product formula arises from the fact that the

asymptotic covariances between J̃
(a,l)
T and J̃

(m,n)
T for a, l, m, n ≤ p are of the same form as the covari-

ances between XaXl and XmXn, where X = (X1, . . . , Xp)′ ∼ N (0, Σ). The formula then follows from
Var (vec (XX ′)) = Var (X ⊗ X) = (I + Cpp) Σ ⊗ Σ. The proof of part (ii) of the lemma follows that of
the scalar case with minor changes. Since part (iii) simply uses part (i)-(ii), it follows that

lim
T →∞

MSE
(
Tb1,T b2,T , J̃T , W

)

= lim
T →∞

γb−2q
1,T E

(
J̃T − JT

)′
WE

(
J̃T − JT

)
+ lim

T →∞
Tb1,T b2,T trW Var

(
vec

(
J̃T

))
,

converges to the desired limit. �

Lemma S.A.8. Suppose p = 1, K1 (·) ∈ K1, K2 (·) ∈ K2, Assumption 3.1-3.2 hold, b1,T , b2,T → 0,
nT → ∞, nT /T → 0 and 1/Tb1,T b2,T → 0. Then, (i)-(iii) of Lemma S.A.6 continue to hold.

Proof of Lemma S.A.8. We assume without loss of generality that m0 = 1 and provide the proof only
for the single break case. Hence, the break date is T 0

2 (i.e., T 0
1 = 0 and T 0

3 = T ). Note that by standard
properties of approximations to Riemann sums, Γ (k) →

✁ 1
0 (c (u, k)) du even when c (·, k) has a finite

number of discontinuities in u, where

Γ (k) ,
nT

T − nT

⌊(T −nT )/nT ⌋∑

r=0

c (rnT /T, k) .

Since the results in Lemma S.A.4 about the order of the bias and variance of c̃T (u0, k) are the same to
their counterpart results in Lemma S.A.3, the proof of Lemma S.A.6 can be repeated with the following
changes. We begin with part (i). For any fixed non-negative τ1, τ2 ∈ R,

Cov (VsVs−τ1 , VlVl−τ2)

= κV,s (−τ1, l − s, l − s − τ2) + Γl/T (l − s) Γ(l−τ2)/T (l − s − τ2 + τ1)

+ Γ(l−τ2)/T (l − s − τ2) Γl/T (l − s + τ1) .

When l = T 0
2 and τ2 < 0, Lemma S.A.2 cannot be applied because of the discontinuity in the spectrum

of {Vt,T } at time t = T 0
2 . Thus, the relation Γ(l−τ2)/T (k) − Γl/T (k) = (τ2/T ) for l = T 0

2 and τ2 < 0 does
not hold. One has to carry Γ(l−τ2)/T (k) through the proof. Applying the changes in variables w = s − l
and v = l, we have

T∑

s=τ1+1

T∑

l=τ2+1

Cov
(
Vs/T V(s−τ1)/T , Vl/T V(l−τ2)/T

)

=
T∑

s=τ1+1

T∑

l=τ2+1

κV,s (−τ1, l − s, l − s − τ2)

+
T∑

v=τ2+1

T −τ2−v∑

w=τ1+1−v

[
Γv/T (−w) Γ(v−τ2)/T (−w + τ2 − τ1) + Γ(v−τ2)/T (−w − τ2) Γv/T (−w + τ1)

]
.

(S.21)
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We next evaluate the covariance of c̃T (t/T, k). For any 1 ≤ t1, t2 ≤ T and (without loss of generality)
non-negative integers τ1, τ2 ∈ R,

T b2,T Cov [c̃T (t1/T, τ1) , c̃T (t2/T, τ2)]

= Tb2,T

(
1

Tb2,T

)2 T∑

s=τ1+1

T∑

v=τ2+1

× K∗
2

(
(t1 − (s − τ1/2)) /T

b2,T

)
K∗

2

(
(t2 − (v − τ2/2)) /T

b2,T

)
Cov (VsVs−τ1 , VlVl−τ2)

=
1

Tb2,T

T∑

v=τ2+1

T −v∑

w=τ1+1−v

K∗
2

(
(t1 − (v + w − τ1/2)) /T

b2,T

)
K∗

2

(
(t2 − (v − τ2/2)) /T

b2,T

)

×
{[

Γv/T (−w) Γ(v−τ2)/T (−w + τ2 − τ1) + Γ(v−τ2)/T (−w − τ2) Γv/T (−w + τ1)
]}

+
1

Tb2,T

T∑

s=τ1+1

T∑

l=τ2+1

K∗
2

(
(t1 − (s − τ1/2)) /T

b2,T

)

× K∗
2

(
(t2 − (v − τ2/2)) /T

b2,T

)
κV,s (−τ1, l − s, l − s − τ2) .

Then, using the change of variable z = v/Tb2,T ,

Tb2,T Cov [c̃T (t1/T, τ1) , c̃T (t2/T, τ2)]

=
1

Tb2,T

T∑

v=τ2+1

K∗
2

(
(t1 − v − w − τ1/2 + v − v) /T

b2,T

)
K∗

2

(
(t2 − zTb2,T − τ2/2) /T

b2,T

)

×
{[

Γzb2,T
(−w) Γzb2,T −τ2/T (−w + τ2 − τ1) + Γzb2,T −τ2/T (−w − τ2) Γzb2,T

(−w + τ1)
]}

+
1

Tb2,T

T∑

s=τ1+1

T∑

l=τ2+1

K∗
2

(
(t1 − (s − τ1/2)) /T

b2,T

)

× K∗
2

(
(t2 − (v + τ2/2)) /T

b2,T

)
κV,s (−τ1, l − s, l − s − τ2)

=
1

Tb2,T

1/b2,T∑

z=(τ2+1)/T b2,T

T −z/T b2,T∑

w=τ1+1−zT b2,T

K∗
2

(
(t1 + w − τ1/2) /T

b2,T
− z

)
K∗

2

(
(t2 − τ2/2) /T

b2,T
− z

)

(S.22)

×
{[

Γzb2,T
(−w) Γzb2,T −τ2/T (−w + τ2 − τ1) + Γzb2,T −τ2/T (−w − τ2) Γzb2,T

(−w + τ1)
]}

+
1

Tb2,T

T∑

s=τ1+1

T∑

l=τ2+1

K∗
2

(
(t1 − (s − τ1/2)) /T

b2,T

)

× K∗
2

(
(t2 − (v + τ2/2)) /T

b2,T

)
κV,s (−τ1, l − s, l − s − τ2) .

By Lemma S.A.1, Γzb2,T
(−w) Γzb2,T −τ2/T (−w + τ2 − τ1) = c (zb2,T /T, w) c (zb2,T − τ2/T, w − τ2 + τ1) +
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O
(
T −1

)
. We need to distinguish two cases. The first case involves both t1 and t2 being continuity

points (i.e., t1, t2 Ó= T 0
2 ). The second case involves either t1 or t2 (or both) being discontinuity points

(i.e., t1 = T 0
2 or t2 = T 0

2 , or t1 = t2 = T 0
2 ). The first case is the one considered in Lemma S.A.6

and thus we omit the details. For the second case, we cannot apply the same argument as in Lemma
S.A.6. Suppose t1 = T 0

2 whereas t2 Ó= T 0
2 . Let u1,ǫ,T = t1/T − ǫ1,T , ǫ1,T > 0. We proceed as in (S.8) by

taking a second order Taylor’s expansion of c (zb2,T /T, w) around u1,ǫ,T and then use the left-Lipschitz
continuity at t1/T . Repeat this argument for c (zb2,T − τ2/T, w + τ2) . For c (zb2,T − τ2/T, w − τ2 + τ1)
and c (zb2,T /T, w − τ1), take a Taylor’s expansion around t2/T . Finally, use Lemma S.A.1 backward to
obtain

c (t1/T, w) c (t2, w − τ2 + τ1) = Γt1/T (−w) Γt2/T (−w + τ2 − τ1) + O
(
T −1

)
.

Thus, with u = t1/T and v = t2/T , the limit of the first term of (S.22) is equal to

✂ 1

0
K2

2 (x) dx

{
∞∑

w=−∞

[Γu (w) Γv (−w + τ2 − τ1) + Γu (w + τ2) Γv (−w + τ1)]

}
. (S.23)

For the sub-case where only t2 is a discontinuity point, use a Taylor’s expansion of c (zb2,T /T, w) and
c (zb2,T − τ2/T, w + τ2) around t1/T , and proceed as in (S.8) by taking a second order Taylor’s expansion
of c (zb2,T − τ2/T, w − τ2 + τ1) and c (zb2,T /T, w − τ1) around u2,ǫ,T = t2/T − ǫ2,T , ǫ2,T > 0 and then use
the left-Lipschitz continuity at t2/T . Again using Lemma S.A.1 backward leads to (S.23). For the final
case where t1 = t2 = T 0

2 we need to proceed as in the previous two sub-cases with t1 = T 0
2 and t2 = T 0

2

being discontinuity points. This would lead to (S.23). We can use (S.23) to obtain,

Tb2,T Cov
[
Γ̃ (τ1) , Γ̃ (τ2)

]

→
✂ 1

0
K2

2 (x) dx

✂ 1

0

✂ 1

0





∞∑

h=−∞

[Γu (h) Γu (h − τ2 + τ1) + Γv (−h − τ2) Γv (−h − τ1)]



 dvdu.

In (S.22) the term involving κV,s (−τ1, l − s, l − s − τ2) is negligible as in Lemma S.A.6 while the term
involving Γ(l−τ2)/T (−w − j) Γl/T (−w + k) vanishes in the limit using the same argument as in the proof
of Lemma S.A.6. This proves the result of part (i).

