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Abstract

Uncovering the heterogeneous effects of particular policies or “treatments” is a key

concern for researchers and policymakers. A common approach is to report average

treatment effects across different subgroups based on observable covariates. However,

there is likely to be considerable uncertainty about the appropriate grouping. This

paper proposes a nonparametric approach to discovering heterogeneous subgroups in a

selection-on-observables framework. The approach constructs a sequence of groupings,

one for each level of granularity. Groupings are nested and feature an optimality

property. An “honesty” condition allows us to construct valid confidence intervals for

the average treatment effect of each group. The utility of the proposed methodology is

illustrated through an empirical exercise that revisits the impact of maternal smoking

on birth weight.
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1 Introduction

Understanding the effects of a particular policy or “treatment” is a key concern for re-

searchers and policymakers. Traditionally, the assessment of the policy’s actual effectiveness

involves the identification and estimation of the Average Treatment Effect (ATE), a param-

eter that quantifies the average impact of the policy on the reference population (see e.g.,

Angrist & Pischke, 2009; Imbens & Rubin, 2015). However, while the ATE is straightforward

to interpret, it ignores effect heterogeneity and therefore does not allow us to explore the

distributional impacts of the policy, which hold significant importance for decision-making

when the social welfare criterion representing the preferences of the policymakers is not

“utilitarian” (Kitagawa & Tetenov, 2021).

A common approach to tackle effect heterogeneity is to report the ATEs across dif-

ferent subgroups defined by observable covariates. These Group Average Treatment Effects

(GATEs) enable us to explore heterogeneity while maintaining a certain level of interpretabil-

ity and are widely employed in applied research.1 However, there could be many ways to

form subgroups, giving rise to a considerable degree of uncertainty about the appropriate

grouping.

This paper introduces a data-driven methodology to discover heterogeneous subgroups

in a selection-on-observables framework. The approach enables valid inference about the

GATEs without the complications associated with 𝑝-hacking (e.g., Imbens, 2021), which can

arise when iteratively searching for subgroups with significant estimated GATEs. Moreover,

the approach offers an alternative to pre-analysis plans, which may be criticized for limiting

the potential for uncovering unexpected heterogeneity.

The proposed methodology, hereafter referred to as aggregation trees, builds on standard

decision trees (Breiman et al., 1984) to aggregate units with similar estimated responses

to the treatment. The resulting tree, which represents the set of admissible groupings, is

1 For instance, Chernozhukov et al. (2017) document that, among 189 randomized control trials published
in top economic journals since 2006, 40% report at least one subgroup analysis.
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then “pruned” to generate a sequence of groupings, one for each level of granularity. We

show that each grouping features an optimality property in that it ensures that the loss in

explained heterogeneity resulting from aggregation is minimized. Moreover, the sequence is

nested in the sense that subgroups formed at a given level of granularity are never broken

at coarser levels. This property guarantees the consistency of the results across the different

granularity levels, which is considered a basic requirement that every classification system

should satisfy (see, e.g., Cotterman & Peracchi, 1992).

For a particular grouping, point estimates and standard errors for the GATEs are ob-

tained by fitting an appropriate linear model. Under an “honesty” condition (Athey &

Imbens, 2016), we can use the estimated standard errors to conduct valid inference about

the GATEs as usual, e.g., by constructing conventional confidence intervals. Honesty is a

subsample-splitting technique that requires that different observations are used to form sub-

groups and estimate the GATEs. In analogy to classical econometrics, this is equivalent

to using different subsamples to select and estimate a model. This way, the asymptotic

properties of GATE estimates are the same as if the groupings had been exogenously given.

We compare aggregation trees with the causal trees of Athey and Imbens (2016) using

both theoretical arguments and a simulation exercise. Our simulation shows that aggregation

trees lead to lower mean squared error in the estimated treatment effects, with reductions of

up to 79%. This improvement primarily stems from the lower variance of aggregation trees,

resulting from a splitting strategy that is robust to covariates affecting the outcome levels

but not the treatment effects.

We also investigate the costs and benefits of “honesty” compared to more standard “adap-

tive” estimation that uses the same data for constructing the tree and GATE estimation.

Honesty greatly benefits inference, ensuring approximately nominal coverage of confidence

intervals. In contrast, adaptive estimation can result in coverage rates as low as 66%. The

cost of honesty, measured in terms of mean squared error of treatment effects, ranges between

4% and 63%.
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The utility of the proposed methodology is illustrated through an empirical exercise that

revisits the impact of maternal smoking on birth weight (e.g., Almond et al., 2005; Cattaneo,

2010). The analysis finds evidence of systematic heterogeneity, as different subgroups react

differently to the same treatment. Moreover, the analysis reveals that effect heterogeneity

is mainly driven by parental characteristics and birth-related variables and is unrelated to

maternal alcohol consumption during pregnancy. The results are consistent with previous

research showing that the effects are stronger for children born to adult mothers (Abrevaya

et al., 2015; Zimmert & Lechner, 2019). Furthermore, we provide evidence that the effects

are more pronounced when parental educational attainment is lower and prenatal care visits

are fewer.

The rest of the paper unfolds as follows. Section 2 discusses the estimands of interest and

their identification. Section 3 introduces aggregation trees. Section 4 compares aggregation

and causal trees. Section 5 shows the simulation results. Section 6 illustrates the empirical

exercise. Section 7 concludes. A description of the variables used in the empirical exercise

and proof of formal results are provided in the Appendix.

2 Causal Framework

2.1 Estimands of Interest

We define the estimands of interest using the potential outcomes model (Neyman, 1923;

Rubin, 1974). Suppose to have access to a sample of 𝑛 i.i.d. observations (𝑌𝑖, 𝐷𝑖, 𝑋𝑖), where

𝑌𝑖 ∈ Y is the outcome targeted by the treatment, 𝐷𝑖 ∈ {0, 1} is the binary treatment

indicator, and 𝑋𝑖 ∈ X ⊂ R𝑝 is the pre-treatment covariate vector. We posit the existence of

two potential outcomes 𝑌𝑖 (0) and 𝑌𝑖 (1), representing the outcome that the 𝑖-th unit would

experience under each treatment level.

To define the effect of the treatment, we can take the differences in the potential outcomes

of each unit and aggregate them at different levels of granularity. The coarsest estimand of
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interest is the Average Treatment Effect (ATE), 𝜏 := E [𝑌𝑖 (1) − 𝑌𝑖 (0)]. The ATE quanti-

fies the average impact of the policy on the reference population and is straightforward to

interpret. However, it does not allow us to explore the distributional impacts of the policy.

To tackle effect heterogeneity, we can focus instead on the Conditional Average Treatment

Effects (CATEs), 𝜏 (𝑋𝑖) := E [𝑌𝑖 (1) − 𝑌𝑖 (0) |𝑋𝑖]. The CATEs provide information at the

finest level of granularity achievable with the information at hand and enable us to relate

effect heterogeneity to the observable covariates. However, they are difficult to interpret.

The Group Average Treatment Effects (GATEs) provide a way to explore heterogene-

ity while maintaining a certain level of interpretability. The GATEs are defined as 𝜏𝑔 :=

E
[
𝑌𝑖 (1) − 𝑌𝑖 (0) |𝑋𝑖 ∈ X𝑔

]
for 𝑔 = 1, . . . , 𝐺, where the groups X1, . . . ,X𝐺 represent a parti-

tion of X. If grouping is based on the levels of a single discrete variable 𝑍𝑖 ⊂ 𝑋𝑖, each GATE

simplifies to 𝜏𝑔 = E [𝑌𝑖 (1) − 𝑌𝑖 (0) |𝑍𝑖 = 𝑔].

The definition of GATEs requires choosing a partition X1, . . . ,X𝐺 of X. However, in many

empirical studies there could be many ways to form subgroups, giving rise to a considerable

degree of uncertainty about the appropriate grouping. To address this challenge, this paper

introduces a data-driven methodology to construct partitions of X.

2.2 Identification

All the estimands discussed in the previous section are defined in terms of potential

outcomes. However, each unit is either treated or not treated. We thus observe only one

potential outcome per unit, and further assumptions are needed for identification.

The following standard assumptions are sufficient to identify ATE, GATEs and CATEs

(see, e.g., Imbens & Rubin, 2015):

Assumption 2.1. (SUTVA): 𝑌𝑖 = 𝐷𝑖 𝑌𝑖 (1) + (1 − 𝐷𝑖)𝑌𝑖 (0)

Assumption 2.2. (Exogeneity of the covariates): 𝑋𝑖 (1) = 𝑋𝑖 (0) = 𝑋𝑖, where potential

covariates are defined analogously to potential outcomes.
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Assumption 2.3. (Unconfoundedness): {𝑌𝑖 (0) , 𝑌𝑖 (1)} ⊥⊥ 𝐷𝑖 |𝑋𝑖

Assumption 2.4. (Common support): 0 < 𝑝 (𝑋𝑖) < 1, where 𝑝 (𝑋𝑖) ≡ P (𝐷𝑖 = 1|𝑋𝑖) is the

conditional treatment probability (or propensity score).

SUTVA assumes the absence of interference between units, thus ruling out spillover

effects. The exogeneity of the covariates stipulates that the covariates are not affected

by treatment assignment. The unconfoundedness assumption requires that 𝑋𝑖 contains all

“confounder” jointly affecting the treatment assignment and the outcome.2 The common

support assumption states that each unit must have a non-zero probability of belonging to

the treatment and control groups.

