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Abstract

In the context of high-frequency financial data it is often assumed that sampling times

are exogenous. This entails that financial asset prices, sampled on a grid of trade instants,

are independent from the sampling times. We derive statistical tests capable of determining

whether or not, and to what extent, this hypothesis is rejected by the data. We test for

sampling time endogeneity in relation to both the efficient and the noise components of the

observed price. Using a vast dataset of financial asset prices we give empirical evidence that

the efficient component of the observed price process does not show a dependence with trade

arrival times of the kind that may jeopardize well-known results on convergence of power

variations. In addition, we provide empirical evidence that the assumption of independence

between market microstructure noise and trading instants is not supported by the data.
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1 Introduction

Over the last decades financial econometrics has made a substantial progress in the analysis of

high-frequency data. Asset prices recorded at a high-frequency are interpreted as the values of a

semimartingale X observed at Nn
t points of a grid πn = {t(n, i) | i = 0, . . . , Nn

t }, which form a

partition of a fixed time interval [0, t]. In this context, objects of interest are functionals of the

form:

PV (X, f)n =

Nn
t∑

i=1

∆(n, i)1−r/2 f (∆n
iX) , (1)

where PV stands for Power Variation, ∆n
iX

.
= Xt(n,i) −Xt(n,i−1) denotes the increment of X over

the interval [t(n, i), t(n, i− 1)], ∆ (n, i)
.
= t(n, i)− t(n, i− 1), and either f (x) = |x|r or f (x) = xr,

r > 0. The limiting behaviour (as n→ ∞) of PV (X, f)n is well-studied under the assumption that

the sampling times are independent from X, in particular, when the partition πn is deterministic

(see, among many others, Jacod (2008); Barndorff-Nielsen et al. (2006); Barndorff-Nielsen and

Shephard (2002), for the equidistant case and Mykland and Zhang (2006); Barndorff-Nielsen

and Shephard (2006), for the non-equidistant one). A general treatment of the matter is given

by Hayashi et al. (2011). For a wide class of sampling schemes, when X is a continuous Itō

semimartingale, independent from the sampling times t(n, i)’s, with quadratic variation
∫ t

0
σ2
s ds,

we have:

PV (X, f)n
u.c.p.−→ µr

∫ t

0

f (σs) ds, (2)

where µr = E [f(u)] with u a standard normal random variable and “
u.c.p.−→ ” indicates the uniform

convergence in probability over [0, t]. The above convergence is crucial for the inference based on

power variation. However, it can be violated due to the dependence between X and the sampling

times. In what follows, we say that a sampling scheme is exogenous if the convergence in equation

(2) is preserved for all regular enough f , and it is endogenous otherwise1. That is, we informally

use the term endogeneity to indicate sampling schemes for which the results obtained under the

independence between X and πn do not hold. Whether or not real financial data show such

endogeneity (and of what kind) remains an open question.

In this paper, we tackle the problem of testing for endogeneity in the presence of market mi-

crostructure noise and jumps. First, we propose a test for endogeneity in the absence of noise.

Second, we investigate the problem of detecting time endogeneity when the observations of X are

contaminated by a noise. In this framework, we propose two complementary tests: a test for the

endogeneity of the sampling times with respect to the microstructure noise and a robust-to-noise

test for endogeneity of the sampling times with respect to the efficient price.

1Endogeneity of sampling times, in its most general meaning, may stand for any kind of dependence between the
sampling times in πn and the sampled process X. It can be defined in multiple ways (see, for example, Fukasawa,
2010a,b). In this paper we only focus on detecting “strong” forms of dependence, i.e. ones that jeopardize standard
results for power variation. We leave investigating other forms of dependence between the sampling times and X
for future research.
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In a related work, Li et al. (2014) propose an alternative test for endogeneity under the absence

of microstructure noise based on the realized tricity PV (X, x3)n. Their test detects a special kind

of endogeneity, one which implies that PV (X, x3)n converges to a nonzero limit in probability,

whereas, under the independence between X and πn, the realized tricity converges to zero. Nev-

ertheless, if the sampling times are successive hitting times of a symmetric spatial grid by X, the

tricity still converges to zero. Accordingly, the Li et al. (2014)’s test has zero or near zero power

in this case. On the other hand, our approach allows to detect endogeneity for any configuration

of the barriers. This is achieved due to a different testing principle: our test is based on comparing

two types of perturbed power variations computed using the increments of the observed process

corresponding to longer and shorter durations of time. The null of non-endogeneity is rejected

anytime that the difference between the two kinds of power variations is asymptotically different

from zero. This may occur either with a non-zero covariance between |∆n
iX| and the corresponding

time increments ∆ (n, i), or in cases, such as the successive hitting times of a symmetric spatial

grid by X, in which that covariance is exactly zero.