We move to part (ii). Let

Jc,T =

✂ 1

0
c (u, 0) du + 2

T −1∑

k=1

✂ 1

0
c (u, k) du,

and TC , {{0, nT , . . . , T − nT , T} /T }. We begin with the following relationship,

E

(
J̃T − JT

)
=

T −1∑

k=−T +1

K1 (b1,T k)E
(
Γ̃ (k)

)
− Jc,T + (Jc,T − JT ) .
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Using Lemma S.A.4, we have for any −T + 1 ≤ k ≤ T − 1,

E


nT

T

T/nT∑

r=0

c̃T (rnT /T, k) −
✂ 1

0
c (u, k) du




=
nT

T

T/nT∑

r=0

c (rnT /T, k) −
✂ 1

0
c (u, k) du

+
1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

✂ 1

0

∂2

∂2u
c (u, k) du + o

(
b2

2,T

)
+ O

(
1

Tb2,T

)

+
1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

×
✂ 1

0

(
✂ π

−π
exp (iωk) (C1 (u, ω) + C2 (u, ω) + C3 (u, ω)) dω1 {Tu ∈ T }

)
du

+ o
(
b2

2,T

)
+ O

(
1

Tb2,T

)

= O

(
nT

T

)
+

1

2
b2

2,T

✂ 1

0
x2K2 (x) dx

✂ 1

0

∂2

∂2u
c (u, k) du + o

(
b2

2,T

)
+ O

(
1

Tb2,T

)
,

where the last equality follows from the convergence of approximations to Riemann sums and from the
fact that 1 {Tu ∈ T } has zero Lebesgue measure. Thus, b−q

1,TE(J̃T − Jc,T ) has the same form as in the

locally stationary case. The relation Jc,T − JT = O(T −1) continues to hold for SLS processes in virtue

of Lemma S.A.1. Hence, limT →∞ b−q
1,TE(J̃T − JT ) = −2πK1,q

✁ 1
0 f (q) (u, 0) du. Part (iii) follows from part

(i)-(ii). �

Proof of Theorem 3.1. We can now complete the proof of Theorem 3.1. We begin with part (i). We
provide the expression for the asymptotic covariance between the (a, l) and (m, n) elements of J̃T :

Tb1,T b2,T Cov




T −1∑

k=−T +1

K1 (b1,T k) Γ̃(a,l) (k) ,
T −1∑

j=−T +1

K1 (b1,T j) Γ̃(m,n) (j)




= b1,T

T −1∑

k=−T +1

T −1∑

j=−T +1

K1 (b1,T k) K1 (b1,T j)

(
nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

1

Tb2,T

T∑

s=k+1

T∑

h=j+1

(S.24)

× K∗
2

(
((rnT + 1) − (s − k/2)) /T

b2,T

)
K∗

2

(
((bnT + 1) − (h − j/2)) /T

b2,T

)

×
{

κ
(a,l,m,n)
V,s (−k, h − s, h − s − j)

+
[
Γ

(a,m)
h/T (h − s) Γ

(l,n)
(h−j)/T (h − s − j + k) + Γ

(a,n)
(h−j)/T (h − s − j) Γ

(l,m)
h/T (h − s + k)

]}
.

As for the scalar case, the term involving κ
(a,l,m,n)
V,s (−k, h − s, h − s − j) is negligible. The limit of the

term involving Γ
(a,m)
h/T (h − s) Γ

(l,n)
(h−j)/T (h − s − j + k) is, according to the derivations for the proof of part
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(i) of Lemma S.A.8,

4π2

✂

K1 (y)2 dy

✂ 1

0
K2 (x)2 dx

(
✂ 1

0
f (a,m) (u, 0) du

) (
✂ 1

0
f (l,n) (v, 0) dv

)
. (S.25)

Similarly, the limit of the term involving Γ
(a,n)
(h−j)/T (s − h − j) Γ

(l,m)
h/T (s − h + k) is the same as (S.25) but

with m and n interchanged. The commutation-tensor product formula follows from the same argument
as in Lemma S.A.7. The proof of part (ii) of the theorem follows from that of the scalar case with minor
changes. Since part (iii) simply uses part (i)-(ii), it follows that

lim
T →∞

MSE
(
Tb1,T b2,T , J̃T , W

)

= lim
T →∞

γb−2q
1,T E

(
J̃T − JT

)′
WE

(
J̃T − JT

)
+ lim

T →∞
Tb1,T b2,T trW Var

(
vec

(
J̃T

))
,

converges to the desired limit. �

S.A.2.3 Proof of Theorem 3.2

Under Assumption 3.2, ||
✁ 1

0 f (0) (u, 0) || < ∞. In view of K1,0 = 0, Theorem 3.1-(i,ii) [with q = 0 in part

(ii)] implies J̃T −JT = oP (1). Noting that ĴT −J̃T = oP (1) if and only if b′ĴT b−b′J̃T b = oP (1) for arbitrary
b ∈ R

p we shall provide the proof only for the scalar case. We first show that
√

Tb1,T (ĴT − J̃T ) = OP (1)

under Assumption 3.3. Let J̃T (β) denote the estimator that uses {Vt,T (β)}. A mean-value expansion of

J̃T (β̂)(= ĴT ) about β0 yields

√
Tb1,T (ĴT − J̃T ) = b1,T

∂

∂β′
J̃T (β̄)

√
T (β̂ − β0)

= b1,T

T −1∑

k=−T +1

K1 (b1,T k)
∂

∂β′
Γ̂ (k) |β=β̄

√
T (β̂ − β0), (S.26)

for some β̄ on the line segment joining β̂ and β0. Note also that ĉ (rnT /T, k) depends on β although we
omit it. We have for k ≥ 0 (the case k < 0 is similar and omitted),

∥∥∥ ∂

∂β′
ĉ (rnT /T, k)

∥∥∥|β=β̄ (S.27)

=

∥∥∥∥∥(Tb2,T )−1
T∑

s=k+1

K∗
2

(
(r + 1) nT − (s − k/2)

Tb2,T

)

×
(

Vs (β)
∂

∂β′
V s−k (β) +

∂

∂β′
Vs (β) V s−k (β)

)∥∥∥∥∥|β=β̄

≤ 2


(Tb2,T )−1

T∑

s=1

K∗
2

(
(r + 1) nT − (s − k/2)

Tb2,T

)2

sup
s≥1

sup
β∈Θ

(Vs (β))2




1/2
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×

(Tb2,T )−1

T∑

s=1

K∗
2

(
(r + 1) nT − (s − k/2)

Tb2,T

)2

sup
s≥1

sup
β∈Θ

∥∥∥∥
∂

∂β′
Vs (β)

∥∥∥∥
2



1/2

= OP (1) ,

where we have used the boundedness of the kernel K2 (and thus of K∗
2 ), Assumption 3.3-(ii,iii) and

Markov’s inequality to each term in parentheses; also sups≥1 E supβ∈Θ ‖Vs (β)‖2 < ∞ under Assumption
3.3-(ii,iii) by a mean-value expansion and,

(Tb2,T )−1
T∑

s=k+1

K∗
2 (((r + 1) nT − (s + k/2)) /Tb2,T )2 →

✂ 1

0
K2

2 (x) dx < ∞.

Then, (S.26) becomes

b1,T

T −1∑

k=T +1

K1 (b1,T k)
∂

∂β′
Γ̂ (k) |β=β̄

√
T

(
β̂ − β0

)

≤ b1,T

T −1∑

k=−T +1

|K1 (b1,T k)| nT

T

T/nT∑

r=0

OP (1) OP (1)

= OP (1) ,

where the last equality uses b1,T
∑T −1

k=−T +1 |K1 (b1,T k)| →
✁

|K1 (x)| dx < ∞. This concludes the proof of

part (i) of Theorem 3.2 because
√

Tb1,T → ∞ by assumption.

The next step is to show that
√

Tb1,T (ĴT − J̃T ) = oP (1) under the assumptions of Theorem 3.2-(ii).
A second-order Taylor’s expansion gives

√
Tb1,T

(
ĴT − J̃T

)
=

[√
b1,T

∂

∂β′
J̃T (β0)

] √
T

(
β̂ − β0

)

+
1

2

√
T

(
β̂ − β0

)′
[√

b1,T
∂2

∂β∂β′
J̃T

(
β

)
/
√

T

] √
T

(
β̂ − β0

)

, G′
T

√
T

(
β̂ − β0

)
+

1

2

√
T

(
β̂ − β0

)′
HT

√
T

(
β̂ − β0

)
.

Proceeding as in (S.27) but now using Assumption 3.4-(ii),

∥∥∥∥
∂2

∂β∂β′
ĉ (rnT /T, k)

∥∥∥∥
∣∣∣∣
β=β̄

=

∥∥∥∥∥∥
(Tb2,T )−1

T∑

s=k+1

K∗
2

(
((r + 1) nT − (s + k/2)) /T

b2,T

) (
∂2

∂β∂β′
Vs (β) V s−k (β)

)∥∥∥∥∥∥

∣∣∣∣
β=β̄

= OP (1) ,
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and thus,

‖HT ‖ ≤
(

b1,T

T

)1/2 T −1∑

k=−T +1

|K1 (b1,T k)| sup
β∈Θ

∥∥∥∥∥
∂2

∂β∂β′
Γ̂ (k)

∥∥∥∥∥

≤
(

b1,T

T

)1/2 T −1∑

k=−T +1

|K1 (b1,T k)| OP (1)

≤
(

1

Tb1,T

)1/2

b1,T

T −1∑

k=−T +1

|K1 (b1,T k)| OP (1) = oP (1) ,

since Tb1,T → ∞. Next, we want to show that GT = oP (1). We apply the results of Theorem 3.1-(i,ii) to

J̃T where the latter is constructed using (V ′
t , ∂Vt/∂β′ − E (∂Vt/∂β′))′ rather than just with Vt. The first

row and column of the off-diagonal elements of J̃T are now (written as column vectors)

A1 ,

T −1∑

k=−T +1

K1 (b1,T k)
nT

T

T/nT∑

r=0

1

Tb2,T

×
T∑

s=k+1

K∗
2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
Vs

(
∂

∂β
V s−k − E

(
∂

∂β
V s

))

A2 ,

T −1∑

k=−T +1

K1 (b1,T k)
nT

T

T/nT∑

r=0

1

Tb2,T

×
T∑

s=k+1

K∗
2

(
((r + 1) nT − (s + k/2)) /T

b2,T

) (
∂

∂β
V s − E

(
∂

∂β
V s

))
Vs−k.