Under Assumptions 2.1–2.4, the CATEs are identified from observable data:

E [𝑌𝑖 |𝑋𝑖, 𝐷𝑖 = 1] − E [𝑌𝑖 |𝑋𝑖, 𝐷𝑖 = 0]

= E [𝑌𝑖 (1) |𝑋𝑖, 𝐷𝑖 = 1] − E [𝑌𝑖 (0) |𝑋𝑖, 𝐷𝑖 = 0] (by SUTVA)

= E [𝑌𝑖 (1) |𝑋𝑖] − E [𝑌𝑖 (0) |𝑋𝑖] (by Unconfoundedness)

= 𝜏 (𝑋𝑖)

(2.1)

where the quantities in the first line are easily estimated using any supervised learning

method. The ATE and the GATEs can be expressed as expectations of the CATEs, thus

being identified under the same assumptions.

3 Aggregation Trees

GATE estimation requires forming subgroups according to one or more observable covari-

ates. However, there could be many ways to form subgroups, giving rise to a considerable

degree of uncertainty about the appropriate grouping. In the absence of subject-matter

2 𝑋𝑖 can also include additional “heterogeneity covariates” not necessary for identification but for which
effect heterogeneity is of interest. The sets of confounders and heterogeneity covariates can overlap in any
way or be disjoint.
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knowledge, a data-driven methodology for discovering heterogeneous subgroups is particu-

larly attractive.

The methodology proposed in this paper consists of three steps. First, an estimation step

constructs an estimate 𝜏 (·) of 𝜏 (·). Second, a tree-growing step approximates the estimated

𝜏 (𝑋𝑖) by a standard decision tree (Breiman et al., 1984) that constrains the set of admissible

groupings, that is, groupings that maximize systematic between-group heterogeneity. Third,

a tree-pruning step generates a sequence of nested subtrees, one for each level of granularity,

by trading off the complexity of the tree with the predictive accuracy of the approximation.

Each subtree provides an optimal grouping, where optimality means that, for each granularity

level, groupings minimize the loss in explained heterogeneity resulting from aggregation.

The next two subsections discuss how the tree-growing and the tree-pruning steps may be

interpreted at the population level, followed by some remarks on estimation and inference.

3.1 Tree-Growing Step

The definition of GATEs requires choosing a partition of the covariate space X. Then,

we can identify each GATE as the expectation of 𝜏 (·) within each group.

This is equivalent to constructing a multivariate step-function 𝑓 ∈ F that well approxi-

mates 𝜏 (·) by partitioning X into strata and then treats 𝜏 (·) as constant within each stratum.

Under the mean squared error (MSE) criterion the best piecewise constant approximation

to 𝜏 (·) is the solution to the following problem:3

min
{(𝑐𝑔 ,X𝑔)}𝐺𝑔=1

E
[
(𝜏 (𝑋) − 𝑓 (𝑋))2

]
s.t. 𝑓 (𝑋) =

𝐺∑︁
𝑔=1

𝑐𝑔𝟙
(
𝑋 ∈ X𝑔

)
(3.1)

where 𝟙 (·) is an indicator of the truth of its argument, 𝑐1 , . . . , 𝑐𝐺 are constants, and the sets

X1, . . . ,X𝐺 form a partition of the covariate space X. We can show that, for any partition

of X, the optimal constants are 𝑐∗𝑔 = E
[
𝜏 (𝑋) |𝑋 ∈ X𝑔

]
. Therefore, solving problem (3.1)

identifies the GATEs regardless of how groups are formed (see Appendix C).

3 If 𝜏 (·) is a step function, there exists a partition for which the approximation to 𝜏 (·) is exact.
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The question is then how to find the optimal partition X1, . . . ,X𝐺 . Following the approach

of Breiman et al. (1984), partitions of X can be constructed by recursively stratifying the

covariate space using axis-aligned splits. Let 𝑥 𝑗 be some particular value of the 𝑗-th covariate.

Starting with a region of the covariate space R𝑚 ⊆ X, consider a candidate splitting variable

𝑗 and splitting point 𝑠. Define the corresponding subregions as:4

R𝑚+1 ( 𝑗 , 𝑠) =
{
𝑋 |𝑥 𝑗 ≤ 𝑠

}
, R𝑚+2 ( 𝑗 , 𝑠) =

{
𝑋 |𝑥 𝑗 > 𝑠

}
The split occurs on a given pair ( 𝑗 , 𝑠), and the population is stratified accordingly. The

process is then repeated in the resulting subregions, thus obtaining finer and finer partitions

of X. The whole procedure can be described by the shape of a decision tree: the “root” (i.e.,

the node with no “parent”) corresponds to X, the 𝑚-th internal node represents subregion

R𝑚 and has two “children” nodes representing subregions R𝑚+1 and R𝑚+2, and associated

with the “leaves” (i.e., the collection of terminal nodes) is a partition of the covariate space.

Ideally, we would like to explore the space of all possible trees and pick the one whose

associated partition minimizes (3.1). However, it is generally infeasible to enumerate all the

distinct binary decision trees. Consider the situation where the random vector 𝑋 is composed

of 𝑝 binary covariates, and let D be the “depth” of a given tree (i.e., the number of nodes

connecting the root to the furthest leaf). We can show that 𝐿D =
∏D
𝑑=1 (𝑝 − (𝑑 − 1))2𝑑−1 is a

lower bound for the number of distinct binary decision trees grown by recursively partitioning

X and having a depth equal to or lower than D (see Appendix D). 𝐿D quickly diverges as

𝑝 grows. For example, fixing D = 3 and letting 𝑝 = 10 yields a lower bound of 3,317,760,

while letting 𝑝 = 20 leads to a bound of 757,926,720. Things only worsen with categorical

covariates taking more than two values or continuous covariates discretized using a large

number of bins.

To cope with this issue, Breiman et al. (1984) suggest a “greedy” approach that partitions

each region R𝑚 ⊆ X by choosing the split that minimizes the MSE within the resulting

4 In the case of categorical splitting variables, 𝑠 corresponds to a subset of possible levels of 𝑗 , and the
inequality signs are replaced by ∈ and ∉. Continuous variables need to be discretized.
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subregions R𝑚+1 and R𝑚+2. This process is then iterated until some particular “stopping

criterion” is met, for instance the maximum depth of the tree. This approach is greedy in

that it ignores that a suboptimal split could yield better results at later steps and is generally

considered to be a reasonable way of circumventing the exhaustive search of the space of all

possible trees.

At each step, the optimal greedy split is placed to explain as much heterogeneity as

possible within the two resulting subregions. In particular, the splitting variable 𝑗 and the

splitting point 𝑠 are chosen to solve the following problem:

min
𝑗 ,𝑠
V (𝜏 (𝑋) |𝑋 ∈ R𝑚+1 ( 𝑗 , 𝑠)) + V (𝜏 (𝑋) |𝑋 ∈ R𝑚+2 ( 𝑗 , 𝑠)) (3.2)

The greedy approach partitions each subregion R𝑚 ⊆ X in a way that maximizes systematic

heterogeneity between the resulting subgroups, thus constructing a set of admissible group-

ings described by a tree T0. Notice that the first greedy split yields the optimal non-greedy

partition (associated with the leaves of a 1-depth tree), while subsequent splits are likely to

be only greedy-optimal.

3.2 Tree-Pruning Step

Choosing the size of the tree is important. On the one hand, too deep trees might capture

unimportant details of 𝜏 (·). On the other hand, too shallow trees might miss relevant

structure. This trade-off between the tree size and the accuracy of the approximation can

be formalized by the following “cost-complexity” criterion (Breiman et al., 1984):

𝐶𝛼 (T ) =
|T |∑︁
ℓ=1

𝑄
ℓ
(T ) + 𝛼 |T | (3.3)

with ℓ = 1, . . . , |T | an index for the terminal nodes of a tree T and𝑄ℓ (T ) = V (𝜏 (𝑋) |𝑋 ∈ Rℓ).

The first term on the right-hand side of (3.3) measures the variability of 𝜏 (·) in region Rℓ

around its piecewise constant approximation given by E [𝜏 (𝑋) |𝑋 ∈ Rℓ]. This quantity can

be arbitrarily reduced by growing deeper trees. This justifies the regularization term 𝛼 |T |
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that penalizes the model according to the cost-complexity parameter 𝛼 ∈ [0,∞) and the

number of terminal nodes |T | of T .

The parameter 𝛼 controls the balance between the accuracy and the interpretability of

the model. Define a subtree T ⊂ T0 as any tree that can be obtained by collapsing any

number of internal nodes of T0 and let T𝛼 ⊆ T0 be the smallest subtree for which (3.3) is

minimized. For each 𝛼, a unique T𝛼 exists, which can be identified by “weakest link pruning”:

starting from T0, we iteratively collapse the internal node that gives the slightest increase in

the accuracy of the approximation. This “weakest” node is defined in terms of the impurity

𝑄ℓ (T ) of its children.

Following this procedure, we can generate a sequence of nested subtrees T𝛼0 ,T𝛼1 . . . ,T𝛼𝑚𝑎𝑥
,

where 0 = 𝛼0 < 𝛼1 < · · · < 𝛼
𝑚𝑎𝑥

< ∞ are threshold values such that all 𝛼 in a given interval

lead to the same subtree and T𝛼𝑚𝑎𝑥
corresponds to the tree’s root. Associated with each

subtree in the sequence is a partition of the covariate space. Therefore, the tree-pruning

step generates a sequence of groupings, one for each threshold value 𝛼0 < 𝛼1 < · · · < 𝛼
𝑚𝑎𝑥

.

Because each T𝛼𝑘 is obtained by collapsing the weakest node of T𝛼𝑘−1 , the tree-pruning

step constructs optimal groupings by aggregating the two subgroups for which the loss in

explained heterogeneity resulting from aggregation is minimized. Moreover, because the

sequence is nested, subgroups formed at a given level of granularity are never broken at

coarser levels. This property guarantees the consistency of the results across the different

granularity levels, which is considered a basic requirement that every classification system

should satisfy (see, e.g., Cotterman & Peracchi, 1992).