To the best of our knowledge, our proposed endogeneity tests under the presence of noise have

no analogous in the existing literature. We observe Y
.
= X + U in the noisy case, where X is the

efficient price and U is a zero-mean error sequence. Both components of the observed process can

be potentially dependent on sampling times. Moreover, they can be correlated with each other.

Thus, testing the endogeneity of a sampling schemes is much more challenging than in the noiseless

setting. At the cost of imposing an additional structural assumption on the sampling times (which

is still a nonparametric assumption accommodating a wide range of sampling schemes), we reduce

the problem of testing for endogeneity to a problem of testing the significance of a coefficient in

a semiparametric regression with time-varying intercept. The inference of time-varying regression

models has been extensively studied in the literature (Gao and Hawthorne, 2006; Zhang and Wu,

2012; Kalli and Griffin, 2014; Vogt, 2015; Zhang and Wu, 2015). Typically the varying coefficients

are assumed to be smooth functions of time. We build upon this literature by deriving a significance

test assuming that the varying coefficient is a realization of a semimartingle (as implied by our

assumption on the sampling times). As a result we first construct a test for independence between

the noise and the sampling times, robust to efficient price-noise dependence.

Secondly, we show that it is possible to profit from the highest sampling frequency to test for

dependence between the efficient component of Y and the sampling times. To do so, we rely on

the pre-averaging method that has been successfully applied to remove the impact of noise in

estimating efficient price characteristics (see Jacod et al., 2009; Podolskij and Vetter, 2009a,b;

Christensen et al., 2010; Jacod et al., 2010, among many others). We construct the pre-averaged

analog of the statistic used to detect the dependence between the noise and the sampling time.

We show that, under the null of a sampling process independent from the efficient price X, the

statistics based on pre-averaged quantities is distributed, asymptotically, as a standard Gaussian.

Notably, this result is robust to time-noise dependence, an important feature in light of our

empirical findings.
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Our theoretical results contribute to an extensive literature that has investigated, under different

aspects, the dependence between prices of financial assets and times at which they are observed (see

Oomen, 2006; Fukasawa, 2010b; Hayashi et al., 2011; Fukasawa and Rosenbaum, 2012; Li et al.,

2013, 2014; Bibinger and Mykland, 2016; Potiron and Mykland, 2017; Cui, 2021; Dimitriadis and

Halbleib, 2022; Merrick and Linton, 2022, among others). The majority of these studies derive

estimators of price characteristics (e.g. quadratic variation) robust to different specifications of

time endogeneity, which the proposed theory allows to test.

As an empirical application, using a vast dataset of financial asset prices, we provide statisti-

cally robust empirical evidence that I) the efficient component of the observed price shows no

dependence from the trade arrival times; II) the opposite occurs for microstructure noise, whose

dependence from trade times is striking; III) for two sampling schemes, namely business time

and dollar-volume sampling, featuring moderate sampling frequencies (such as one observation,

on average, every minute or more) the observed price (now assumed noiseless) depends on the

sampling times.

The paper has the following structure. We begin with a general discussion, presented in Section

2, on the main assumptions that are used to derive the central limit theorems. We present a test

for endogenous time in the absence of microstructure noise in Section 3. In Subsection 3.2 we

discuss the impact of jumps and we provide a version of the test which is robust to discontinuities.

In Section 4 we study time endogeneity in presence of microstructure noise. More specifically,

we discuss how to identify a dependence between sampling times and microstructure noise in

Subsection 4.1 and between the efficient component of the observed price (i.e. the observed price

purged from the microstructure noise contamination) and the sampling times in Subsection 4.2.

A Monte Carlo assessment of the finite sample properties of the proposed asymptotic theory is

discussed in Section 5. In Section 6 we apply the newly derived tests to a vast dataset of NYSE

stocks. To conclude, we summarize our research in Section 7. Finally, all proofs and technical

lemmas are reported in Appendix A.