By Theorem 3.1-(i,ii), each expression above is OP (1). Since

GT =
√

b1,T (A1 + A2) +
√

b1,T

T −1∑

k=−T +1

K1 (b1,T k)
nT

T

T/nT∑

r=0

1

Tb2,T

×
T∑

s=k+1

K∗
2

(
((r + 1) nT − (s + k/2)) /T

b2,T

)
(Vs + Vs−k)E

(
∂

∂β
V s

)

≤
√

b1,T (A1 + A2) + A3 sup
s≤T

∣∣∣∣E
(

∂

∂β
V s

)∣∣∣∣ ,

where

A3 =
√

b1,T

T −1∑

k=−T +1

|K1 (b1,T k)| nT

T

T/nT∑

r=0

1

Tb2,T

×
T∑

s=k+1

∣∣∣∣∣K
∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)∣∣∣∣∣ |(Vs + Vs−k)| ,
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it remains to show that A3 is oP (1) . Note that

E

(
A2

3

)
≤ b1,T

T −1∑

k=−T +1

T −1∑

j=−T +1

|K1 (b1,T k) K1 (b1,T j)| 4

(
nT

T

)2 T/nT∑

r=0

T/nT∑

b=0

× 1

Tb2,T

1

Tb2,T

T∑

s=1

T∑

l=1

K∗
2

(
((r + 1) nT − (s − k/2)) /T

b2,T

)

× K∗
2

(
((b + 1) nT − (l − j/2)) /T

b2,T

)
|E (VsVl)| ,

and that E (VsVl) = c (u, h)+O
(
T −1

)
where h = s−l and u = s/T by Lemma S.A.1. Since

∑∞
h=−∞ supu∈[0, 1]

|c (u, h)| < ∞, we have

E

(
A2

3

)
≤ 1

Tb1,T b2,T


b1,T

T −1∑

k=−T +1

|K1 (b1,T k)|



2
✂ 1

0
K2

2 (x) dx

✂ 1

0

∞∑

h=−∞

|c (u, h)| du = o (1) .

This implies GT = oP (1). It follows that
√

Tb1,T (ĴT − J̃T ) = oP (1) which concludes the proof of part (ii)

because
√

Tb1,T b2,T (J̃T − JT ) = OP (1) by Theorem 3.1-(iii).
Finally, we need to consider part (iii). Let

ξT , Tb1,T

(
vec

(
ĴT − JT

)′
Wvec

(
ĴT − JT

)
− vec

(
J̃T − JT

)′
Wvec

(
J̃T , −JT

))
.

By part (ii), we know that
√

Tb1,T (ĴT − JT ) = OP (1) and
√

Tb1,T (ĴT − J̃T ) = oP (1). This implies

Tb1,T

(
vec

(
ĴT − JT

)′
WT vec

(
ĴT − JT

)
− vec

(
J̃T − JT

)′
WT vec

(
J̃T , −JT

))
P→ 0.

Then, using Assumption 3.5, ξT = oP (1) and since |ξT | is bounded we have E (ξT ) → 0 by Lemma A1 in
Andrews (1991). �
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N.A Implementation of DK-HAC in GMM and IV Models

Section N.A.1 reviews the DK-HAC estimation in GMM models while Section N.A.2 considers IV models.

N.A.1 GMM

We begin with the GMM setup [cf. Hansen (1982)]. For a k-vector β∗ of unknown parameters, we have
the moment condition Emt (β∗) = 0 where mt (β) is a p-vector of functions of the data and parameters
where p ≥ k. The GMM estimator β̂ is defined as the solution to minβ mT (β)′ Ŵ2,T mT (β), where

mT (β) = T −1 ∑T
t=1 mt (β) is the sample average of the vector of sample moments mt (β) and Ŵ2,T is

a (possibly) random, symmetric weighting matrix. The asymptotic covariance matrix of β̂ is given by
H = limT →∞ HT where

HT =
(
L′

T W2,T LT

)−1
L′

T W2,T JT W2,T LT

(
L′

T W2,T LT

)−1
,

where LT = T −1 ∑T
t=1 Emtβ (β∗) and mtβ (β) is the p × k matrix of partial derivatives of mt (β), W2,T

is a nonrandom matrix such that Ŵ2,T − W2,T
P→ 0, and JT = T −1 ∑T

s=1

∑T
t=1 E(mt (β∗) ms (β∗))′. Let

J = limT →∞ JT . The consistent estimation of H boils down to the consistent estimation of J since the
estimation of LT and W2,T is straightforward. Ŵ2,T is a natural estimator of W2,T while under regularity

conditions LT − T −1 ∑T
t=1 mtβ(β̂)

P→ 0. In place of the classical HAC estimators we now estimate J by

ĴT =
T −1∑

k=−T +1

K1 (b1,T k) Γ̂ (k) , where Γ̂ (k) ,
nT

T − nT

⌊(T −nT )/nT ⌋∑

r=0

ĉT (rnT /T, k) , (N.1)

where

ĉT (rnT /T, k) ,





(Tb2,T )−1 ∑T
s=k+1 K∗

2

(
((r+1)nT −(s+k/2))/T

b2,T

)
m̂sm̂′

s−k, k ≥ 0

(Tb2,T )−1 ∑T
s=−k+1 K∗

2

(
((r+1)nT −(s−k/2))/T

b2,T

)
m̂s+km̂′

s, k < 0
,

and m̂s = ms(β̂). We can implement ĴT with the data-dependent methods for selecting b1,T and b2,T ,
and choose K1 and K2 on the basis of the optimality results of Section 4. For K1 one can use the QS
kernel while for K2 one can choose K2 = 6x (1 − x) for 0 ≤ x ≤ 1 and 0 otherwise as suggested in Section
4. From the results in Section 5,

b̂1,T = 0.6828
(
φ̂ (2) T b̂2,T

)−1/5

b̂2,T (ur) = 1.6786
(
D̂1 (ur)

)
−1/5

(
D̂2 (ur)

)1/5
T −1/5, ur = rnT /T,

where the expressions for φ̂ (2) , D̂1 (ur) and D̂2 (ur) are given in the same section.

N.A.2 IV

Consider the linear model yt = x′
tβ0 + et (t = 1, . . . , T ), where β0 ∈ Θ ⊂ R

p, yt is an observation on
the dependent variable, xt is a p-vector of regressors and et is an unobserved disturbance potentially
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autocorrelated. Suppose the regressor is endogenous: E (xtet) Ó= 0. The IV estimator β̂IV is given by
β̂IV = (Z ′X)−1 Z ′Y , where Y = (y1, . . . , yT )′ , X = (x1, . . . , xT )′ and Z = (z1, . . . , zT )′ where zt is a p-
vector of instruments. The asymptotic variance of the IV estimator is given by the limit of Var(

√
T (β̂IV −

β0)) = Q−1
ZXJT Q−1

ZX where QZX = T −1 ∑T
t=1 ztx

′
t and JT = T −1 ∑T

s=1

∑T
t=1 E(eszs(etzt)

′). A natural

estimator of limT →∞ QZX is T −1 ∑T
t=1 ztx

′
t. Let J = limT →∞ JT . J can be consistently estimated by ĴT

as given in (N.1) where m̂t is replaced by êtzt where êt = yt − x′
tβ̂IV.

N.B Appendix: Proofs of the Results of Section 2 and 4-5

N.B.1 Proofs of the Results of Section 2.1

N.B.1.1 Proof of Theorem 2.1

For Tu /∈ T we use the arguments in the proof of Theorem 2.2 in Dahlhaus (1997). Without loss of
generality, assume T 0

j−1 < Tu < T 0
j for some 1 ≤ j ≤ m0 + 1. Then,

fj,T (u, ω) =
1

2π

∞∑

s=−∞

exp (−iωs)

✂ π

−π
exp (iηs) A0

j,⌊T u−s/2⌋,T (η) A0
j,⌊T u+s/2⌋,T (η)dη,

and

fj (u, ω) =
1

2π

∞∑

s=−∞

exp (−iωs)

✂ π

−π
exp (iηs) Aj (u, η) Aj (u, η)dµ.

We have, in virtue of standard orthogonality relations,

✂ π

−π
|fj,T (u, ω) − fj (u, ω)|2 dω

=

✂ π

−π

∣∣∣∣∣
1

2π

∞∑

s=−∞

exp (−iωs)

×
[
✂ π

−π
exp (iηs)

(
A0

j,⌊T u−s/2⌋,T (η) A0
j,⌊T u+s/2⌋,T (η) − Aj (u, η) Aj (u, η)

)
dη

]∣∣∣∣∣

2

dω

=
1

2π

∞∑

s=−∞

|cs,j |2 + o (1) ,

where cs,j =
✁ π

−π exp (iηs) Gj (s/2T, η) dη and

Gj

(
s

2T
, η

)
= Aj

(
u − s

2T
, η

)
Aj

(
u +

s

2T
, −η

)
− Aj (u, η) Aj (u, −η) .
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By well-known results on Fourier coefficients [cf. Bary (1964), Chapter 2.3], |cs,j | ≤ Cs−ϑ and thus∑∞
s=n |cs,j |2 = O(n1−2ϑ). Let ∆s (ω) =

∑s−1
r=0 exp (−iωr) . Applying summation by parts yields

n−1∑

s=0

|cs,j |2 =

✂ π

−π

✂ π

−π

n−1∑

s=0

exp (−i (ω − η) s) Gj

(
s

2T
, ω

)
Gj

(
s

2T
, η

)
dωdη

≤
✂ π

−π

✂ π

−π

∣∣∣∣∣−
n−1∑

s=0

[Gj

(
s

2T
, ω

)
Gj

(
s

2T
, η

)
− Gj

(
s − 1

2T
, ω

)
Gj

(
s − 1

2T
, η

)
]∆s (η − ω)

+Gj

(
n − 1

2T
, ω

)
Gj

(
n − 1

2T
, η

)
∆n (η − ω)

∣∣∣∣∣ dωdη

= O

(
n ln n

T ϑ

)
.

A similar bound holds for
∑∞

s=n |c−s,j |2. The result for Tu /∈ T follows by choosing n appropriately. Next,
suppose Tu ∈ T and u = T 0

j /T . Then, we have

fj,T (u, ω) =
1

2π

∞∑

s=−∞

exp (−iωs)

✂ π

−π
exp (iηs) A0

j,⌊T u−3|s|/2⌋,T (η) A0
j,⌊T u−|s|/2⌋,T (η)dη

and

fj (u, ω) =
1

2π

∞∑

s=−∞

exp (−iωs)

✂ π

−π
exp (iηs) Aj (u, η) Aj (u, η)dη.