3.3 Estimation and Inference

Using the sample analogs of (3.2)–(3.3) is infeasible since 𝜏 (·) is never observed. This

paper proposes using an estimate 𝜏 (·) of 𝜏 (·) in both the tree-growing and tree-pruning

steps to construct the sequence of optimal groupings. Then, for a particular granularity

level, we can estimate the GATEs in several ways.
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In randomized experiments, taking the difference between the mean outcomes of treated

and control units in each group is an unbiased estimator of the GATEs. Equivalently, we

can obtain the same point estimates in addition to their standard errors by estimating via

OLS the following linear model:

𝑌𝑖 =

|T𝛼 |∑︁
𝑙=1

𝐿𝑖,𝑙 𝛾𝑙 +
|T𝛼 |∑︁
𝑙=1

𝐿𝑖,𝑙 𝐷𝑖 𝛽𝑙 + 𝜖𝑖 (3.4)

with |T𝛼 | the number of leaves of a particular tree T𝛼 and 𝐿𝑖,𝑙 a dummy variable equal to one

if the 𝑖-th unit falls in the 𝑙-th leaf of T𝛼. Exploiting the random assignment to treatment,

we can show that each 𝛽𝑙 identifies the GATE in the 𝑙-th leaf.

In observational studies, estimating model (3.4) would yield biased GATE estimates due

to the selection into treatment. To get unbiased estimates, we can use the orthogonal estima-

tor of Semenova and Chernozhukov (2021) to estimate the best linear predictor of 𝜏 (·) given

a set of dummies denoting leaf membership. The key idea is to construct a random variable

Γ𝑖, generally called score, such that 𝜏 (𝑋𝑖) = E [Γ𝑖 |𝑋𝑖], and project it onto 𝐿𝑖,1, . . . , 𝐿𝑖,|T𝛼 |.

For instance, consider the following doubly-robust score (Robins & Rotnitzky, 1995):

Γ∗
𝑖 = 𝜇 (1, 𝑋𝑖) − 𝜇 (0, 𝑋𝑖) +

𝐷𝑖 [𝑌𝑖 − 𝜇 (1, 𝑋𝑖)]
𝑝 (𝑋𝑖)

− (1 − 𝐷𝑖) [𝑌𝑖 − 𝜇 (0, 𝑋𝑖)]
1 − 𝑝 (𝑋𝑖)

(3.5)

where 𝜇 (𝐷𝑖, 𝑋𝑖) = E [𝑌𝑖 |𝐷𝑖, 𝑋𝑖] is the conditional mean of 𝑌𝑖 and 𝑝 (𝑋𝑖) = P (𝐷𝑖 = 1|𝑋𝑖) is

the propensity score. Because E
[
Γ∗
𝑖
|𝑋𝑖

]
= 𝜏 (𝑋𝑖), this score is a natural candidate. We

recognize that it depends on unknown functions 𝜂 (𝑋𝑖) := {𝜇 (1, 𝑋𝑖) , 𝜇 (0, 𝑋𝑖) , 𝑝 (𝑋𝑖)} and

make this explicit by writing Γ∗
𝑖
= Γ∗

𝑖
(𝜂). We refer to 𝜂 as nuisance functions, as they are

not of direct interest but necessary to construct a plug-in estimate Γ∗
𝑖
(𝜂) of Γ∗

𝑖
(𝜂) that we

aim to regress on 𝐿𝑖,1, . . . , 𝐿𝑖,|T𝛼 |. Semenova and Chernozhukov (2021) show that Γ∗
𝑖
(𝜂) is

a Neyman-orthogonal score (Chernozhukov et al., 2018), that is, its plug-in estimate Γ∗
𝑖
(𝜂)

is insensitive to bias in the estimation of 𝜂. They then suggest the following two-stage

procedure. First, construct an estimate 𝜂 of the nuisance functions 𝜂 using 𝐾-fold cross-

fitting: split the sample into 𝐾 folds of similar sizes and, for each 𝑘 = 1, . . . , 𝐾, estimate 𝜂𝑘
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using all but the 𝑘-th folds. Second, construct pΓ∗
𝑖
:= Γ∗

𝑖
(𝜂𝑘 ), where the observation 𝑖 belongs

to the 𝑘-th fold, and estimate via OLS the following linear model:

pΓ∗
𝑖 =

|T𝛼 |∑︁
𝑙=1

𝐿𝑖,𝑙 𝛽𝑙 + 𝜖𝑖 (3.6)

As before, each 𝛽𝑙 identifies the GATE in the 𝑙-th leaf. Semenova and Chernozhukov (2021)

show that thanks to the Neyman-orthogonality of Γ∗
𝑖
, the OLS estimator 𝛽𝑙 of 𝛽𝑙 is root-𝑛

consistent and asymptotically normal, provided that the product of the convergence rates of

the estimators of the nuisance functions 𝜇 (·, ·) and 𝑝 (·) is faster than 𝑛1/2. This allows using

machine learning estimators such as random forests and LASSO to estimate the nuisance

functions, as they are shown to achieve an 𝑛1/4 convergence rate and faster under particular

conditions.

However, GATE estimates may show some bias if we use the same data to construct

the tree and to estimate models (3.4)–(3.6), leading to invalid inference. One way out

is to grow “honest” aggregation trees (Athey & Imbens, 2016). Honesty is a subsample-

splitting technique that requires that different observations are used to form the subgroups

and estimate the GATEs. For this purpose, we split the observed sample into a training

sample S𝑡𝑟 and an honest sample Sℎ𝑜𝑛 of arbitrary sizes. We use S𝑡𝑟 to estimate 𝜏 (·) and

construct the tree T0 and, for a particular grouping T𝛼, we use Sℎ𝑜𝑛 to estimate (3.4)–(3.6).

This way, the asymptotic properties of GATE estimates are the same as if the groupings had

been exogenously given. Therefore, we can use the estimated standard errors to conduct

valid inference as usual, e.g., by constructing conventional confidence intervals. However,

honesty generally comes at the expense of a larger mean squared error, as fewer observations

are used to estimate 𝜏 (·), construct the tree, and compute GATE estimates.
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4 Comparison with Causal Trees

This section compares aggregation trees with the causal trees of Athey and Imbens (2016).

Aggregation and causal trees have the same aim: discovering heterogeneous subgroups by

approximating 𝜏 (·) with a multivariate step-function constructed via recursive partitioning.

However, they differ in two main ways: how trees are constructed and what output they

provide.

In the next subsection, we outline the different splitting strategies employed by these

alternative approaches to create partitions of the covariate space. We then compare the

output they provide.

4.1 Splitting Strategy

Trees are typically constructed by greedily minimizing an assumed loss function based

on the MSE criterion (see Section 3.1). Let T be a tree constructed using a training sam-

ple S𝑡𝑟 , and let S𝑡𝑒 be an independent test sample. Then, when heterogeneous treatment

effects are the object of the analysis, one wants to build a tree that minimizes 𝐸𝑀𝑆𝐸 (T ) =

E
[
𝑀𝑆𝐸

(
S𝑡𝑒,S𝑡𝑟 ,T

) ]
, where the expectation is taken over the joint distribution of the train-

ing and test samples and:5

𝑀𝑆𝐸
(
S𝑡𝑒,S𝑡𝑟 ,T

)
=

1

|S𝑡𝑒 |
∑︁
𝑖∈S𝑡𝑒

{[
𝜏𝑖 − 𝜏

(
𝑋𝑖,S𝑡𝑟 ,T

) ]2 − 𝜏2𝑖 }
=

1

|S𝑡𝑒 |
∑︁
𝑖∈S𝑡𝑒

𝜏2
(
𝑋𝑖,S𝑡𝑟 ,T

)
− 2

|S𝑡𝑒 |
∑︁
𝑖∈S𝑡𝑒

𝜏𝑖 𝜏
(
𝑋𝑖,S𝑡𝑟 ,T

)
with 𝜏𝑖 ≡ 𝜏 (𝑋𝑖) and 𝜏 (𝑥,S,T) an estimate of 𝜏 (·) within the leaf ℓ (𝑥,T) of T where 𝑥 falls

obtained using observations in the sample S. In practice, trees are constructed by greedily

minimizing an in-sample version 𝑀𝑆𝐸
(
S𝑡𝑟 ,S𝑡𝑟 ,T

)
.6

5 We are departing from the standard criterion E[{𝜏𝑖 − 𝜏(𝑋𝑖 ,S𝑡𝑟 ,T)}2] by subtracting E[𝜏2
𝑖
]. Because

this term does not depend on an estimator, the tree that minimizes the standard criterion also minimizes
𝐸𝑀𝑆𝐸 (·).