2 Settings and hypothesis

We begin with general conditions imposed, throughout the paper, on the efficient log-price process

(Assumption A1), its volatility (Assumption A2) and the sampling schemes (Assumption A3). In

what follows, we assume the existence of a rich enough filtered probability space (Ω, (Ft)t≥0,F ,P)
satisfying usual conditions (Jacod and Protter, 2004). We derive our asymptotic theory by letting

the number of observations go to infinity over a fixed time horizon [0, t], with t ≤ 1 (the value

t = 1 representing, as it is customary, a trading day). For this reason we also assume that F1 = F .
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A1 The real-valued logarithmic efficient price process {Xt; t ≥ 0} is an Itō semimartingale

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σs dWs, (3)

whereWs is a Brownian motion. The process µs is a locally bounded process and the process

σs satisfies Assumption A2 below.

A2 The volatility process is a possibly discontinuous Itō semimartingale, which can be written

as

σt = σ0 +

∫ t

0

µ̃s ds+

∫ t

0

σ̃s dWs +Mt +
∑

s≤t

∆σs1{|∆σs|>1}, (4)

whereM is a local martingale with |∆Mt| ≤ 1, orthogonal toW and its predictable quadratic

variation process is 〈M,M〉t =
∫ t

0
a′s ds. The predictable compensator of

∑
s≤t ∆σs1{|∆σs|>1}

is
∫ t

0
as ds. Moreover, the processes a, a′, µ̃ are locally bounded, and σ̃ is left continuous with

right limits.

A3 At the sampling frequency characterized by the integer n, the process {Xt; t ≥ 0} is observed

along a strictly increasing sequence of finite (possible random) times t(n, i), i ≥ 0, with

t(n, 0) = 0. Setting

∆(n, i) = t(n, i)− t(n, i− 1), I(n, i) = (t(n, i− 1), t(n, i)]

Nn
t = inf (i : t(n, i) > t)− 1, |πn

t | = sup
i=1,...,Nn

t +1
∆(n, i),

the following properties are always assumed to hold:

∀n ≥ 1 ⇒ t(n, i) → ∞, P− a.s., as i→ ∞,

∀t ≥ 0 ⇒ |πn
t |

p−→ 0, as n→ ∞.

Assumption A1 is ubiquitous in continuous-time financial econometrics. For sake of exposition,

we do not include a discontinuous component in X. However, we show that our proposed test is

robust to jumps in Subsection 3.2. Assumption A2 allows for jumps in volatility and the leverage

effect. The local martingale M may have jumps and a non-vanishing continuous martingale part,

which can be expressed as an integral with respect to a Brownian motion independent from

W . Assumption A3 imposes certain asymptotic regularity on the sampling schemes: time duration

between observations converges in probability to zero as n→ ∞, but for every fixed n the sampling

times are sufficiently distant from each other.

With the above assumptions at hand we can formally state the hypothesis to be tested. As pointed

out by Li et al. (2014), the crucial condition on the dependence between X and {t(n, i)}, which
allows to derive equation (2), is that the moments of the rescaled increments of the Brownian

component ofX (i.e. ∆(n, i)−1/2∆n
iW ) coincide with the moments of standard normal distribution.
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Therefore, in order to test for endogeneity in the absence of microstructure noise, we consider the

following null hypothesis:

H0 : E

[∣∣∆(n, i)−1/2∆n
iW

∣∣r
∣∣∣ ∆(n, i)

]
= µr, ∀r > 0, i = 1, . . . , Nn

t .

The null H0 holds for all sampling times independent of X, in particular, for all nonrandom but

irregularly spaced times. A paradigmatic example of the violation of H0 is when the sampling

times are generated by hitting a barrier as in the assumption below.

H1 The sequence of sampling times {t(n, i)} is defined recursively: t(n, 0) = 0 and t(n, i + 1)

is the first time t > t(n, i) so that Xt − Xt(n,i) is either larger than n1/2a or smaller than

−n1/2b, for every i > 0 and some a, b > 0.

AssumptionH1 is the reference example of endogenous sampling used throughout the paper. When

a = b, for a sufficiently large n, the distribution of ∆n
iX is symmetric around zero. In this case,

we call sampling schemes satisfying Assumption H1 symmetric barrier hitting sampling.