Proceeding as above,

✂ π

−π
|fT (u, ω) − f (u, ω)|2 dω

=

✂ π

−π

∣∣∣∣∣
1

2π

∞∑

s=−∞

exp (−iωs)

[
✂ π

−π
exp (iηs) A0

j,⌊uT −3|s|/2⌋,T (η) A0
j,⌊uT −|s|/2⌋,T (η)dη −

✂ π

−π
exp (iηs) Aj (u, η) Aj (u, η)dη

]∣∣∣∣∣

2

dω

=

✂ π

−π

∣∣∣∣∣
1

2π

∞∑

s=−∞

exp (−iωs)

[
✂ π

−π
exp (iηs)

(
A0

j,⌊T u−3|s|/2⌋,T (η) A0
j,⌊T u−|s|/2⌋,T (η) − Aj (u, η) Aj (u, η)

)
dη

]∣∣∣∣∣

2

dω

=
1

2π

∞∑

s=−∞

|cs,j |2 + o (1) ,
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with cs,j =
✁ π

−π exp (iηs) Gj (s/2T, η) dη and

Gj

(
s

2T
, η

)
= Aj

(
u − 3 |s|

2T
, η

)
Aj

(
u − |s|

2T
, −η

)
− Aj (u, η) Aj (u, −η) .

Using the definition of ∆s (ω) and the above-mentioned properties of cs,j which continue to hold, summa-
tion by parts and the Lipschitz continuity of Aj (u, ·) then imply

∑n−1
s=0 |cs,j |2 = O(n ln n/T ϑ). Since the

same bound applies to
∑∞

s=n |c−s,j |2, we can choose an appropriate n to yield the result for Tu ∈ T . �

N.B.2 Proofs of the Results of Section 4

N.B.2.1 Proof of Proposition 4.1

We first need to show that
√

Tb2,T (ĉT (rnT /T, k) − c̃ (rnT /T, k)) = oP (1) . Without loss of generality,

we can focus on the scalar case. From (S.27),
∥∥∥ ∂

∂β′ ĉT (rnT /T, k)
∥∥∥ |β=β̄ = OP (1) . A mean-value Taylor’s

expansion gives

√
Tb2,T (ĉT (rnT /T, k) − c̃T (rnT /T, k)) =

√
b2,T

∂

∂β′
ĉT (rnT /T, k) |β=β̄

√
T

(
β̂ − β0

)

≤
√

b2,T sup
r≥1

∥∥∥∥
∂

∂β′
ĉ (rnT /T, k)

∥∥∥∥ |β=β̄

√
T

(
β̂ − β0

)

=
√

b2,T OP (1) = oP (1) .

Thus,

ξT = vec (ĉT (rnT /T, k) − c̃ (rnT /T, k))′ W̃T vec (ĉT (rnT /T, k) − c̃ (rnT /T, k))
P→ 0.

Since ξT is a bounded sequence, E (ξT )
P→ 0. Hence, given that W̃T

P→ W̃ , we have MSE(1, ĉT (u0, k) , W̃T ) =
MSE(1, c̃T (u0, k) , W̃ ) + oP (1). By using the results of Lemma S.A.4, the MSE of ĉT (u0, k) for any
u0 ∈ (0, 1) and any integer k, is given by

E [ĉT (u0, k) − c (u0, k)]2

=
1

4
b4

2,T

(
✂ 1

0
x2K2 (x) dx

)2 (
∂2

∂2u
c (u0, k)

)2

+
1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

l=−∞

c (u0, l) [c (u0, l) + c (u0, l + 2k)]

+
1

Tb2,T

✂ 1

0
K2

2 (x) dx
∞∑

h1=−∞

κV,⌊T u0⌋ (−k, h1, h1 − k) + o
(
b4

2,T

)
+ o (1/ (b2,T T ))

, g (K2, b2,T ) + o
(
b4

2,T

)
+ o (1/ (b2,T T )) . (N.1)
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Then g (K2, b2,T ) = 4−1b4
2,T H (K2) D1 (u0) + (Tb2,T )−1 F (K2) (D2 (u0) + D3 (u0)). The minimum of

g (K2, b2,T ) in b2,T is determined by the equation

∂

∂b2,T
g (K2, b2,T ) = b3

2,T H (K2) D1 (u0) − 1

Tb2
2,T

F (K2) (D2 (u0) + D3 (u0)) = 0.

The minimum is achieved at

bopt
2,T = [H (K2) D1 (u0)]−1/5 (F (K2) (D2 (u0) + D3 (u0)))1/5 T −1/5.

If Vt,T is Gaussian, then the term involving κV,⌊T u0⌋ in (N.1) is equal to zero and so D3 (u0) = 0 in bopt
2,T .

Next, we minimize g(K2, bopt
2,T ) with respect to the class of kernels K2 : R → [0, ∞] that are centered at

x = 1/2 with

✂

R

K2 (x) dx = 1, (N.2)

K2 (x) = K2 (1 − x) . (N.3)

We use arguments similar to those in Chapter 7 of Priestley (1981) and in Dahlhaus and Giraitis (1998).
Let

√
K2σ (x) =

1√
σ

(
K2

(
x − 1/2

σ
+

1

2

))1/2

, where σ ∈ (0, ∞) .

We have F (K2σ) = (1/σ) F (K2) and H (K2σ) = σ4H (K2) (with the integrals in the definition of F and H
extended to R and with the variable of integration x subtracted by 1/2). Then, bopt

2,K2σ ,T = σ−1bopt
2,T where

bopt
2,K2σ ,T is the optimal bandwidth associated with the kernel K2σ. Also, g(K2σ, bopt

2,K2σ ,T ) = g(K2, bopt
2,T ).

We can thus restrict our attention to K2 satisfying

✂

R

(
x − 1

2

)2

K2 (x) dx =

✂

R

(
x − 1

2

)2

Kopt
2 (x) dx, (N.4)

where Kopt
2 (x) = 6x (1 − x) for x ∈ [0, 1] and Kopt

2 (x) = 0 for x /∈ [0, 1]. Therefore, we have to show
that, for any K2 that satisfies (N.2)-(N.3),

✂

R/[0, 1]
K2

2 (x) dx +

✂ 1

0
K2

2 (x) dx =

✂

R

K2
2 (x) dx ≥

✂

R

(
Kopt

2 (x)
)2

dx =

✂ 1

0

(
Kopt

2 (x)
)2

dx.

This is implied by

✂ 1

0
K2

2 (x) dx ≥
✂ 1

0

(
Kopt

2 (x)
)2

dx.
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Let K2 (x) = Kopt
2 (x) + ε (x), x ∈ R, where ε > 0. Since

✁

R
ε2 (x) dx ≥ 0 and Kopt

2 vanishes outside [0, 1],

it is sufficient to prove that
✁ 1

0

(
Kopt

2 (x) ε (x)
)

dx ≥ 0 because

✂ 1

0
K2

2 (x) dx =

✂ 1

0

(
Kopt

2 (x) + ε (x)
)2

dx ≥
✂ 1

0

(
Kopt

2 (x)
)2

+ 2

✂ 1

0

(
Kopt

2 (x) ε (x)
)

dx.

By (N.2), we have
✁

R
ε (x) dx = 0, while

✁

R
ε (x)

(
x2 − x

)
dx = 0 in view of

0 =

✂

R

(
K2 (x) − Kopt

2 (x)
) (

x − 1

2

)2

dx =

✂

R

(
K2 (x) − Kopt

2 (x)
) (

x2 − x
)

dx +
1

4

✂

R

ε (x) dx

=

✂

R

(
K2 (x) − Kopt

2 (x)
) (

x2 − x
)

dx.

Note that
(
x2 − x

)
= x (x − 1) . Therefore, we deduce

6

✂

R/[0, 1]
x (1 − x) ε (x) dx + 6

✂ 1

0
x (1 − x) ε (x) dx = 0.

Rearranging the last expression yields,

✂ 1

0
Kopt

2 (x) ε (x) dx = 6

✂

R/[0, 1]
x (x − 1) ε (x) dx ≥ 0,

because ε (x) ≥ 0 and x (x − 1) ≥ 0 for x /∈ [0, 1]. �

N.B.2.2 Proof of Theorem 4.1

Without loss of generality, we provide the proof for the scalar case. By Theorem 3.2-(iii), if Tb2q+1
1,T b2,T →

γ2 ∈ (0, ∞) for some q ∈ [0, ∞) for which K1,q, |
✁ 1

0 f (q) (u, 0) du| ∈ [0, ∞), then

lim
T →∞

MSE
(
Tb1,T b2,T , ĴT (b1,T,K1) , 1

)

= 4π2


γ2K2

1,q

(
✂ 1

0
f (q) (u, 0) du

)2

+

✂

K2
1 (y) dy

✂ 1

0
(K2 (x))2 dx

(
✂ 1

0
f (u, 0) du

)2

 .

We have Tb5
1,T b2,T → γ by assumption. Thus, we apply Theorem 3.2-(iii) with q = 2, K1 and b1,T,K1 .

Then, Tb5
1,T,K1

b2,T → γ/
(✁

K2
1 (x) dx

)5
and

Tb1,T b2,T = Tb1,T,K1b2,T

✂

K2
1 (x) dx.

Therefore, given K1,2 < ∞,

lim
T →∞

(
MSE

(
Tb1,T b2,T , ĴT (b1,T,K1) , 1

)
− MSE

(
Tb1,T b2,T , ĴQS

T (b1,T ) , 1
))
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= 4γπ2

(
✂ 1

0
f (q) (u, 0) du

)2 ✂ 1

0
(K2 (x))2 dx

[
K2

1,2

(✂
K2

1 (y) dy

)4

−
(
KQS

1,2

)2
]

.