6 This is what Athey and Imbens (2016) denote as the “adaptive” case, where the same sample is used
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The key challenge in a causal inference framework is that we do not observe 𝜏𝑖. Thus,

𝑀𝑆𝐸 (·, ·, ·) is an infeasible criterion and needs to be estimated. Causal and aggregation trees

differ in how they estimate this criterion. Athey and Imbens (2016) propose the following

estimator:

z𝑀𝑆𝐸
𝐶𝑇

(
S𝑡𝑒,S𝑡𝑟 ,T

)
=

1

|S𝑡𝑒 |
∑︁
𝑖∈S𝑡𝑒

𝜏2
𝐶𝑇

(
𝑋𝑖,S𝑡𝑟 ,T

)
− 2

|S𝑡𝑒 |
∑︁
𝑖∈S𝑡𝑒

𝜏
𝐶𝑇

(
𝑋𝑖,S𝑡𝑒,T

)
𝜏
𝐶𝑇

(
𝑋𝑖,S𝑡𝑟 ,T

)
with:

𝜏
𝐶𝑇

(𝑥,S,T) = 𝜇 (1, 𝑥,S,T) − 𝜇 (0, 𝑥,S,T)

𝜇 (𝑑, 𝑥,S,T) = 1

|𝑖 ∈ S : 𝑋𝑖 ∈ ℓ (𝑥,T) , 𝐷𝑖 = 𝑑 |
∑︁

𝑖∈S:𝑋𝑖∈ℓ(𝑥,T),𝐷𝑖=𝑑

𝑌𝑖, 𝑑 = 0, 1

In classical randomized experiments, z𝑀𝑆𝐸
𝐶𝑇

(
S𝑡𝑒,S𝑡𝑟 ,T

)
is an approximately unbiased es-

timator of 𝑀𝑆𝐸
(
S𝑡𝑒,S𝑡𝑟 ,T

)
, as E

[
𝜏𝑖 |𝑖 ∈ S𝑡𝑒 : 𝑖 ∈ ℓ (𝑥,T)

]
= E

[
𝜏
𝐶𝑇

(
𝑥,S𝑡𝑒,T

) ]
, with the

expectations taken over the distribution of the test samples. We can construct causal trees

by greedily minimizing the following in-sample counterpart:

z𝑀𝑆𝐸
𝐶𝑇

(
S𝑡𝑟 ,S𝑡𝑟 ,T

)
= − 1

|S𝑡𝑟 |
∑︁
𝑖∈S𝑡𝑟

𝜏2
𝐶𝑇

(
𝑋𝑖,S𝑡𝑟 ,T

)
On the other hand, this paper proposes to estimate 𝑀𝑆𝐸

(
S𝑡𝑒,S𝑡𝑟 ,T

)
by plugging in an

estimate 𝜏 (·) of 𝜏 (·) constructed from the training sample:

z𝑀𝑆𝐸
𝐴𝑇

(
S𝑡𝑒,S𝑡𝑟 ,T

)
=

1

|S𝑡𝑒 |
∑︁
𝑖∈S𝑡𝑒

𝜏2
𝐴𝑇

(
𝑋𝑖,S𝑡𝑟 ,T

)
− 2

|S𝑡𝑒 |
∑︁
𝑖∈S𝑡𝑒

𝜏𝑖 𝜏𝐴𝑇
(
𝑋𝑖,S𝑡𝑟 ,T

)
with:

𝜏
𝐴𝑇

(𝑥,S,T) = 1

|𝑖 ∈ S : 𝑋𝑖 ∈ ℓ (𝑥,T) |
∑︁

𝑖∈S:𝑋𝑖∈ℓ(𝑥,T)
𝜏𝑖

to both construct and estimate the tree. Athey and Imbens (2016) also consider an alternative “honest”
criterion 𝑀𝑆𝐸

(
S𝑡𝑒,Sℎ𝑜𝑛,T

)
that uses different samples for construction of the tree (S𝑡𝑟 ) and treatment effect

estimation (Sℎ𝑜𝑛). For simplicity, here I compare aggregation and causal trees focusing on the adaptive case.
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If we use a consistent estimator of 𝜏𝑖, then z𝑀𝑆𝐸
𝐴𝑇

(
S𝑡𝑒,S𝑡𝑟 ,T

)
is an approximately unbi-

ased estimator of 𝑀𝑆𝐸
(
S𝑡𝑒,S𝑡𝑟 ,T

)
, even if the assignment to treatment is random only

conditional on 𝑋𝑖. As before, we can construct aggregation trees by greedily minimizing the

in-sample version z𝑀𝑆𝐸
𝐴𝑇

(
S𝑡𝑟 ,S𝑡𝑟 ,T

)
. This is equivalent to choosing the splits to minimize

the conditional variance of 𝜏𝑖 in the resulting nodes (see equation 3.2).

The splitting strategy of aggregation trees should result in a lower sampling variance,

particularly when dealing with covariates that affect the outcome levels but not the treat-

ment effects. Consider an example where the potential outcomes write as 𝑌𝑖 (𝑑) = 𝜙 (𝑋𝑖) +
1
2 (2𝑑 − 1) 𝜏 (𝑋𝑖) + 𝜖𝑖, with 𝜙 (𝑋𝑖) = 1

2𝑋𝑖1 + 𝑋𝑖2 a model for the mean effect and 𝜏 (𝑋𝑖) = 1
2𝑋𝑖1.

While exploring the values of a covariate as splitting points, we move one observation at a

time from one region of the covariate space to its complement. As each observation belongs

to either the treatment or the control group, this changes the sample average of the observed

outcomes of only one group, thus affecting 𝜏
𝐶𝑇

(·, ·, ·). Due to the substantial influence of 𝑋𝑖2

on mean outcomes, moving a single observation between child nodes based on this covariate

can substantially alter the sample average of the observed outcomes of one group. Conse-

quently, we expect 𝜏
𝐶𝑇

(·, ·, ·) to vary greatly with the splitting point, even though 𝑋𝑖2 does

not enter the model 𝜏 (·). This variability may also lead the estimator to find spurious splits

on 𝑋𝑖2. In contrast, for precisely estimated CATEs, 𝜏
𝐴𝑇

(·, ·, ·) remains stable when moving

a single observation between child nodes based on 𝑋𝑖2. Consequently, we expect 𝜏
𝐴𝑇

(·, ·, ·)

to vary less with the splitting point, resulting in a lower sampling variance.

4.2 Output

After a deep tree has been constructed, the standard practice is to prune it according

to an assumed cost-complexity criterion. Aggregation and causal trees rely on the same

criterion, which is composed of two terms (see equation 3.3). The first term corresponds to

the criterion 𝑀𝑆𝐸
(
S𝑡𝑟 ,S𝑡𝑟 ,T

)
used for constructing the trees and measures the in-sample

goodness-of-fit of the tree. The second term is a regularization component that penalizes the
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model’s complexity, defined as the number of splits of the tree. Regularization is needed to

prevent overfitting: the in-sample 𝑀𝑆𝐸
(
S𝑡𝑟 ,S𝑡𝑟 ,T

)
always decreases with additional splits,

even in the cases where its out-of-sample counterpart 𝑀𝑆𝐸
(
S𝑡𝑒,S𝑡𝑟 ,T

)
actually increases.

The cost-complexity criterion is additive in these two terms and is characterized by a

non-negative cost-complexity parameter that controls the relative weight of the two com-

ponents. Athey and Imbens (2016) suggest using cross-validation to choose the optimal

cost-complexity parameter, thus selecting the “best” tree and providing the researcher with

a single partition of the covariate space. In contrast, aggregation trees refrain from select-

ing a single partition and explore different granularity levels by varying the cost-complexity

parameter, thus generating a consistent sequence of optimal groupings.

5 Simulation Results

5.1 Data-Generating Processes

We choose the DGPs to replicate the simulation study in Athey and Imbens (2016).

Potential outcomes are generated as follows:

𝑌𝑖 (𝑑) = 𝜙 (𝑋𝑖) +
1

2
(2𝑑 − 1) 𝜏 (𝑋𝑖) + 𝜖𝑖, 𝑑 = 0, 1

with 𝜙 (·) a model for the mean effect and 𝜖𝑖 ∼ N (0, 0.01). The treatment is always randomly

assigned as in a Bernoulli experiment, with the marginal probability of treatment equal to 0.5.

Observed outcomes are generated according to Assumption 2.1. Covariates are generated as

𝑋𝑖 ∼ N (0, 1) and are independent of one another and of 𝜖𝑖. Under this setting, the ATE,

GATEs, and CATEs are identified from observable data (see equation 2.1).

We consider three distinct designs that differ in the number of covariates 𝑝 and the

models for the mean effect 𝜙 (·) and the treatment effect 𝜏 (·):
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Design 1. 𝑝 = 2, 𝜙 (𝑋𝑖) =
1

2
𝑋𝑖1 + 𝑋𝑖2, 𝜏 (𝑋𝑖) =

1

2
𝑋𝑖1

Design 2. 𝑝 = 10, 𝜙 (𝑋𝑖) =
1

2

2∑︁
𝑗=1

𝑋𝑖 𝑗 +
6∑︁
𝑗=3

𝑋𝑖 𝑗 , 𝜏 (𝑋𝑖) =
2∑︁
𝑗=1

𝑋𝑖 𝑗𝟙
(
𝑋𝑖 𝑗 > 0

)
Design 3. 𝑝 = 20, 𝜙 (𝑋𝑖) =

1

2

4∑︁
𝑗=1

𝑋𝑖 𝑗 +
8∑︁
𝑗=5

𝑋𝑖 𝑗 , 𝜏 (𝑋𝑖) =
4∑︁
𝑗=1

𝑋𝑖 𝑗𝟙
(
𝑋𝑖 𝑗 > 0

)
Notice that each design contains covariates that enter both the models for the mean effect

and the treatment effect, covariates that enter the model for the mean effect but not the

model for the treatment effect, and “noise” covariates that do not affect outcomes (Design

1 does not feature any noise covariate). For each design, we consider four sample sizes,

𝑛 ∈ {500, 1000, 2000, 4000}. Thus, we consider overall twelve different scenarios.

5.2 Implementation

After drawing a sample of size 𝑛, we split it into a training sample S𝑡𝑟 and an honest

sample Sℎ𝑜𝑛 of equal sizes. We then construct a causal tree and two aggregation trees. To

build the aggregation trees, we estimate 𝜏 (·) using the X-learner (Künzel et al., 2019) and

the causal forest (Athey et al., 2019) estimators. All these operations are performed utilizing

only observations from S𝑡𝑟 .