A market microstructure noise heavily contaminates real financial data sampled at ultra high-

frequency. In this framework, instead of observing a discretization of X, at times t(n, i) we assume

to record the values of a process Y contaminated by a microstructure noise as defined in the

assumption below.

D1 The observed log-price process {Yt; t ≥ 0} has the following form:

Yt(n,i) = Xt(n,i) + Ut(n,i), (5)

where the process X is defined in Assumption A1 and
{
Ut(n,i)

}
is a double-sequence of

zero-mean random variables.

The addition of noise makes the logic of our approach more compelling. Indeed, both components

of the observed price process can, in principle, depend on sampling times. However, the increments

of the efficient price are not observed directly. We use pre-averaging to eliminate the effect of noise,

which makes testing H0 problematic. Indeed, pre-averaged increments of X include high-frequency

returns corresponding to different time durations. Therefore, to test the endogeneity in the noisy

setting, we consider a different (stronger) null hypothesis instead of H0. For simplicity, we choose

the null hypothesis to be the independence between the (increments of the) sampling times and

the (increments of the) efficient price X:

HX⊥∆ : ∆n
iX are independent from ∆(n, i) for all n and every i.

We aim at testing HX⊥∆ against a barrier hitting sampling scheme (symmetric or asymmetric).

Our proposed test is based on the observation that under HX⊥∆ the pre-averaged increments of
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X are uncorrelated with their time durations. Any dependence between X and πn preserving this

property can not be detected. We do not intend to detect such kinds of endogeneity and leave

them for future research.

The null hypothesis for testing for endogeneity of the sampling times with respect to the noise

sequence is defined analogously:

HU⊥∆ : ∆n
i U are independent from ∆(n, i) for all n and every i.

In what follows we propose a regression-based approach to test HU⊥∆.

3 Endogenous sampling times: the frictionless case

3.1 The test

We propose to test H0 by evaluating the difference between two forms of randomly perturbed

realized power variations. The proposed test statistic takes the form:

T (X, {t(n, i)}) =

Nn
t −1∑
i=1

∆(n, i)
(
∆(n, i)−

r
2 |∆n

iX|r −∆(n, i+ 1)−
r
2

∣∣∆n
i+1X

∣∣r)α(n, i)
√

2(µ2r−µ2
r)

µ2r

Nn
t −1∑
i=1

∆(n, i)2−r |∆n
iX|2r α(n, i)

, (6)

where r > 0 and µr = E [|u|r], with u is a standard normal random variable, and

α(n, i) =




1{∆(n,i)>∆(n,i+1)}, i = 1,

1{∆(n,i)>∆(n,i+1)}1{∆(n,i−1)≤∆(n,i)}, i ≥ 2,
(7)

where 1A is the indicator function of a generic event A ∈ F . Intuitively, the test statistic compares

the two types of perturbed power variations defined as:

V
n
t =

Nn
t −1∑

i=1

∆(n, i)1−
r
2 |∆n

iX|r α(n, i), V
′n
t =

Nn
t −1∑

i=1

∆(n, i)∆(n, i+ 1)−
r
2

∣∣∆n
i+1X

∣∣r α(n, i),

which converge to the same limit underH0. Indeed, as follows from the proof of Theorem 3.1 below,

under H0, both V
n
t and V

′n
t converge uniformly in probability to µr

∫ t

0
|σs|rã(1)s ds, where ã(1)s is a

stochastic process defined below. Hence, the difference Vn
t −V

′n
t converges to zero. The denominator

of T (X, {t(n, i)}) standardizes the difference by an estimator of its asymptotic standard deviation.

On the other hand, under endogeneity, the difference V
n
t − V

′n
t does not converge to zero. For

example, if ∆(n, i)s are positively correlated with the |∆n
iX|s, the event {α(n, i) = 1} indicates

that the rescaled increments ∆(n, i)−
r
2 |∆n

iX|r are likely larger than ∆(n, i+1)−
r
2

∣∣∆n
i+1X

∣∣r. Hence,
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the summands of Vn
t are (on average) larger than the ones of V′n

t , consequently V
n
t − V

′n
t > 0

asymptotically and the test statistic explodes. Notice that the term ∆(n, i − 1) enters in the

definition of the α’s in order to avoid a telescopic sum. Indeed, should this term be absent, the

sum would be identically null for some sampling schemes, e.g., for those for which the sequence of

the ∆(n, i)’s is increasing.