Let K̃1 (·) and K̃QS
1 (·) denote the spectral window generators of K1 (·) and KQS

1 (·), respectively. They

have the following properties: K1,2 =
✁ ∞

−∞ ω2K̃1 (ω) dω, K1 (0) =
✁ ∞

−∞ K̃1 (ω) dω, and
✁ ∞

−∞ K2
1 (x) dx =

✁ ∞
−∞ K̃2

1 (ω) dω. As in Andrews (1991), the result of the theorem follows if we can show the following
inequality,

K2
1,2

(✂
K2

1 (x) dx

)4

≥
(
KQS

1,2

)2
for all K1 (·) ∈ K̃1. (N.5)

Priestley (1981, Ch. 7.5) showed that K̃QS
1 (·) minimizes

✂ ∞

−∞
ω2K̃1 (ω) dω

(
✂ ∞

−∞
K̃2

1 (ω) dω

)2

, (N.6)

subject to (a)
✁ ∞

−∞ K̃1 (ω) dω = 1, (b) K̃1 (ω) ≥ 0, ∀ ω ∈ R, and (c) K̃1 (ω) = K̃1 (−ω) , ∀ ω ∈ R, where

KQS
1 (ω) = (5/8π)

(
1 − ω2/c2

)
for |ω| ≤ c for c = 6π/5. and KQS

1 (ω) = 0 otherwise. Note that the

inequality (N.5) holds if and only if K̃QS
1 (·) minimizes (N.6). This proves the inequality of the theorem.

Strict inequality holds when KQS
1 (x) Ó= K1 (x) with positive Lebesgue measure. �

N.B.2.3 Proof of Corollary 4.1

Note that T
2q

2q+1 b
2q

2q+1

2,T = (Tb2q+1
1,T b2,T )−1/(2q+1)Tb1,T b2,T = (γ−1/(2q+1) + o (1))Tb1,T b2,T . Thus,

lim
T →∞

MSE

(
T

2q
2q+1 b

2q
2q+1

2,T , ĴT (b1,T , b2,T ) , WT

)

= γ−1/(2q+1)4π2

[
γK2

1,qvec

(
✂ 1

0
f (q) (u, 0) du

)′

Wvec

(
✂ 1

0
f (q) (u, 0) du

)
(N.7)

+

✂

K2
1 (y) dy

✂ 1

0
K2

2 (x) dx trW
(
Ip2 − Cpp

) (
✂ 1

0
f (u, 0) du

)
⊗

(
✂ 1

0
f (v, 0) dv

)]
.

Minimizing this with respect to γ gives

γ2q/(2q+1)K2
1,qvec

(
✂ 1

0
f (q) (u, 0) du

)′

Wvec

(
✂ 1

0
f (q) (u, 0) du

)

= γ−1/(2q+1)

✂

K2
1 (y) dy

✂

K2
2 (x) dx trW

(
Ip2 − Cpp

) (
✂ 1

0
f (u, 0) du

)
⊗

(
✂ 1

0
f (v, 0) dv

)
,

or

γopt =
1

2q

✁

K2
1 (y) dy

✁

K2
2 (x) dx trW

(
Ip2 + Cpp

) (
✁ 1

0 f (u, 0) du
)

⊗
(
✁ 1

0 f (v, 0) dv
)

K2
1,qvec

(
✁ 1

0 f (q) (u, 0) du
)′

Wvec
(
✁ 1

0 f (q) (u, 0) du
)
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=
(
2qK2

1,qφ (q)
)−1

(
✂

K2
1 (y) dy

✂ 1

0
K2

2 (x) dx

)
.

Note that γopt > 0 provided that 0 < φ (q) < ∞ and W is positive definite. Hence, {b1,T } is optimal in

the sense that Tb2q+1
1,T b2,T → γopt if and only if b1,T = bopt

1,T + o((Tb2,T )−1/(2q+1)) where b2,T = O(bopt
2,T ). �

N.B.3 Proofs of the Results of Section 5

N.B.3.1 Proof of Theorem 5.1

Without loss of generality, we assume that Vt is a scalar. The constant C < ∞ may vary from line to
line. We begin with the proof of part (ii) because it becomes then simpler to prove part (i). By Theorem
3.2-(ii),

√
Tbθ1,T bθ2,T (ĴT (bθ1,T , bθ2,T )−JT ) = OP (1). It remains to establish the second result of Theorem

5.1-(ii). Let ST =
⌊
b−r

θ1,T

⌋
where

r ∈(max{(8b − 5 − 2q) /8 (b − 1) , 1.25, (b/2 − 1/4) / (b − 1) , q/ (l − 1) , (8b − 7 − 6q) /8 (b − 1)

(b − 3/4 − q/2)/ (b − 1)}, min {13q/24 + 49/48, 46/48 + 20q/48, 7/8 + 3q/4, (6 + 4q) /8, 2}),

with b > 1 + 1/q . We will use the following decomposition

ĴT (b̂1,T , b̂2,T ) − ĴT (bθ1,T , bθ2,T ) = (ĴT (b̂1,T , b̂2,T ) − ĴT (bθ1,T , b̂2,T )) (N.8)

+ (ĴT (bθ1,T , b̂2,T ) − ĴT (bθ1,T , bθ2,T )).

Let

N1 , {−ST , −ST + 1, . . . , −1, 1, . . . , ST − 1, ST } ,

N2 , {−T + 1, . . . , −ST − 1, ST + 1, . . . , T − 1} .

Let us consider the first term of (N.8). We have

T 8q/10(2q+1)(ĴT (b̂1,T , b̂2,T ) − ĴT (bθ1,T , b̂2,T )) (N.9)

= T 8q/10(2q+1)
∑

k∈N1

(K1(b̂1,T k) − K1(bθ1,T k))Γ̂ (k)

+ T 8q/10(2q+1)
∑

k∈N2

K1(b̂1,T k)Γ̂ (k)

− T 8q/10(2q+1)
∑

k∈N2

K1(bθ1,T k)Γ̂ (k)

, A1,T + A2,T − A3,T .
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We first show that A1,T
P→ 0. Let A1,1,T denote A1,T with the summation restricted over positive integers

k. Let ñT = inf{T/n3,T ,
√

n2,T }. We can use the Liptchitz condition on K1 (·) ∈ K3 to yield,

|A1,1,T | ≤ T 8q/10(2q+1)
ST∑

k=1

C2

∣∣∣b̂1,T − bθ1,T

∣∣∣ k
∣∣∣Γ̂ (k)

∣∣∣ (N.10)

≤ CñT

∣∣∣φ̂ (q)1/(2q+1) − φ
1/(2q+1)
θ∗

∣∣∣
(
φ̂ (q) φθ∗

)−1/(2q+1)
b̂

−1/(2q+1)

2,T T (8q−10)/10(2q+1)ñ−1
T

ST∑

k=1

k
∣∣∣Γ̂ (k)

∣∣∣ ,

for some C < ∞. By Assumption 5.1-(ii) (ñT

∣∣∣φ̂ (q) − φθ∗

∣∣∣ = OP (1)) and, using the delta method, it

suffices to show that B1,T + B2,T + B3,T
P→ 0, where

B1,T = b̂
−1/(2q+1)

2,T T (8q−10)/10(2q+1)ñ−1
T

ST∑

k=1

k
∣∣∣Γ̂ (k) − Γ̃ (k)

∣∣∣ , (N.11)

B2,T = b̂
−1/(2q+1)

2,T T (8q−10)/10(2q+1)ñ−1
T

ST∑

k=1

k
∣∣∣Γ̃ (k) − ΓT (k)

∣∣∣ ,

B3,T = b̂
−1/(2q+1)

2,T T (8q−10)/10(2q+1)ñ−1
T

ST∑

k=1

k |ΓT (k)| ,

with ΓT (k) , (nT /T )
∑⌊T/nT ⌋

r=0 c (rnT /T, k) . By a mean-value expansion, we have

B1,T ≤ b̂
−1/(2q+1)

2,T T (8q−10)/10(2q+1)ñ−1
T T −1/2

ST∑

k=1

k

∣∣∣∣
(

∂

∂β′
Γ̂ (k) |β=β

) √
T

(
β̂ − β0

)∣∣∣∣ (N.12)

≤ Cb̂
−1/(2q+1)

2,T T (8q−10)/10(2q+1)−1/2
(
Tbθ2,T

)2r/(2q+1)
ñ−1

T sup
k≥1

∥∥∥∥
∂

∂β
Γ̂ (k) |β=β

∥∥∥∥
√

T
∥∥∥β̂ − β0

∥∥∥

≤ Cb̂
(−1+2r)/(2q+1)

2,T T (8q−10)/10(2q+1)−1/2+2r/(2q+1)ñ−1
T sup

k≥1

∥∥∥∥
∂

∂β
Γ̂ (k) |β=β

∥∥∥∥
√

T
∥∥∥β̂ − β0

∥∥∥ P→ 0,

since ñT /T 1/3 → ∞, r < 13q/24+49/48,
√

T ||β̂ −β0|| = OP (1), and supk≥1 || (∂/∂β) Γ̂ (k) |β=β|| = OP (1)
using (S.27) and Assumption 3.3-(ii,iii). In addition,

E

(
B2

2,T

)
≤ E


b̂

−2/(2q+1)

2,T T (8q−10)/5(2q+1)ñ−2
T

ST∑

k=1

ST∑

j=1

kj
∣∣∣Γ̃ (k) − ΓT (k)

∣∣∣
∣∣∣Γ̃ (j) − ΓT (j)

∣∣∣


 (N.13)

≤ b̂
−2/(2q+1)−1

2,T T (8q−10)/5(2q+1)−2/3−1S4
T sup

k≥1
T b̂2,T Var

(
Γ̃ (k)

)

≤ b̂
−2/(2q+1)−1

2,T T (8q−10)/5(2q+1)−2/3−1 (Tbθ2,T )4r/(2q+1) sup
k≥1

T b̂2,T Var
(
Γ̃ (k)

)

≤ T 1/5T 2/5(2q+1)T (8q−10)/5(2q+1)−2/3−1T 4r/(2q+1)T −4r/5(2q+1) sup
k≥1

T b̂2,T Var
(
Γ̃ (k)

)
→ 0,
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given that supk≥1 T b̂2,T Var(Γ̃(k)) = O (1) using Lemma S.A.5 and r < 46/48 + 20q/48. Assumption
5.1-(iii) and

∑∞
k=1 k1−l < ∞ for l > 2 yield

B3,T ≤ b̂
−1/(2q+1)

2,T T (8q−10)/10(2q+1)ñ−1
T C3

∞∑

k=1

k1−l → 0, (N.14)

where we have used ñT /T 3/10 → ∞ and q < 34/4. Combining (N.10)-(N.14), we deduce that A1,1,T
P→ 0.