Following the approach of Athey and Imbens (2016), a single partition from the resulting

causal tree is selected via cross-validation. We then choose partitions from the sequences

generated by the aggregation trees with the same number of subgroups as the cross-validated

causal tree for a fair comparison.

To obtain point estimates and standard errors for the GATEs, causal trees follow the

approach of Athey and Imbens (2016) and estimate model (3.4). On the other hand, ag-

gregation trees estimate model (3.6). Honest regression forests and 5-fold cross-fitting are

employed to estimate the nuisance functions necessary for constructing the doubly-robust

scores Γ∗
𝑖
. All these operations are performed using only observations from Sℎ𝑜𝑛.

We rely on an external validation sample of size 10, 000 to assess the quality of the
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estimation. This large number of observations helps to minimize the sampling variance.

Three performance measures are computed: the mean squared error, the squared bias, and

the variance for the prediction of each observation in the validation sample:

𝑀𝑆𝐸 (𝑥) = 𝐵𝑖𝑎𝑠2 (𝑥) +𝑉𝑎𝑟 (𝑥)

𝐵𝑖𝑎𝑠2 (𝑥) =
[
1

𝑅

𝑅∑︁
𝑟=1

𝜏𝑟 (𝑥) − 𝜏 (𝑥)
]2
, 𝑉𝑎𝑟 (𝑥) = 1

𝑅

𝑅∑︁
𝑟=1

[
𝜏𝑟 (𝑥) −

1

𝑅

𝑅∑︁
𝑟=1

𝜏𝑟 (𝑥)
]2

with 𝑥 a generic point in the validation sample, 𝑅 the number of replications, and 𝜏𝑟 (·)

the CATE function estimated by the tree at the 𝑟-th replication. We summarize these

performance measures by averaging over the validation sample. Additionally, we evaluate

the actual coverage rates of conventional 95% confidence intervals for the GATEs constructed

using the estimated standard errors.

5.3 Results

Table 5.1 presents the results obtained with 𝑅 = 1, 000 replications (see Appendix B

for results with adaptive trees). Broadly speaking, aggregation trees perform uniformly

better than causal trees in terms of prediction accuracy across the considered scenarios. The

superior performance of aggregation trees is particularly noticeable in Design 1, where the

MSE of causal trees is between 36% and 79% larger than the MSE of aggregation trees.

The advantage of aggregation trees is smaller in Design 2 (between 7–19%) and Design 3

(between 2–8%). In all designs, the advantage increases with the sample size. 𝐴𝑇
𝑋𝐿

and

𝐴𝑇
𝐶𝐹

show similar perfomances.

The second and the third panels of Table 5.1 provide additional insights into the superior

performance of aggregation trees by investigating the two components of the mean squared

error. All the considered estimators exhibit some bias, which increases in more complex

designs and decreases with the sample size. Aggregation trees consistently show smaller bias

than causal trees, with few exceptions where the two estimators tie. Notably, causal trees
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Design 1 Design 2 Design 3

500 1,000 2,000 4,000 500 1,000 2,000 4,000 500 1,000 2,000 4,000

Panel 1: 𝑀𝑆𝐸

𝐴𝑇
𝑋𝐿

0.141 0.084 0.050 0.031 0.701 0.611 0.483 0.303 1.423 1.356 1.223 0.985

𝐴𝑇
𝐶𝐹

0.141 0.085 0.051 0.031 0.690 0.607 0.480 0.300 1.416 1.338 1.215 0.964

𝐶𝑇 0.193 0.127 0.082 0.056 0.746 0.655 0.533 0.358 1.449 1.372 1.257 1.039

Panel 2: 𝐵𝑖𝑎𝑠2

𝐴𝑇
𝑋𝐿

0.074 0.038 0.022 0.012 0.619 0.500 0.322 0.176 1.340 1.252 1.026 0.682

𝐴𝑇
𝐶𝐹

0.079 0.041 0.024 0.013 0.594 0.483 0.305 0.159 1.308 1.206 0.990 0.627

𝐶𝑇 0.093 0.047 0.024 0.013 0.630 0.533 0.362 0.178 1.338 1.274 1.100 0.750

Panel 3: 𝑉𝑎𝑟

𝐴𝑇
𝑋𝐿

0.067 0.047 0.029 0.019 0.081 0.111 0.161 0.127 0.084 0.104 0.197 0.304

𝐴𝑇
𝐶𝐹

0.062 0.044 0.027 0.018 0.096 0.124 0.175 0.141 0.108 0.132 0.226 0.337

𝐶𝑇 0.100 0.080 0.058 0.043 0.116 0.122 0.172 0.181 0.111 0.098 0.157 0.289

Panel 4: Coverage for 95% CI

𝐴𝑇
𝑋𝐿

0.98 0.95 0.92 0.84 0.95 0.96 0.96 0.96 0.95 0.93 0.93 0.94

𝐴𝑇
𝐶𝐹

0.98 0.96 0.92 0.84 0.95 0.95 0.96 0.95 0.94 0.94 0.92 0.92

𝐶𝑇 0.90 0.91 0.93 0.92 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Panel 5: |T |
2.56 3.57 4.5 6.1 1.18 1.43 2.07 3.04 1.11 1.29 1.79 3.26

Table 5.1: Comparison with causal trees. The first three panels report the average over the valida-
tion sample of 𝑀𝑆𝐸 (𝑀𝑆𝐸), 𝐵𝑖𝑎𝑠2 (𝐵𝑖𝑎𝑠2) and 𝑉𝑎𝑟 (𝑉𝑎𝑟). The fourth panel reports coverage rates
for 95% confidence intervals. The last panel reports the average number of leaves in the different
designs. All trees are honest.

never exhibit the lowest bias across any scenario. Additionally, aggregation trees display

lower sampling variance than causal trees due to the splitting strategy discussed in Section

4.1. This effect is particularly pronounced in Design 1, where the variance of causal trees is

between 61% and 138% larger than the variance of aggregation trees. However, in Design

3 causal trees outperform aggregation trees in terms of sampling variance in larger samples,

although by a smaller margin (6-25%).

Finally, the fourth panel of Table 5.1 displays coverage rates for 95% confidence intervals.

Both aggregation and causal trees feature rates close to the nominal rate.

Comparing these results with Table B.1 allows us to assess the costs and benefits of

honesty. Using different data for constructing the trees and treatment effect estimation

greatly benefits inference. Coverage rates of adaptive trees are generally below the nominal
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rate, particularly those of causal trees that can be as low as 66%. However, honesty comes at

the expense of a larger mean squared error. The cost of honesty in terms of MSE is between

9% and 34% for causal trees, with two exceptions in Design 2 and Design 3 where, for the

smallest sample size, honest trees have a lower MSE than adaptive trees. For aggregation

trees, the price to be paid is higher, ranging between 4% and 63%. This occurs because the

estimation of the CATEs and the GATEs hinges on flexible machine learning estimators,

which are generally more sensitive to using fewer observations in training the models than

the GATE estimator of causal trees.

6 Empirical Example

As documented in Almond et al. (2005), infants born at low birth weight (LBW) can

impose substantial costs on society, with estimated expected costs of delivery and initial

care exceeding 100,000$ (at prices of year 2000) for babies weighing 1,000 grams at birth.7

Moreover, LBW is associated with a higher risk of death within one year of birth. For these

reasons, birth weight is considered the primary measure of a baby’s health and is often the

direct target of health policies. Thus, understanding what causes LBW is crucial.

The impact of maternal smoking on LBW has received considerable attention in the

literature, for it is regarded as one of the most significant and modifiable risk factors. Several

studies consistently find that smoking during pregnancy causes lower average birth weight,

with estimated ATEs ranging between -600 and -100 grams (e.g., Almond et al., 2005;

Abrevaya, 2006). As for effect heterogeneity, it is now well understood that the effects

are increasingly negative with the mother’s age (Abrevaya et al., 2015; Lee et al., 2017;

Zimmert & Lechner, 2019; Fan et al., 2022). Finally, treatment heterogeneity has also been

investigated. Cattaneo (2010) and Bodory et al. (2022) consider different smoking intensities

as different treatments and show that higher smoking intensities lead to more negative effects.

Heiler and Knaus (2021) find that heterogeneous effects can be partly explained by different

7 An infant is considered born at low birth weight if she weighs less than 2,500 grams at birth.
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smoking behaviors of ethnic and age groups.

6.1 Data

We analyze the same data set as Almond et al. (2005), also used by Cattaneo (2010),

Heiler and Knaus (2021), and Bodory et al. (2022). The clean data consist of 435, 124

observations measured in Pennsylvania between 1989 and 1991. The outcome of interest

is the infant’s weight at birth in grams. The treatment indicator equals one if the mother

smoked during pregnancy and zero otherwise. The pre-treatment covariate vector contains 39

confounders and heterogeneity variables, providing information on the mother’s and father’s

background characteristics (age, ethnicity, whether the mother was married or foreign-born),

mother’s behavior possibly associated with smoking (whether she drank alcohol during preg-

nancy, how many drinks per week), maternal medical risk factors not affected by smoking

during pregnancy, and birth characteristics (e.g., whether the infant is first born, number

and quality of prenatal care visits). Table A.1 provides a description of all the variables.

To avoid common support issues, we drop children whose parents were particularly young

or old at birth, or who attended more than thirty prenatal care visits. Moreover, we drop

children whose mothers used to consume more than ten alcoholic drinks per week during

pregnancy. A total of 596 observations are removed from the original dataset.