We now derive the asymptotic distribution of T (X, {t(n, i)}) under H0. In order to do so, we make

the following additional assumptions.

B1 There is a sub-filtration {F0
t }t≥0 of {Ft}t≥0 with the following properties:

(i) W , µ and σ are adapted to {F0
t }t≥0;

(ii) any F0
t -martingale is also an Ft-martingale;

(iii) each variable t(n, i) is an Ft-stopping time which, conditionally on Ft(n,i−1), is indepen-

dent of the σ-field F0 = ∨t≥0F0
t .

B2 For any q > 0 there exists a F0
t -optional positive process ã(q), such that for all t, as n→ ∞,

rq−1
n

Nn
t −1∑

i=1

Ht(n,i)∆(n, i)qα(n, i)
u.c.p.−→

∫ t

0

Hs ã(q)s ds, (8)

for any càdlàg process H and where rn is a diverging sequence of real numbers, rn → ∞.

Assumption B1 coincides with Assumption (C) of Hayashi et al. (2011). It implies that H0 holds.

Assumption B1 holds, for example, when the t(n, i)’s are non-random and when the t(n, i)’s are

independent from the processes (X,W, µ, σ). Assumption B2 holds for a number of random sam-

pling schemes. For instance, it is satisfied when the ∆(n, i)’s are iid positive random variables

with finite moments. In this case, the convergence follows from the strong law of large numbers,

the quantity ã(q) being a constant equal to the conditional expectation of ∆(n, i)q−1. We finally

remark that, if the scheme {t(n, i)} is such that ∀i, ∆(n, i) < ∆(n, i + 1) almost surely, then we

have that α(n, i) = 0 ∀i ≥ 2 and, therefore, T (X, {t(n, i)}) converges in distribution to a degen-

erate limit. To provide a solution to this problem, we discuss a modification of T (X, {t(n, i)}) in
Remark 1.

The following theorem establishes the limiting behaviour of T (X, {t(n, i)}).

Theorem 3.1. Let Assumptions A1, A2, A3, B1 and B2 hold. As n→ ∞ we have that

T (X, {t(n, i)}) F0−stably−−−−−→ N (0, 1) ,

where the convergence is F0-stable in law.

Proof. See Appendix A.
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Theorem 3.1 implies that the critical region forH0 ought to be of the form
{
|T (X, {t(n, i)})| ≥ qα/2

}
,

where qα/2 denotes α/2-quantile of standard normal distribution. This test is consistent for the

hitting time alternative, defined by Assumption H1, under which we verify (via numerical simu-

lations) that T (X, {t(n, i)}) p−→ ∞.

Remark 1. As we have emphasized above, the test may be in distribution asymptotically degenerate

when α (n, i) = 0 for all i. In this case the modified statistic

T̃ (X, {t(n, i)}) =

Mn
t∑

i=1
∆(n, 2i− 1)

(
∆(n, 2i− 1)−

r
2

∣∣∆n
2i−1X

∣∣r −∆(n, 2i)−
r
2 |∆n

2iX|r
)
1{∆(n,2i−1)>∆(n,2i)}

√
2(µ2r−µ2

r)
µ2r

Mn
t∑

i=1
∆(n, 2i− 1)2−r

∣∣∆n
2i−1X

∣∣2r 1{∆(n,2i−1)>∆(n,2i)}

,

where Mn
t =

⌊
Nn

t

2

⌋
and r > 0, provides a solution to the problem. The stable convergence of

T̃ (X, {t(n, i)}) requires that, for any q > 0, there exists a F0
t -optional positive process ã′(q), such

that for all t, as n→ ∞,

rq−1
n

Mn
t∑

i=1

Ht(n,i)∆(n, i)q1{∆(n,2i−1)>∆(n,2i)}
u.c.p.−→

∫ t

0

Hs ã
′(q)s ds,

for any càdlàg process H. Under this assumption, T̃ (X, {t(n, i)}) converges F0-stably in law to

N (0, 1); the proof is analogous to the proof of Theorem 3.1 and omitted for the sake of brevity. It

is worthwhile to point out that number of comparisons of the consecutive increments of X needed

to compute T̃ (X, {t(n, i)}) is smaller with respect to those necessary to compute T (X, {t(n, i)}).
Therefore, for small sample, it is preferable to use T (X, {t(n, i)}), in order to have a more stable

statistics.