The same argument applied to A1,T , where the summation now extends over negative integers k, gives

A1,T
P→ 0. Next, we show that A2,T

P→ 0. Again, we use the notation A2,1,T (resp., A2,2,T ) to denote A2,T

with the summation over positive (resp., negative) integers. Let A2,1,T = L1,T + L2,T + L3,T , where

L1,T = T 8q/10(2q+1)
T −1∑

k=ST +1

K1

(
b̂1,T k

) (
Γ̂ (k) − Γ̃ (k)

)
, (N.15)

L2,T = LA
2,T + LB

2,T = T 8q/10(2q+1)




⌊DT T 8/5(2q+1)⌋∑

k=ST +1

+
T −1∑

k=⌊DT T 8/5(2q+1)⌋+1


 K1

(
b̂1,T k

) (
Γ̃ (k) − ΓT (k)

)
,

L3,T = T 8q/10(2q+1)
T −1∑

k=ST +1

K1

(
b̂1,T k

)
ΓT (k) .

We apply a mean-value expansion and use
√

T (β̂ − β0) = OP (1) as well as (S.27) to obtain

|L1,T | = T 8q/10(2q+1)−1/2
T −1∑

k=ST +1

C1

(
b̂1,T k

)−b
∣∣∣∣
(

∂

∂β′
Γ̂ (k)

)
|β=β

√
T

(
β̂ − β0

)∣∣∣∣ (N.16)

= T 8q/10(2q+1)−1/2+4b/5(2q+1)
T −1∑

k=ST +1

C1k−b

∣∣∣∣
(

∂

∂β′
Γ̂ (k)

)
|β=β

√
T

(
β̂ − β0

)∣∣∣∣

= T 8q/10(2q+1)−1/2+4b/5(2q+1)+4r(1−b)/5(2q+1)

∣∣∣∣
(

∂

∂β′
Γ̂ (k)

)
|β=β

√
T

(
β̂ − β0

)∣∣∣∣

= T 8q/10(2q+1)−1/2+4b/5(2q+1)+4r(1−b)/5(2q+1)OP (1) OP (1) ,

which goes to zero since r > (8b − 5 − 2q) /8 (b − 1). Let us now consider L2,T . We have

∣∣∣LA
2,T

∣∣∣ = T (8q−1)/10(2q+1)

⌊DT T 8/5(2q+1)⌋∑

k=ST +1

C1

(
b̂1,T k

)−b ∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣ (N.17)

= C1

(
2qK2

1,qφ̂ (q)
)b/(2q+1)

T 8q/10(2q+1)+b/(2q+1)−1/2b̂
b/(2q+1)−1/2

2,T




⌊DT T 8/5(2q+1)⌋∑

k=ST +1

k−b




×
√

T b̂2,T

∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣ .
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Note that

E


T 8q/10(2q+1)+b/(2q+1)−1/2b̂

b/(2q+1)−1/2

2,T

⌊DT T 8/5(2q+1)⌋∑

k=ST +1

k−b
√

T b̂2,T

∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣




2

(N.18)

≤ T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1

2,T




⌊DT T 8/5(2q+1)⌋∑

k=ST +1

k−b
√

T b̂2,T

(
Var

(
Γ̃ (k)

))1/2




2

= T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1

2,T




⌊DT T 8/5(2q+1)⌋∑

k=ST +1

k−b




2

O (1)

= T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1

2,T S
2(1−b)
T O (1) → 0,

since r > 1.25 and T b̂2,T Var(Γ̃ (k)) = O (1) as above. Next,

∣∣∣LB
2,T

∣∣∣ = T (8q−1)/10(2q+1)
T −1∑

k=⌊DT T 8/5(2q+1)⌋+1

C1

(
b̂1,T k

)−b ∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣ (N.19)

= C1

(
2qK2

1,qφ̂ (q)
)b/(2q+1)

T 8q/10(2q+1)+b/(2q+1)−1/2b̂
b/(2q+1)−1/2

2,T




T −1∑

k=⌊DT T 8/5(2q+1)⌋+1

k−b




×
√

T b̂2,T

∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣ .

Note that

E


T 8q/10(2q+1)+b/(2q+1)−1/2b̂

b/(2q+1)−1/2
2,T

T −1∑

k=⌊DT T 8/5(2q+1)⌋+1

k−b
√

T b̂2,T

∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣




2

(N.20)

≤ T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1
2,T




T −1∑

k=⌊DT T 8/5(2q+1)⌋+1

k−b
√

T b̂2,T

(
Var

(
Γ̃ (k)

))1/2




2

= T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1
2,T




T −1∑

k=⌊DT T 8/5(2q+1)⌋+1

k−b




2

O (1)

= T 8q/5(2q+1)+2b/(2q+1)−1b̂
2b/(2q+1)−1
2,T S

2(1−b)
T T 16(1−b)/5(2q+1)D2

T O (1) → 0,
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since r > (b/2 − 1/4) / (b − 1). Combining (N.17) and (N.20) yields L2,T
P→ 0, since φ̂ (q) = OP (1). Let

us turn to L3,T . By Assumption 5.1-(iii) and |K1 (·)| ≤ 1, we have,

|L3,T | ≤ T 8q/10(2q+1)
T −1∑

k=ST

C3k−l ≤ T 8q/10(2q+1)C3S1−l
T (N.21)

≤ C3T 8q/10(2q+1)T −4r(l−1)/5(2q+1) → 0,

since r > q/ (l − 1). In view of (N.15)-(N.21), we deduce that A2,1,T
P→ 0. Applying the same argument

to A2,2,T , we have A2,T
P→ 0. Using similar arguments, one has A3,T

P→ 0. It remains to show that

T 8q/10(2q+1)(ĴT (bθ1,T , b̂2,T ) − ĴT (bθ1,T , bθ2,T ))
P→ 0. Let ĉθ2,T (rnT /T, k) denote the estimator that uses

bθ2,T in place of b̂2,T . We have for k ≥ 0,

ĉT (rnT /T, k) − ĉθ2,T (rnT /T, k)

=
(
Tbθ2,T

)−1
T∑

s=k+1

(
K2

(
((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )

)
− K2

(
((r + 1) nT − (s − k/2)) /T

bθ2,T ((r + 1) nT /T )

))
V̂sV̂ s−k

+ OP

(
1/Tbθ2,T

)
. (N.22)

Given Assumption 5.1-(v,vi,vii) and using the delta method, we have for s ∈ {Tu −
⌊
Tbθ2,T

⌋
, . . . , Tu +⌊

Tbθ2,T

⌋
}:

K2

(
(Tu − (s − k/2)) /T

b̂2,T (u)

)
− K2

(
(Tu − (s − k/2)) /T

bθ2,T (u)

)
(N.23)

≤ C4

∣∣∣∣∣
Tu − (s − k/2)

T b̂2,T (u)
− Tu − (s − k/2)

Tbθ2,T (u)

∣∣∣∣∣

≤ CT −4/5−2/5T 2/5

∣∣∣∣∣∣

(
D̂2 (u)

D̂1 (u)

)−1/5

−
(

D2 (u)

D1,θ (u)

)−1/5
∣∣∣∣∣∣
|Tu − (s − k/2)|

≤ CT −4/5−2/5OP (1) |Tu − (s − k/2)| .

Therefore,

T 8q/10(2q+1)
(
ĴT

(
bθ1,T , b̂2,T

)
− ĴT (bθ1,T , bθ2,T )

)
(N.24)

= T 8q/10(2q+1)
T −1∑

k=−T +1

K1 (bθ1,T k)
nT

T

⌊T/nT ⌋∑

r=0

(ĉ (rnT /T, k) − ĉθ2,T (rnT /T, k))

≤ T 8q/10(2q+1)C
T −1∑

k=−T +1

∣∣K1 (bθ1,T k)
∣∣nT

T

⌊T/nT ⌋∑

r=0

1

Tbθ2,T

×
T∑

s=k+1

∣∣∣∣∣K2

(
((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )

)
− K2

(
((r + 1) nT − (s − k/2)) /T

bθ2,T ((r + 1) nT /T )

)∣∣∣∣∣
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×
∣∣∣
(
V̂sV̂s−k − VsVs−k

)
+ (VsVs−k − E (VsVs−k)) + E (VsVs−k)

∣∣∣

, H1,T + H2,T + H3,T .

We have to show that H1,T + H2,T + H3,T
P→ 0. Let H1,1,T (resp., H1,2,T ) be defined as H1,T but with

the sum over k restricted to k = 1, . . . , ST (resp., k = ST + 1, . . . , T ). By a mean-value expansion, using
(N.23),

|H1,1,T | ≤ CT 8q/10(2q+1)T −1/2
ST∑

k=1

|K1 (bθ1,T k)| nT

T

⌊T/nT ⌋∑

r=0

1

Tbθ2,T

T∑

s=k+1

∣∣∣∣∣∣
K2


((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )


 − K2

(
((r + 1) nT − (s − k/2)) /T

bθ2,T ((r + 1) nT /T )

)∣∣∣∣∣∣

×
∥∥∥∥Vs

(
β

) ∂

∂β
Vs−k

(
β

)
+ Vs−k

(
β

) ∂

∂β
Vs

(
β

)∥∥∥∥
√

T
∥∥∥β̂ − β0

∥∥∥

≤ CT 8q/10(2q+1)b
−1
θ2,T T −1/2−2/5ST

nT

T

⌊T/nT ⌋∑

r=0

OP (1)

×



(
T −1

T∑

s=1

sup
β∈Θ

V 2
s (β)

)2 (
T −1

T∑

s=1

sup
β∈Θ

∥∥∥∥
∂

∂β
Vs (β)

∥∥∥∥
2
)1/2


 √

T
∥∥∥β̂ − β0

∥∥∥ .