Table A.2 presents the summary statistics for the treated and control groups in the fi-

nal sample. The table displays sample averages and standard deviations for each variable,

along with two measures of difference in the distribution across treatment arms: the nor-

malized difference, measuring the difference between the locations of the distributions, and

the logarithm of the ratio of standard deviations, measuring the difference in the dispersion

of the distributions. Overall, the sample appears to be sufficiently balanced, with only five

relatively unbalanced covariates: meduc, unmarried and feduc exhibit strong differences in

locations, while alcohol and n drink exhibit strong differences in dispersion. These results

are robust to the inclusion of the excluded observations.
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Recall that the identification of ATE, GATEs and CATEs requires Assumptions 2.1–2.4

to hold. Assumption 2.1 (SUTVA) might raise concerns due to potential spillover effects from

passive smoking. However, only approximately 19% of the mothers reported smoking, thus

reducing the risk of interference. Assumption 2.2 (exogeneity of the covariates) is reasonable

in this context, as all covariates, including maternal medical risk factors, are believed to

be unaffected by the treatment (Almond et al., 2005). Assumption 2.3 (unconfoundedness)

requires controlling for all variables influencing both the infant’s weight at birth and the

mother’s decision to smoke. Economic factors such as parents’ income might impact the

decision to smoke but are unlikely to causally affect the infant’s birth weight. Therefore,

their absence in the data set is not a concern for identification. Finally, the kernel density

estimates of the propensity score in Figure A.1 reveal substantial overlap in the propensity

scores between the treatment and the control groups. However, the number of control units

with a large score is quite low. Therefore, to increase the credibility of the identification,

we trim the sample by excluding observations with estimated propensity scores exceeding

0.6. This reduces the sample size by 8, 354 units. Most of the summary statistics shown in

Table A.2 remain unchanged. The trimming reduces the proportion of mothers consuming

alcohol and the average number of weekly drinks during pregnancy in the treatment group,

resulting in a more balanced sample.

6.2 Constructing the Sequence of Groupings

To achieve valid inference about the GATEs, we split the sample into a training sample

and an honest sample of equal sizes. We then estimate the CATEs by fitting a causal forest

(Athey et al., 2019) using only observations from the training sample. Figure A.2 displays

the estimated CATEs sorted by magnitude, along with their corresponding 95% confidence

intervals. Almost all predicted effects are negative and statistically different from zero at

the 5% significance level.

We construct the set of admissible groupings by approximating the estimated CATEs
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via a decision tree. Again, we use only observations from the training sample. Due to the

discrete nature of the variables at hand, there is no need for discretization.

After constructing the tree, we use observations from the honest sample to estimate

the GATEs by constructing and averaging doubly-robust scores (see equation 3.5). Honest

regression forests and 5-fold cross-fitting are employed to estimate the necessary nuisance

functions.

Figure 6.1 displays the resulting tree. Starting from the root, which provides the esti-

mated ATE (−204 grams), observations are split into two groups: children born from adult

mothers (root’s left child) and children born from young mothers (root’s right child). Among

all possible groupings with two groups, this division maximizes heterogeneity in the treat-

ment effects. The first group, encompassing 77% of units, exhibits an estimated GATE

of approximately −217 grams. The second group, encompassing 23% of units, exhibits an

estimated GATE of approximately −158 grams.

These groups are further divided into smaller subgroups. Children born from adult

mothers are divided based on whether they are first-born, while children born from young

Figure 6.1: Aggregation tree, constructed in the training sample. Each node displays the GATE
and the number and percentage of units belonging to each subgroup. The GATEs are estimated by
averaging doubly-robust scores constructed using the honest sample. Blue and red shades denote
groups with GATEs stronger (i.e., more negative) and lighter (i.e., more positive) than the ATE.
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Figure 6.2: Sequence of optimal groupings, obtained by progressively collapsing the node for which
the loss in explained heterogeneity is minimized.

mothers are divided based on whether their mother is black. This division results in four

groups represented by as many nodes.

The process is repeated until some stopping criterion is met. Then, the sequence of

optimal groupings is constructed by progressively aggregating the two subgroups for which

the loss in explained heterogeneity resulting from aggregation is the smallest. Figure 6.2

visually represents this procedure. Reading the figure from left to right and from top to

bottom, each panel corresponds to a grouping in the sequence, obtained by collapsing the

node that minimizes the loss in explained heterogeneity. The figure clearly demonstrates

the consistency of the sequence of groupings. Since the groupings are nested, the previous

groups are never broken when moving to coarser levels, ensuring consistency of the results

across different granularity levels.
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6.3 Discussion

Researchers interested in uncovering the effects of a particular policy generally face two

crucial tasks: assessing systematic effect heterogeneity and, if heterogeneity is detected,

understanding the underlying mechanisms.

One way to tackle the first task is to look at the distribution of the estimated CATEs.

For instance, Figure A.2 could indicate systematic heterogeneity in the treatment effects.

However, because of estimation noise high variation in the predictions does not necessarily

imply that effects are heterogeneous.

A better approach involves investigating whether distinct subgroups feature different

reactions to the treatment. For this purpose, we select the optimal grouping composed

of four groups (displayed on the top right panel of Figure 6.2) and estimate model (3.6)

using only observations in the honest sample to get standard errors for the GATEs. Table

6.1 reports point estimates and 95% confidence intervals. The estimated GATEs exhibit

substantial differences, ranging from −339 grams for the most affected group (Leaf 1 ) to

Leaf 1 Leaf 2 Leaf 3 Leaf 4

GATEs
-339.522 -240.812 -168.656 -157.884

[-390.478, -288.566] [-257.217, -224.407] [-191.806, -145.506] [-168.903, -146.865]

Leaf 1 - - - -

(-) (-) (-) (-)

Leaf 2 98.71 - - -

(0.001) (-) (-) (-)

Leaf 3 170.87 72.16 - -

(0.000) (0.000) (-) (-)

Leaf 4 181.64 82.93 10.77 -

(0.000) (0.000) (0.410) (-)

Table 6.1: Point estimates and 95% confidence intervals for the GATEs. Leaves are sorted in
increasing order of the GATEs. Additionally, the GATE differences across all pairs of leaves are
displayed. 𝑝-values testing the null hypothesis that a single difference is zero are adjusted using
Holm’s procedure and reported in parenthesis under each point estimate.
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−157 grams for the least affected group (Leaf 4 ). However, Leaf 3 and Leaf 4 show similar

GATEs. Table 6.1 also reports the GATE differences across all pairs of groups, along with

𝑝-values testing the null hypotheses that each difference equals zero. To account for multiple

hypotheses testing, we adjust the 𝑝-values using the procedure of Holm (1979). The GATE

difference between Leaf 3 and Leaf 4 is approximately 10 grams, and we fail to reject the

null hypothesis that this difference is zero at any conventional confidence level. In contrast,

the differences between all other pairs of groups are both large and statistically significant.

These findings provide evidence of systematic heterogeneity in treatment effects.

To understand what factors drive this heterogeneity, we look at how treatment effects

relate to the observable covariates. One possibility is to ask which variables have been

used by the tree-growing process to construct groups and measure their relative importance.

However, we should not conclude that covariates not used for splitting are not related to

heterogeneity, because if two covariates are highly correlated, trees generally split on only

one of them.

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Mean (S.E.) Mean (S.E.) Mean (S.E.) Mean (S.E.)

Parental characteristics

mage 29.331 (0.073) 29.872 (0.013) 28.255 (0.016) 19.596 (0.009)

meduc 7.174 (0.040) 13.363 (0.006) 13.822 (0.009) 11.381 (0.008)

fage 31.645 (0.094) 32.002 (0.017) 30.472 (0.022) 22.740 (0.019)

feduc 8.175 (0.053) 13.371 (0.008) 13.707 (0.010) 11.375 (0.012)

Maternal Alcohol Consumption

alcohol 0.007 (0.001) 0.011 (0.001) 0.011 (0.001) 0.007 (0.001)

n drink 0.019 (0.004) 0.023 (0.001) 0.022 (0.001) 0.017 (0.001)

Birth characteristics

first 0.000 (-) 0.000 (-) 1.000 (-) 0.664 (0.002)

plural 0.018 (0.002) 0.016 (0.001) 0.019 (0.001) 0.011 (0.001)

n prenatal 7.811 (0.062) 11.222 (0.010) 11.785 (0.012) 10.040 (0.018)

Table 6.2: Average characteristics of units in each leaf, obtained by regressing each covariate on a set
of dummies denoting leaf membership using only the honest sample. Standard errors are estimated
via the Eicker-Huber-White estimator. Leaves are sorted in increasing order of the GATEs.
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A better alternative is to examine how the average characteristics of units vary across sub-

groups (e.g., Chernozhukov et al., 2017). Table 6.2 shows how the average value of selected

covariates changes across Leaves 1–Leaves 4 (see Table A.3 for the remaining covariates).

The least affected group is composed of children born to younger parents, suggesting that

the effects are more negative at higher parental ages. This finding is consistent with previous

research (e.g., Abrevaya et al., 2015; Zimmert & Lechner, 2019). In contrast, the most af-

fected group exhibits lower parental educational attainment, fewer prenatal care visits, and

no first-born infants. The proportion of mothers drinking during pregnancy and the number

of weekly alcoholic drinks do not vary substantially across groups. These results suggest that

effect heterogeneity is mainly driven by parental characteristics and birth-related variables

and is unrelated to maternal alcohol consumption during pregnancy.