3.2 Robustness to jumps

We now extend our testing theory for the case with jumps. For this purpose, we consider a more

general version of Assumption A1. In particular, we assume that the efficient logarithmic price

process is given by

Zt = Xt + Jt, (9)

where Xt is the process defined in Equation (3) and {Jt; t ≥ 0} denotes a finite activity jump

process. The robustness to jumps can be achieved by computing our test statistic with power

variation robustified using standard techniques: either by an appropriate choice of the power r,

which guarantees that the Brownian term dominates the jump component (Barndorff-Nielsen

et al., 2006) or by using truncation (Mancini, 2009). In the latter approach the robustified test
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statistic is defined as:

T̂ (Z, {t(n, i)}) =

Nn
t −1∑
i=1

∆(n, i)
(
∆(n, i)−

r
2 |∆n

i Z|r −∆(n, i+ 1)−
r
2

∣∣∆n
i+1Z

∣∣r) α̂(n, i)
√

2(µ2r−µ2
r)

µ2r

Nn
t −1∑
i=1

∆(n, i)2−r |∆n
i Z|2r α̂(n, i)

,

where

α̂(n, i) = α(n, i)1{|∆n
i Z|≤ϑ(n,i)}1{|∆n

i+1
Z|≤ϑ(n,i+1)},

and ϑ(n, i) denotes a sequence of threshold functions satisfying

ϑ(n, i) → 0, and
ϑ(n, i)√

∆(n, i) log∆(n, i)
→ ∞,

as n→ ∞∀ i, a.s.

Theorem 3.2. Let Assumptions A1, A2, A3, B1 and B2 hold. Let Z be the process defined in

equation (9). As n→ ∞ we have that:

• if 0 < r < 1,

T (Z, {t(n, i)}) F0−stably−−−−−→ N (0, 1) ;

• if r > 0,

T̂ (Z, {t(n, i)}) F0−stably−−−−−→ N (0, 1) .

Proof. See Appendix A.

4 Endogenous sampling times and microstructure noise

In this section, we assume that Assumption D1 holds, that is a market microstructure noise con-

taminates the observations. Under the presence of a microstructure noise, the limiting behaviour

of test statistic may depend on the probabilistic properties of the noise itself, the efficient price

and the sampling times. Thus, additional assumptions on the different components are required

to establish an asymptotic theory. To avoid putting strong constraints on the microstructure noise

sequence, we consider a specific form for the sampling time’s data generating process (DGP).

Following Hayashi et al. (2011), we assume that the sampling scheme is a mixed renewal scheme,

described in Assumption C1 below.

C1 The collection of random times {t (n, i)} is generated by the recursive equation

t(n, i) = t(n, i− 1) +
1

n
vnt(n,i−1)ε(n, i), i = 1, 2 . . . , (10)
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where t(n, i) = 0, vn is a sequence of positive Ft-adapted processes, and {ε(n, i)} is a double-

sequence of iid random variables defined on (Ω,F ,P) with finite fourth moment:

mq = E [ε(n, i)q] <∞, q = 1, . . . , 4.

For each n, vn is assumed to be a bounded semimartingale, and as n→ ∞, vn converges in

Skorokhod topology to a bounded semimartingale v.

The sampling scheme defined in equation (10) differs from the homologous of Hayashi et al. (2011)

for a single peculiarity: the sequence vn is required to be a bounded semimartingale and the first

four moments of the ε(n, i)’s to be finite. The former assumption is needed for the standard

estimates to the increments of vn over infinitesimal time intervals. The latter to derive a CLT for

the ∆(n, i)’s.

Now, we put mild conditions on the microstructure noise sequence and the increments of the

efficient price in, respectively, Assumptions E1 and E2 below.

E1 The sequence {Ut(n,i)} has finite fourth moments and it is such that ∀ t > 0 and any càdlàg

process H, as n→ ∞

Nn
t −kn∑

i=1

∆n
i U Ht(n,i−1)

1

n

p−→ 0,

Nn
t −kn∑

i=1

(∆n
i U)

2Ht(n,i−1)
1

n

p−→
∫ t

0

u2sHs ds,

where u is an F0
t -optional stochastic process.