Using Assumption 3.3 the right-hand side above is such that

CT 8q/10(2q+1)T −1/2−2/5b−1
θ2,T ST

nT

T

⌊T/nT ⌋∑

r=0

OP (1)
P→ 0,

since r < 7/8 + 3q/4. Next,

|H1,2,T | ≤ CT 8q/10(2q+1)T −1/2
T −1∑

k=ST +1

(bθ1,T k)−b nT

T

⌊T/nT ⌋∑

r=0

1

Tbθ2,T

×
T∑

s=k+1

∣∣∣∣∣K2

(
((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )

)
− K2

(
((r + 1) nT − (s − k/2)) /T

bθ2,T ((r + 1) nT /T )

)∣∣∣∣∣

×
∥∥∥∥Vs

(
β

) ∂

∂β
Vs−k

(
β

)
+ Vs−k

(
β

) ∂

∂β
Vs

(
β

)∥∥∥∥
√

T
∥∥∥β̂ − β0

∥∥∥

≤ CT 8q/10(2q+1)b−1
θ2,T T −1/2−2/5b−b

θ1,T

T −1∑

k=ST +1

k−b nT

T

⌊T/nT ⌋∑

r=0

OP (1)

×



(
T −1

T∑

s=1

sup
β∈Θ

V 2
s (β)

)2 (
T −1

T∑

s=1

sup
β∈Θ

∥∥∥∥
∂

∂β
Vs (β)

∥∥∥∥
2
)1/2


 √

T
∥∥∥β̂ − β0

∥∥∥

≤ CT 8q/10(2q+1)b−1
θ2,T T −1/2−2/5b−b

θ1,T

T −1∑

k=ST +1

k−bOP (1)
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≤ CT 8q/10(2q+1)b−1
θ2,T T −1/2−2/5b−b

θ1,T S1−b
T OP (1)

≤ CT 8q/10(2q+1)b−1
θ2,T T −1/2−2/5b−b

θ1,T b
−r(1−b)
θ1,T OP (1)

≤ CT 8q/10(2q+1)b−1
θ2,T T −1/2−2/5b−b

θ1,T T 4r(1−b)/5(2q+1)OP (1) → 0,

since r > (8b − 7 − 6q) /8 (b − 1). This shows H1,T
P→ 0. Let H2,1,T (resp., H2,2,T ) be defined as H2,T but

with the sum over k restricted to k = 1, . . . , ST (resp., k = ST + 1, . . . , T ). We have

E

(
H2

2,1,T

)
≤ T 8q/5(2q+1)

ST∑

k=1

ST∑

j=1

K1 (bθ1,T k) K1 (bθ1,T j)

(
nT

T

)2 ⌊T/nT ⌋∑

r1=0

⌊T/nT ⌋∑

r2=0

1

(Tbθ2,T )2 (N.25)

×
T∑

s=k+1

T∑

t=j+1

∣∣∣∣∣K2

(
((r1 + 1) nT − (s − k/2)) /T

b̂2,T ((r1 + 1) nT /T )

)
− K2

(
((r1 + 1) nT − (s − k/2)) /T

bθ2,T ((r1 + 1) nT /T )

)∣∣∣∣∣

×
∣∣∣∣∣K2

(
((r2 + 1) nT − (t − j/2)) /T

b̂2,T ((r2 + 1) nT /T )

)
− K2

(
((r2 + 1) nT − (t − j/2)) /T

bθ2,T ((r2 + 1) nT /T )

)∣∣∣∣∣

× |E (VsVs−k − E (VsVs−k)) (VtVt−k − E (VtVt−k))|
≤ CT 8q/5(2q+1)S2

T T −2/5 (Tbθ2,T )−1 sup
k≥1

Tbθ2,T Var
(
Γ̃ (k)

)
OP (1)

≤ CT (8q+8r)/5(2q+1)−2/5−1OP

(
b−1

θ2,T

)
→ 0,

where we have used Lemma S.A.5 and r < (6 + 4q) /8. Turning to H2,2,T ,

E

(
H2

2,2,T

)
≤ T 8q/5(2q+1)−2/5 (Tbθ2,T )−1 b−2b

θ1,T




T −1∑

k=ST +1

k−b
√

Tbθ2,T

(
Var

(
Γ̃ (k)

))1/2
O (1)




2

(N.26)

≤ T 8q/5(2q+1)T −2/5−1b−1
θ2,T b−2b

θ1,T




T −1∑

k=ST +1

k−b
√

Tbθ2,T

(
Var

(
Γ̃ (k)

))1/2




2

≤ T 8q/5(2q+1)T −2/5−1b−1
θ2,T b−2b

θ1,T




T −1∑

k=ST +1

k−bO (1)




2

≤ T 8q/5(2q+1)T −2/5−1b−1
θ2,T b−2b

θ1,T S
2(1−b)
T → 0,

since r > (b − 3/4 − q/2)/ (b − 1). Combining (N.25)-(N.26) yields H2,T
P→ 0. Let H3,1,T (resp., H3,2,T )

be defined as H3,T but with the sum over k restricted to k = 1, . . . , ST (resp., k = ST + 1, . . . , T ). Given
|K1 (·)| ≤ 1 and (N.23), we have

|H3,1,T | ≤ CT 8q/10(2q+1)T −2/5
ST∑

k=1

|ΓT (k)|

≤ CT 8q/10(2q+1)T −2/5
∞∑

k=1

k−l → 0,
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since
∑∞

k=1 k−l < ∞ for l > 1 and T 8q/10(2q+1)T −2/5 → 0. Finally,

|H3,2,T | ≤ CT 8q/10(2q+1)T −2/5
T −1∑

k=ST +1

|ΓT (k)|

≤ CT 8q/10(2q+1)T −2/5
T −1∑

k=ST +1

k−l

≤ CT 8q/10(2q+1)T −2/5S1−l
T

≤ CT 8q/10(2q+1)T −2/5T 4r(1−l)/5(2q+1) → 0.

This completes the proof of part (ii).
We now move to part (i). For some arbitrary φθ∗ ∈ (0, ∞), ĴT (bθ1,T , bθ2,T )−JT = oP (1) by Theorem

3.2-(i) since bθ2,T = O(T −1/5) and q > 1/2 imply that
√

Tb1,T → ∞ holds. Hence, it remains to show

that ĴT (bθ1,T , bθ2,T ) − ĴT (b̂1,T , b̂2,T ) = oP (1). Note that this result differs from that of part (ii) only
because the scale factor T 8q/10(2q+1) does not appear, Assumption 5.1-(ii) is replaced by part (i) of the
same assumption, Assumption 5.1-(iii, v, vi) is not imposed, and q > 1/2. Let ST be defined as in part
(ii) and

r ∈(max {(8b − 10q − 5) /8 (b − 1) , (b − 1/2 − q) / (b − 1)} ,

min {13/16 + 5q/8, (3 + 2q) /4, 1}),

with b > 1 + 1/q. We will use the decomposition in (N.8), and N1 and N2 as defined after (N.8). Let
A1,T , A2,T and A3,T be as in (N.9) without the scale factor T 8q/10(2q+1). Proceeding as in (N.10), we have

|A1,1,T | ≤
ST∑

k=1

C2

∣∣∣b̂1,T − bθ1,T

∣∣∣ k
∣∣∣Γ̂ (k)

∣∣∣ (N.27)

≤ C
∣∣∣φ̂ (q)1/(2q+1) − φ

1/(2q+1)
θ∗

∣∣∣
(
φ̂ (q) φθ∗

)−1/(2q+1) (
T b̂2,T

)−1/(2q+1) ST∑

k=1

k
∣∣∣Γ̂ (k)

∣∣∣ ,

for some C < ∞. By Assumption 5.1-(i),

∣∣∣φ̂ (q)1/(2q+1) − φ
1/(2q+1)
θ∗

∣∣∣
(
φ̂ (q) φθ∗

)−1/(2q+1)
= OP (1) .

Then, it suffices to show that B1,T + B2,T + B3,T
P→ 0, where

B1,T =
(
T b̂2,T

)−1/(2q+1) ST∑

k=1

k
∣∣∣Γ̂ (k) − Γ̃ (k)

∣∣∣ , (N.28)

B2,T =
(
T b̂2,T

)−1/(2q+1) ST∑

k=1

k
∣∣∣Γ̃ (k) − ΓT (k)

∣∣∣ ,

B3,T =
(
T b̂2,T

)−1/(2q+1) ST∑

k=1

k |ΓT (k)| .
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By a mean-value expansion, we have

B1,T ≤
(
T b̂2,T

)−1/(2q+1)
T −1/2

ST∑

k=1

k

∣∣∣∣
(

∂

∂β′
Γ̂ (k) |β=β

) √
T

(
β̂ − β0

)∣∣∣∣ (N.29)

≤ C
(
T b̂2,T

)−1/(2q+1) (
Tbθ2,T

)2r/(2q+1)
T −1/2 sup

k≥1

∥∥∥∥
∂

∂β
Γ̂ (k) |β=β

∥∥∥∥
√

T
∥∥∥β̂ − β0

∥∥∥ ,

since r < 13/16 + 5q/8, and supk≥1 || (∂/∂β) Γ̂ (k) |β=β || = OP (1) using (S.27) and Assumption 3.3-(ii,iii).
In addition,

E

(
B2

2,T

)
≤ E




(
T b̂2,T

)−2/(2q+1) ST∑

k=1

ST∑

j=1

kj
∣∣∣Γ̃ (k) − ΓT (k)

∣∣∣
∣∣∣Γ̃ (j) − ΓT (j)

∣∣∣


 (N.30)

≤ E




(
T b̂2,T

)−2/(2q+1) ST∑

k=1

ST∑

j=1

kj
∣∣∣Γ̃ (k) − ΓT (k)

∣∣∣
∣∣∣Γ̃ (j) − ΓT (j)

∣∣∣




≤
(
T b̂2,T

)−2/(2q+1)−1
S4

T sup
k≥1

T b̂2,T Var
(
Γ̃ (k)

)

≤
(
T b̂2,T

)−2/(2q+1)−1
(Tb2,T )4r/(2q+1) sup

k≥1
T b̂2,T Var

(
Γ̃ (k)

)

≤ b̂
−2/(2q+1)−1

2,T T −1−2/(2q+1)T 16r/5(2q+1) sup
k≥1

T b̂2,T Var
(
Γ̃ (k)

)
→ 0,

given that supk≥1 T b̂2,T Var(Γ̃ (k)) = O (1) by Lemma S.A.5 and r < (3 + 2q) /4. The bound in (N.14) is
replaced by

B3,T ≤
(
T b̂2,T

)−1/(2q+1)
ST

∞∑

k=1

|ΓT (k)| (N.31)