7 Conclusion

This paper introduces a nonparametric data-driven approach to discovering heteroge-

neous subgroups in a selection-on-observables framework. The approach constructs a se-

quence of groupings, one for each level of granularity. We show that each grouping features

an optimality property in that it ensures that the loss in explained heterogeneity resulting

from aggregation is minimized. Moreover, the sequence is nested in the sense that subgroups

formed at a given level of granularity are never broken at coarser levels. This property

guarantees the consistency of the results across the different granularity levels.

For a particular grouping, point estimates and standard errors for the GATEs are ob-

tained by fitting an appropriate linear model. An honesty condition allows us to use the

estimated standard errors to construct asymptotically valid symmetric confidence intervals

for the GATEs.

We use theoretical arguments and a simulation exercise to compare aggregation trees

with the closely related causal trees of Athey and Imbens (2016). The simulation shows
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that aggregation trees lead to improvements in the mean squared error of treatment effects,

attributed to a lower variance resulting from a more robust splitting strategy.

We apply the proposed methodology to evaluate the impact of maternal smoking on

birth weight. The analysis finds evidence of systematic heterogeneity mainly driven by

parental characteristics and birth-related variables, with no substantial association found

with maternal alcohol consumption during pregnancy.
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Appendix A Data

Label Description

OUTCOME.
bweight Infant birth weight (in grams)
TREATMENT.
smoke =1 if mother smoked during pregnancy
COVARIATES.
Mother’s characteristics.
mage Mother’s age
meduc Mother’s educational attainment
mwhite =1 if mother is white
mblack =1 if mother is black
mhispan =1 if mother is hispanic
foreign born =1 if mother is foreign born
unmarried =1 if mother is unmarried
alcohol =1 if mother drank alcohol during pregnancy
n drink Number of drinks per week during pregnancy
Father’s characteristics.
fage Father’s age
feduc Father’s educational attainment
fwhite =1 if father is white
fblack =1 if father is black
fhispan =1 if father is hispanic
Birth characteristics.
birthmonth1 =1 if birth in January
birthmonth2 =1 if birth in February
birthmonth3 =1 if birth in March
birthmonth4 =1 if birth in April
birthmonth5 =1 if birth in May
birthmonth6 =1 if birth in June
birthmonth7 =1 if birth in July
birthmonth8 =1 if birth in August
birthmonth9 =1 if birth in September
birthmonth10 =1 if birth in October
birthmonth11 =1 if birth in November
birthmonth12 =1 if birth in December
first =1 if the infant is first born
plural =1 if twins or greater birth
n prenatal Number of prenatal care visits
prenatal0 =1 if no prenatal visit
prenatal1 =1 if first prenatal visit in first trimester of pregnancy
prenatal2 =1 if first prenatal visit in second trimester of pregnancy
prenatal3 =1 if first prenatal visit in third trimester of pregnancy
adequacy1 =1 if adequacy of care is adequate (Kessner Index)
adequacy2 =1 if adequacy of care is intermediate (Kessner Index)
adequacy3 =1 if adequacy of care is inadequate (Kessner Index)
Maternal medical risk factors.
diabete =1 if mother is diabetic
anemia =1 if mother is anemic
hyper =1 if mother had pregnancy-associated hypertension

Table A.1: Description of variables in the data set.

30



Treated Controls Overlap measures

(𝑛𝑡 = 81, 388) (𝑛𝑐 = 353, 140)

Mean (S.D.) Mean (S.D.) Δ̂ 𝑗 Γ̂ 𝑗

mage 25.503 (5.372) 27.340 (5.553) -0.336 -0.033

meduc 11.783 (1.883) 13.088 (2.430) -0.600 -0.255

mwhite 0.850 (0.357) 0.865 (0.342) -0.043 0.044

mblack 0.147 (0.354) 0.116 (0.321) 0.090 0.099

mhispan 0.020 (0.140) 0.031 (0.173) -0.068 -0.209

foreign born 0.019 (0.138) 0.056 (0.229) -0.190 -0.504

unmarried 0.444 (0.497) 0.196 (0.397) 0.552 0.225

alcohol 0.045 (0.207) 0.007 (0.080) 0.243 0.943

n drink 0.123 (0.729) 0.013 (0.212) 0.205 1.237

fage 28.451 (6.556) 29.640 (6.264) -0.185 0.046

feduc 11.686 (2.628) 13.102 (2.800) -0.522 -0.064

fwhite 0.831 (0.375) 0.857 (0.350) -0.072 0.068

fblack 0.162 (0.369) 0.123 (0.329) 0.112 0.115

fhispan 0.028 (0.166) 0.033 (0.178) -0.025 -0.068

birthmonth1 0.081 (0.273) 0.078 (0.268) 0.011 0.017

birthmonth2 0.074 (0.262) 0.075 (0.264) -0.003 -0.004

birthmonth3 0.082 (0.274) 0.086 (0.280) -0.015 -0.023

birthmonth4 0.076 (0.265) 0.083 (0.277) -0.027 -0.043

birthmonth5 0.081 (0.273) 0.087 (0.282) -0.022 -0.032

birthmonth6 0.083 (0.277) 0.086 (0.280) -0.009 -0.013

birthmonth7 0.092 (0.289) 0.089 (0.284) 0.011 0.016

birthmonth8 0.094 (0.291) 0.089 (0.285) 0.017 0.024

birthmonth9 0.090 (0.286) 0.087 (0.282) 0.011 0.016

birthmonth10 0.086 (0.281) 0.084 (0.277) 0.009 0.013

birthmonth11 0.078 (0.269) 0.077 (0.267) 0.003 0.005

birthmonth12 0.082 (0.275) 0.079 (0.270) 0.012 0.019

first 0.367 (0.482) 0.438 (0.496) -0.146 -0.029

plural 0.015 (0.120) 0.016 (0.127) -0.015 -0.060

n prenatal 10.210 (3.989) 11.125 (3.395) -0.247 0.161

prenatal0 0.025 (0.156) 0.007 (0.086) 0.141 0.603

prenatal1 0.718 (0.450) 0.838 (0.368) -0.292 0.200

prenatal2 0.204 (0.403) 0.124 (0.330) 0.216 0.200

prenatal3 0.047 (0.212) 0.026 (0.159) 0.114 0.289

adequacy1 0.631 (0.483) 0.762 (0.426) -0.287 0.125

adequacy2 0.258 (0.437) 0.184 (0.388) 0.178 0.121

adequacy3 0.105 (0.306) 0.049 (0.216) 0.210 0.347

diabete 0.018 (0.132) 0.018 (0.135) -0.006 -0.022

anemia 0.014 (0.119) 0.008 (0.092) 0.057 0.266

hyper 0.019 (0.138) 0.029 (0.168) -0.065 -0.202

Table A.2: Balance between treatment and control groups. The last two columns report the
estimated normalized differences (Δ̂ 𝑗) and logarithms of the ratio of standard deviations (Γ̂ 𝑗).
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Leaf 1 Leaf 2 Leaf 3 Leaf 4

Mean (S.E.) Mean (S.E.) Mean (S.E.) Mean (S.E.)

mwhite 0.879 (0.005) 0.890 (0.001) 0.913 (0.001) 0.745 (0.002)

mblack 0.072 (0.004) 0.095 (0.001) 0.064 (0.001) 0.246 (0.002)

mhispan 0.095 (0.004) 0.020 (0.001) 0.013 (0.001) 0.059 (0.001)

foreign born 0.149 (0.005) 0.046 (0.001) 0.053 (0.001) 0.041 (0.001)

unmarried 0.155 (0.005) 0.124 (0.001) 0.115 (0.001) 0.581 (0.002)

fwhite 0.871 (0.005) 0.884 (0.001) 0.908 (0.001) 0.724 (0.002)

fblack 0.072 (0.004) 0.102 (0.001) 0.069 (0.001) 0.263 (0.002)

fhispan 0.097 (0.004) 0.022 (0.001) 0.015 (0.001) 0.066 (0.001)

birthmonth1 0.094 (0.004) 0.077 (0.001) 0.078 (0.001) 0.080 (0.001)

birthmonth2 0.082 (0.004) 0.075 (0.001) 0.076 (0.001) 0.076 (0.001)

birthmonth3 0.086 (0.004) 0.087 (0.001) 0.083 (0.001) 0.084 (0.001)

birthmonth4 0.075 (0.004) 0.082 (0.001) 0.083 (0.001) 0.078 (0.001)

birthmonth5 0.081 (0.004) 0.088 (0.001) 0.086 (0.001) 0.082 (0.001)

birthmonth6 0.086 (0.004) 0.087 (0.001) 0.085 (0.001) 0.085 (0.001)

birthmonth7 0.079 (0.004) 0.090 (0.001) 0.089 (0.001) 0.087 (0.001)

birthmonth8 0.091 (0.004) 0.089 (0.001) 0.091 (0.001) 0.092 (0.001)

birthmonth9 0.086 (0.004) 0.087 (0.001) 0.089 (0.001) 0.089 (0.001)

birthmonth10 0.088 (0.004) 0.084 (0.001) 0.083 (0.001) 0.084 (0.001)

birthmonth11 0.070 (0.004) 0.076 (0.001) 0.079 (0.001) 0.079 (0.001)

birthmonth12 0.082 (0.004) 0.078 (0.001) 0.078 (0.001) 0.084 (0.001)

prenatal0 0.020 (0.002) 0.007 (0.001) 0.002 (0.001) 0.020 (0.001)

prenatal1 0.467 (0.007) 0.866 (0.001) 0.918 (0.001) 0.660 (0.002)

prenatal2 0.357 (0.007) 0.104 (0.001) 0.066 (0.001) 0.257 (0.002)

prenatal3 0.149 (0.005) 0.018 (0.001) 0.011 (0.001) 0.057 (0.001)

adequacy1 0.340 (0.007) 0.787 (0.001) 0.854 (0.001) 0.569 (0.002)

adequacy2 0.378 (0.007) 0.170 (0.001) 0.124 (0.001) 0.313 (0.002)

adequacy3 0.272 (0.007) 0.038 (0.001) 0.018 (0.001) 0.111 (0.001)

diabete 0.016 (0.002) 0.021 (0.001) 0.022 (0.001) 0.009 (0.001)

anemia 0.012 (0.002) 0.008 (0.001) 0.005 (0.001) 0.016 (0.001)

hyper 0.014 (0.002) 0.017 (0.001) 0.044 (0.001) 0.031 (0.001)