E2 There exist constants C,Cγ > 0, such that, for some α > 1
2
and any γ > 0, the following

estimates hold

∣∣E
[
∆n

iX
∣∣ Ft(n,i−1) ∨ σ (∆(n, i))

]∣∣ ≤ C∆(n, i)α, (11)

E
[
|∆n

iX|γ
∣∣ Ft(n,i−1) ∨ σ (∆(n, i))

]
≤ Cγ ∆(n, i)

αγ

2 . (12)

Assumption E1 incorporates standard models for the microstructure noise, for example, it allows{
Ut(n,i)

}
to be a q-dependent sequence. However, condition E1 holds for a more general class

of models; for instance, it allows the sequence
{
Ut(n,i)

}
to be non-stationary. Assumption E2 is

required for testing the independence between sampling times and the noise. It provides sufficient

conditions under which the increments of X are negligible with respect to the first differences of

the noise sequence. If X is a semimartingale independent from the sampling times, Assumption

E2 holds with α = 1. In general, however, it does not require X to be a semimartingale and allows

for a certain degree of dependence between ∆n
iX’s and ∆(n, i)’s. The restriction α > 1

2
guarantees

that the correlation between the ∆n
iX’s and the ∆(n, i)’s does not affect the distribution of the

test statistic proposed below. Finally, Assumption E2 allows the sampling times to be successive

hitting times of a symmetric spatial grid by X.
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4.1 Testing the independence between {Ut(n,i)} and {t(n, i)}

Assumption C1 implies that:

∆(n, i) =
1

n
vnt(n,i−1)m1 + ∆̃i, (13)

where ∆̃i = ∆(n, i) − E [∆(n, i) | Fi−1] is a martingale-difference sequence. Thus, for testing the

independence between
{
Ut(n,i)

}
and {t (n, i)} it is sufficient to test the statistical significance of

the coefficient β1 in the semi-parametric regression:

∆(n, i) = β0(n, i) + β1∆
n
i U + ∆̃i, i = 1, 2, . . . , Nn

t , (14)

where β0(n, i) =
1
n
vnt(n,i−1)m1 is a time-varying intercept parameter. Statistical inference on β1 is

tangled by the fact that the ∆n
i U ’s cannot be directly observed. However, if the efficient price

process X verifies Assumption E2, the noise asymptotically dominates the efficient component of

the observed price process. Thus, we can substitute unobserved ∆n
i U ’s with ∆n

i Y ’s in the regression

(14). We address this problem analogously to time-varying regression models extensively studied

in the literature (Zhang and Wu, 2012; Kalli and Griffin, 2014; Vogt, 2015; Zhang and Wu, 2015).

However, we have a specific complication: the coefficient β0(n, i) is given by a realization of a

semimartingale and, therefore, it is not a differentiable function of time as commonly assumed.

Nonetheless, in the proof of Theorem 4.1, we show that standard results on the inference of β0(n, i)

and β1 continue to hold in our framework. In particular, we obtain a
√
n-consistent estimate of

the parametric component β1.

Formally, let kn be a diverging sequence of integers such that kn/n→ 0. Then an estimator of the

regression coefficient β1 is defined as:

β̂1 =

Nn
t −kn∑
i=1

(
∆n

i Y − 1
kn

kn−1∑
j=0

∆n
j Y

)(
∆(n, i)− 1

kn

kn−1∑
j=0

∆(n, i+ j)

)

Nn
t −kn∑
i=1

(
∆n

i Y − 1
kn

kn−1∑
j=0

∆n
j Y

)2 .

This estimator corresponds to that of Gao and Hawthorne (2006) provided that an indicator kernel

is used. Under the null β1 = 0, de-trending the regressors ∆n
i Y ’s is not necessary and β̂1 can thus

be replaced by

β̃1 =

Nn
t −kn∑
i=1

∆n
i Y

(
∆(n, i)− 1

kn

kn−1∑
j=0

∆(n, i+ j)

)

Nn
t −kn∑
i=1

∆n
i Y

2

, (15)

where 1
kn

kn−1∑
j=0

∆(n, i+j) ≈ β0(n, i) estimates the time-varying intercept. To test HU⊥∆ we propose

12



to use the associated t-statistic, which takes the following form:

B (Y, {t(n, i)}) =

Nn
t −kn∑
i=1

∆iY

(
∆(n, i)− 1

kn

kn−1∑
j=0

∆(n, i+ j)

)

√√√√Nn
t −kn∑
i=1

(
∆n

i Y

(
∆(n, i)− 1

kn

kn−1∑
j=0

∆(n, i+ j)

))2
. (16)

The asymptotic distribution of the test statistic B (Y, {t(n, i)}) is derived in the theorem below.