≤
(
T b̂2,T

)(r−1)/(2q+1)
OP (1) → 0,

using Assumption 3.2-(i) since r < 1. This gives A1,T
P→ 0. Next, we show that A2,T

P→ 0. As above, let
A2,1,T = L1,T + L2,T + L3,T where each summand is defined as in (N.15) without the factor T 8q/10(2q+1).
Equation (N.16) is then replaced by

|L1,T | = T −1/2
T −1∑

k=ST +1

C1

(
b̂1,T k

)−b
∣∣∣∣
(

∂

∂β′
Γ̂ (k)

)
|β=β

√
T

(
β̂ − β0

)∣∣∣∣ (N.32)

= T −1/2+4b/5(2q+1)
T −1∑

k=ST +1

C1k−b

∣∣∣∣
(

∂

∂β′
Γ̂ (k)

)
|β=β

√
T

(
β̂ − β0

)∣∣∣∣

= T −1/2+4b/5(2q+1)+4r(1−b)/5(2q+1)

∣∣∣∣
(

∂

∂β′
Γ̂ (k)

)
|β=β

√
T

(
β̂ − β0

)∣∣∣∣

= T −1/2+4b/5(2q+1)+4r(1−b)/5(2q+1)O (1) OP (1) ,
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which converges to zero since r > (8b − 10q − 5) /8 (b − 1). Also, (N.17) is replaced by

|L2,T | =
T −1∑

k=ST +1

C1

(
b̂1,T k

)−b ∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣ (N.33)

= C1

(
qK2

1,qφ̂ (q)
)b/(2q+1)

T b/(2q+1)−1/2b̂
b/(2q+1)−1/2
2,T




T −1∑

k=ST +1

k−b




√
T b̂2,T

∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣ ,

and the bound in (N.18) is replaced by,

E


T b/(2q+1)−1/2b̂

b/(2q+1)−1/2

2,T

T −1∑

k=ST

k−b
√

T b̂2,T

∣∣∣Γ̃ (k) − ΓT (k)
∣∣∣




2

(N.34)

≤ T 2b/(2q+1)−1b̂
2b/(2q+1)−1

2,T




T −1∑

k=ST

k−b
√

T b̂2,T

(
Var

(
Γ̃ (k)

))1/2




2

= T 2b/(2q+1)−1b̂
2b/(2q+1)−1

2,T




T −1∑

k=ST

k−b




2

O (1)

= T 2b/(2q+1)−1b̂
2b/(2q+1)−1

2,T S
2(1−b)
T O (1) → 0,

since r > (b − 1/2 − q) / (b − 1) and Tb2,T Var(Γ̃ (k)) = O (1), as above. Combining (N.33)-(N.34) yields

L2,T
P→ 0 since φ̂ (q) = OP (1). Let us turn to L3,T . We have (N.21) replaced by,

∣∣∣∣∣∣

T −1∑

k=ST +1

K1

(
b̂1,T k

)
ΓT (k)

∣∣∣∣∣∣
≤

T −1∑

k=ST +1

nT

T

⌊T/nT ⌋∑

r=0

|c (rnT /T, k)| (N.35)

≤
T −1∑

k=ST +1

sup
u∈[0, 1]

|c (u, k)| → 0.

Equations (N.32)-(N.35) imply A2,1,T
P→ 0. Thus, as in the proof of part (ii), we have A2,T

P→ 0 and

A3,T
P→ 0. It remains to show that (ĴT (bθ1,T , b̂2,T ) − ĴT (bθ1,T , bθ2,T ))

P→ 0. Let ĉθ2,T (rnT /T, k) be
defined as in part (ii). We have (N.22), and (N.23) is replaced by

K2

(
(Tu − (s − k/2) /T )

b̂2,T (u)

)
− K2

(
(Tu − (s − k/2) /T )

bθ2,T (u)

)
(N.36)

≤ C4

∣∣∣∣∣
Tu − (s − k/2)

T b̂2,T (u)
− Tu − (s − k/2)

Tbθ2,T (u)

∣∣∣∣∣

≤ C4T −1

∣∣∣∣∣∣

Tu − (s − k/2)
(
b̂2,T (u) − bθ2,T (u)

)

b̂2,T (u) bθ2,T (u)

∣∣∣∣∣∣
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= C4T −4/5

((
D̂1 (u)

D̂2 (u)

) (
D1,θ (u)

D2 (u)

))1/5
∣∣∣∣∣∣

(
D̂2 (u)

D̂1 (u)

)1/5

−
(

D2 (u)

D1,θ (u)

)1/5
∣∣∣∣∣∣
|Tu − (s − k/2)|

= CT −4/5 |Tu − (s − k/2)| ,

for s ∈ {Tu − ⌊Tbθ2,T (u)⌋ , . . . , Tu + ⌊Tbθ2,T (u)⌋}, where u = (r + 1) nT /T . Therefore,

ĴT

(
bθ1,T , b̂2,T

)
− ĴT

(
bθ1,T , bθ2,T

)

=
T −1∑

k=−T +1

K1 (bθ1,T k)
nT

T

⌊T/nT ⌋∑

r=0

(ĉ (rnT /T, k) − ĉθ2,T (rnT /T, k))

≤ C
T −1∑

k=−T +1

K1 (bθ1,T k)

× nT

T

⌊T/nT ⌋∑

r=0

1

Tbθ2,T

T∑

s=k+1

∣∣∣∣∣K2

(
((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )

)
− K2

(
((r + 1) nT − (s − k/2)) /T

bθ2,T ((r + 1) nT /T )

)∣∣∣∣∣

×
∣∣∣
(
V̂sV̂s−k − VsVs−k

)
+ (VsVs−k − E (VsVs−k)) + E (VsVs−k)

∣∣∣

, H1,T + H2,T + H3,T .

We have to show that H1,T + H2,T + H3,T
P→ 0. By a mean-value expansion, using (N.36),

|H1,T | ≤ CT −1/2
T −1∑

k=−T +1

|K1 (bθ1,T k)|

× nT

T

⌊T/nT ⌋∑

r=0

1

Tbθ2,T

T∑

s=k+1

∣∣∣∣∣K2

(
((r + 1) nT − (s − k/2)) /T

b̂2,T ((r + 1) nT /T )

)
− K2

(
((r + 1) nT − (s − k/2)) /T

bθ2,T ((r + 1) nT /T )

)∣∣∣∣∣

×
∥∥∥∥Vs

(
β

) ∂

∂β
Vs−k

(
β

)
+ Vs−k

(
β

) ∂

∂β
Vs

(
β

)∥∥∥∥
√

T
∥∥∥β̂ − β0

∥∥∥

≤ Cb−1
θ2,T T −1/2

T −1∑

k=−T +1

|K1 (bθ1,T k)|

× nT

T

⌊T/nT ⌋∑

r=0

COP (1)

×



(
T −1

T∑

s=1

sup
β∈Θ

V 2
s (β)

)2 (
T −1

T∑

s=1

sup
β∈Θ

∥∥∥∥
∂

∂β
Vs (β)

∥∥∥∥
2
)1/2


 √

T
∥∥∥β̂ − β0

∥∥∥ .

Using Assumption 3.3 and (N.36), the right-hand side above is such that

CT −1/2b−1
θ1,T b−1

θ2,T bθ1,T

T −1∑

k=−T +1

|K1 (bθ1,T k)| nT

T

⌊T/nT ⌋∑

r=0

COP (1)
P→ 0,
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since T −1/2b−1
θ1,T b−1

θ2,T → 0. This shows H1,T
P→ 0. Let H2,1,T (resp. H2,2,T ) be defined as H2,T but with

the sum over k restricted to k = 1, . . . , ST (resp., k = ST + 1, . . . , T ). We have

E

(
H2

2,1,T

)
≤

ST∑

k=1

ST∑

j=1

K1 (bθ1,T k) K1 (bθ1,T j) (N.37)

×
(

nT

T

)2 ⌊T/nT ⌋∑

r1=0

⌊T/nT ⌋∑

r2=0

1

(Tbθ2,T )2

T∑

s=k+1

T∑

t=j+1

×
∣∣∣∣∣K2

(
((r1 + 1) nT − (s − k/2)) /T

b̂2,T ((r1 + 1) nT /T )

)
− K2

(
((r1 + 1) nT − (s − k/2)) /T

bθ2,T ((r1 + 1) nT /T )

)∣∣∣∣∣

×
∣∣∣∣∣K2

(
((r2 + 1) nT − (t − j/2)) /T

b̂2,T ((r2 + 1) nT /T )

)
− K2

(
((r2 + 1) nT − (t − j/2)) /T

bθ2,T ((r2 + 1) nT /T )

)∣∣∣∣∣

× |VsVs−k − E (VsVs−k) (VtVt−k − E (VtVt−k))| .

≤ CS2
T (Tbθ2,T )−1 sup

k≥1
Tbθ2,T Var

(
Γ̃ (k)

)
OP (1)

≤ CT 8r/5(2q+1)OP

(
T −1b−1

θ2,T

)
→ 0,

where we have used Lemma S.A.5, (N.36) and r < 3/2. Turning to H2,2,T ,

E

(
H2

2,2,T

)
≤ (Tbθ2,T )−1 b−2b

θ1,T




T −1∑

k=ST +1

k−b
√

Tbθ2,T

(
Var

(
Γ̃ (k)

))1/2
O (1)




2

(N.38)

≤ T −1b−1
θ2,T b−2b

θ1,T




T −1∑

k=ST +1

k−b
√

Tbθ2,T

(
Var

(
Γ̃ (k)

))1/2




2

≤ T −1b−1
θ2,T b−2b

θ1,T




T −1∑

k=ST +1

k−bO (1)




2

≤ T −1b−1
θ2,T b−2b

θ1,T S
2(1−b)
T → 0,

since r > (b − q − 1/2) / (b − 1) . Combining (N.37)-(N.38) yields H2,T
P→ 0. Given |K1 (·)| ≤ 1 and (N.36),

we have

|H3,T | ≤ C
∞∑

k=−∞

|ΓT (k)| oP (1) → 0.

This concludes the proof of part (i).
The result of part (iii) follows from the same argument as in Theorem 3.2-(iii) with references to

Theorem 3.2-(i,ii) changed to Theorem 5.1-(i,ii). �
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