Table A.3: Average characteristics of units in each leaf, obtained by regressing each covariate
on a set of dummies denoting leaf membership using only the honest sample. Standard errors
are estimated via the Eicker-Huber-White estimator. Leaves are sorted in increasing order of the
GATEs.
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Figure A.1: Kernel density estimates of the propensity score. Propensity scores are estimated by
an honest regression forest. The dashed line shows the sample trimming.
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Figure A.2: Sorted CATEs and 95% confidence intervals. Predictions on the honest sample are
shown. Standard errors are smoothed by a Nadaraya-Watson regression.
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Appendix B Further Simulation Results

Design 1 Design 2 Design 3

500 1,000 2,000 4,000 500 1,000 2,000 4,000 500 1,000 2,000 4,000

Panel 1: 𝑀𝑆𝐸

𝐴𝑇
𝑋𝐿

0.095 0.056 0.035 0.020 0.612 0.480 0.298 0.210 1.364 1.235 0.976 0.725

𝐴𝑇
𝐶𝐹

0.094 0.057 0.035 0.020 0.611 0.478 0.295 0.207 1.358 1.228 0.952 0.688

𝐶𝑇 0.169 0.107 0.072 0.047 0.756 0.599 0.399 0.280 1.461 1.360 1.118 0.868

Panel 2: 𝐵𝑖𝑎𝑠2

𝐴𝑇
𝑋𝐿

0.046 0.026 0.015 0.008 0.458 0.299 0.168 0.137 1.240 1.002 0.654 0.466

𝐴𝑇
𝐶𝐹

0.048 0.028 0.016 0.008 0.445 0.282 0.150 0.121 1.209 0.968 0.599 0.413

𝐶𝑇 0.017 0.009 0.004 0.003 0.410 0.232 0.096 0.074 1.192 0.932 0.543 0.327

Panel 3: 𝑉𝑎𝑟

𝐴𝑇
𝑋𝐿

0.049 0.030 0.020 0.012 0.154 0.181 0.131 0.073 0.124 0.232 0.321 0.259

𝐴𝑇
𝐶𝐹

0.046 0.028 0.019 0.011 0.166 0.196 0.145 0.086 0.149 0.261 0.353 0.275

𝐶𝑇 0.152 0.099 0.068 0.044 0.346 0.367 0.303 0.206 0.269 0.428 0.575 0.540

Panel 4: Coverage for 95% CI

𝐴𝑇
𝑋𝐿

0.97 0.91 0.84 0.71 0.93 0.94 0.96 0.96 0.91 0.89 0.92 0.93

𝐴𝑇
𝐶𝐹

0.96 0.92 0.84 0.71 0.92 0.93 0.95 0.96 0.89 0.87 0.89 0.92

𝐶𝑇 0.72 0.74 0.73 0.74 0.75 0.73 0.77 0.79 0.78 0.66 0.68 0.70

Panel 5: |T |
2.88 3.89 5.09 7.08 1.47 2.06 3.08 3.93 1.25 1.82 3.26 5.63

Table B.1: Comparison with causal trees. The first three panels report the average over the
validation sample of 𝑀𝑆𝐸 (𝑀𝑆𝐸), 𝐵𝑖𝑎𝑠2 (𝐵𝑖𝑎𝑠2) and 𝑉𝑎𝑟 (𝑉𝑎𝑟). The fourth panel reports coverage
rates for 95% confidence intervals. The last panel reports the average number of leaves in the
different designs. All trees are adaptive.
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Appendix C Best Greedy Approximation

Fix a partition X1, . . . ,X𝐺 of X. Then, the approximation problem (3.1) is equivalent to:

min
𝑐1 ,...,𝑐𝐺

E


(
𝜏 (𝑋) −

𝐺∑︁
𝑔=1

𝑐𝑔𝟙
(
𝑋 ∈ X𝑔

))2 (C.1)

Write the first-order conditions:

E

[(
𝜏 (𝑋) −

𝐺∑︁
𝑡=1

𝑐𝑡𝟙 (𝑋 ∈ X𝑡)
)
𝟙

(
𝑋 ∈ X𝑔

) ]
= 0, 𝑔 = 1, . . . , 𝐺

=⇒ E
[
𝜏 (𝑋) | 𝑋 ∈ X𝑔

]
− 𝑐𝑔 = 0, 𝑔 = 1, . . . , 𝐺

=⇒ 𝑐∗𝑔 = E
[
𝜏 (𝑋) | 𝑋 ∈ X𝑔

]
≡ 𝜏𝑔, 𝑔 = 1, . . . , 𝐺

Therefore, for any partition X1, . . . ,X𝐺 of the covariate space, the best MSE approximation

is achieved by setting 𝑐𝑔 = 𝑐
∗
𝑔, 𝑔 = 1, . . . , 𝐺.

In order to construct the optimal greedy partition X1, . . . ,X𝐺 , the algorithm starts with

a region of the covariate space R𝑚 ⊆ X and iteratively stratifies the population minimizing

the MSE within the resulting subregions:

min
𝑗 ,𝑠
E

[ (
𝜏 (𝑋) − 𝜏

𝑚+1

)2 |𝑋 ∈ R𝑚+1 ( 𝑗 , 𝑠)
]
+ E

[ (
𝜏 (𝑋) − 𝜏

𝑚+2

)2 |𝑋 ∈ R𝑚+2 ( 𝑗 , 𝑠)
]

(C.2)

which is equivalent to problem (3.2).
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Appendix D Bounding the Number of Trees

Theorem D.1. Define the “depth” D of a binary decision tree as the number of nodes

connecting the root to the furthest leaf. Let 𝑋 be a 𝑝-vector of binary covariates. Then,

the number of distinct decision trees constructed by recursively partitioning X and having a

depth equal to or lower than D is bounded from below by 𝐿D =
∏D
𝑑=1 (𝑝 − (𝑑 − 1))2𝑑−1.

Proof. The proof is a matter of careful counting and relies on the fundamental theorem of

counting. Define a symmetric D-depth tree as any binary decision tree such that the number

of nodes connecting the root to each leaf equals D. The root is considered a 0-depth tree.

Start from the whole covariate space X, i.e., from the unique 0-depth tree. Since all the

𝑝 covariates are binary, there is a unique candidate splitting point 𝑠 for each. Therefore,

there exist 𝑝 distinct candidate pairs ( 𝑗 , 𝑠) for the first split. It follows that it is possible to

build 𝑝 distinct symmetric 1-depth trees.

Now, fix a symmetric 1-depth tree, assuming without loss of generality that the split

occurred on the first covariate. A symmetric 2-depth tree is then obtained by splitting both

leaves of the nested symmetric 1-depth tree. As a split already occurred on the first covariate,

there exist 𝑝 − 1 distinct candidate pairs ( 𝑗 , 𝑠) for splitting each terminal node. Therefore,

from a given symmetric 1-depth tree it is possible to build (𝑝 − 1)2 distinct symmetric 2-

depth trees. By the fundamental theorem of counting, the number of distinct symmetric

2-depth trees equals 𝑝 (𝑝 − 1)2.

By a similar argument, it is easy to count the number of distinct symmetric 3-depth trees

that can be constructed from any symmetric 2-depth tree, which equals (𝑝 − 2)4. Again,

from the fundamental theorem of counting it follows that the number of distinct symmetric

3-depth trees equals 𝑝 (𝑝 − 1)2 (𝑝 − 2)4.

Iterating the argument, we can write a closed-form expression of the number of symmetric

D-depth trees that can be constructed using 𝑝 binary covariates:

𝐿D =

D∏
𝑑=1

(𝑝 − (𝑑 − 1))2𝑑−1 (D.1)
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Notice that any binary decision tree with a depth equal to or lower thanD can be regarded

as a subtree of a given symmetric D-depth tree, that is, it can be obtained by collapsing

a certain number of internal nodes of the latter. Therefore, the set of symmetric D-depth

trees is a subset of all the possible distinct binary decision trees that can be constructed by

recursively partitioning X whose depth is at most D. It follows that 𝐿D is a lower bound

for the number of such trees. □

Remarks. Equation (D.1) has a nice interpretation. Notice that a symmetric D-depth tree

is composed of 2D terminal nodes. Therefore, the formula reflects the fact that starting from

any symmetric (𝑑 − 1)-depth tree, 2𝑑−1 leaves must be split to form a symmetric 𝑑-depth

tree, and that 𝑝 − (𝑑 − 1) candidate pairs ( 𝑗 , 𝑠) exist for each of these splits.

Notice also that we cannot grow symmetric trees with depth D > 𝑝: in such cases,

𝐿D = 0. Moreover, 𝐿𝑝−1 = 𝐿𝑝: starting from any symmetric (𝑝 − 1)-depth tree, each leaf can

be split choosing one and only one candidate pair ( 𝑗 , 𝑠), hence only one symmetric 𝑝-depth

tree can be constructed for each of the distinct symmetric (𝑝 − 1)-depth trees.

In the case of 𝑝 categorical covariates with 𝑘 categories each, Theorem D.1 holds if we

substitute 𝑝 (𝑘 − 1) for 𝑝.
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