Theorem 4.1. Let Assumptions C1, D1, E1 and E2 hold and kn = ⌊√n⌋. Under HU⊥∆, as n→ ∞
we have that

B (Y, {t(n, i)}) weakly−→ N (0, 1) . (17)

Proof. See Appendix A.

Theorem 4.1 shows that HU⊥∆ can be tested through an usual standard normal t-test. Hence,

HU⊥∆ ought to be rejected for any sampling schemes which imply nonzero correlations between

∆(n, i)’s and ∆n
i U ’s. Indeed, the expression β0(n, i) + β1∆

n
i U in the right hand-side of equation

(14) is the local best linear predictor of ∆(n, i) given ∆n
i U . Hence, even if the relationship between

∆(n, i)’s and ∆n
i U ’s is not linear, non-zero correlation among them implies that the coefficient β1

is non-zero.

4.2 Testing the independence of X and {t(n, i)}

In this section we propose a test for HX⊥∆, i.e. for the independence between the sampling

scheme {t (n, i)} and the efficient price process X. For this purpose, we combine the regression-

based approach developed in the previous section with the pre-averaging technique, which allows

to wash out, asymptotically, the microstructure noise. For simplicity, in this section we assume

that
{
Ut(n,i)

}
is a double-sequence of iid zero-mean random variables with finite moments of all

orders.

Split the data on Mn blocks of length ℓn = ϑn
1

2
+δ, with ϑ > 0 and δ ∈

(
1
6
, 1
2

)
(more details on

the choice of δ are provided below). Let g : R → R be a non-zero real-valued function which

is continuous and piecewise C1, vanishes outside of the open interval (0, 1), and has a piecewise

Lipschitz derivative g′. For each block i = 1, ...,Mn and for a generic process V , let

V
n

i =
ℓn∑

j=1

g

(
j

ℓn

)
∆n

i+jV =
ℓn∑

j=1

g

(
j

ℓn

) (
Vt(n,i+j) − Vt(n,i+j−1)

)
, (18)

denote the pre-averaged increments of the process. In what follows, for the sake of exposition, we

13



will adopt the notation gnj = g (j/ℓn). Analogously, we define the pre-averaged time-durations as

∆
n

i =
ℓn∑

j=1

gnj ∆(n, i+ j) =
ℓn∑

j=1

gnj (t (n, i+ j)− t (n, i+ j − 1)) . (19)

Intuitively, the pre-averaging eliminates the impact of the noise in each block of observations.

Indeed, we have Y
n

i = X
n

i +U
n

i , where X
n

i = Op

(
(ℓn/n)

1/2
)
and U

n

i = Op

(
ℓ
−1/2
n

)
. Consequently,

if δ < 1
2
, X

n

i dominates U
n

i asymptotically, so we have Y
n

i ≈ X
n

i , for large n. We do not consider

the common choice δ = 0 (which gives ℓn ∼ √
n) since in this case the stochastic orders of X

n

i and

U
n

i are the same. In that case the contribution of U
n

i could bias our test statistic if the sequence{
Ut(n,i)

}
is correlated with the sampling times. We aim to construct a test applicable in general

settings, so we do not assume either independence between the noise and the sampling times or

between noise and X. One may relax the restriction δ < 1
2
at the cost of a strong assumption of

non-endogeneity of the noise.

Following the logic of the previous section we consider the semi-parametric regression

∆
n

i = β0(n, i) + β1Y
n

i + ∆̃n
i , (20)

where β0(n, i) is a time-varying intercept and ∆̃n
i is a regression error. Under HX⊥∆, the coefficient

β1 is zero. Hence, we again use a version of a simple t-test to examine the null. Note that instead

of using ∆
n

i as the dependent variable one may consider a different function of the sampling times.

In general, the choice of the dependent variable should guarantee high correlation with X
n

i under

the alternative. We specify it as the “pre-averaged duration” as ∆
n

i is highly correlated with X
n

i

under the asymmetric hitting time sampling, which we consider as the benchmark alternative.

Our proposed test statistic takes the following form:

B (Y, {t(n, i)}) =

Mn∑
i=1

Y
n

(i−1)ℓn+1

(
∆

n

(i−1)ℓn+1 − 1
kn

kn−1∑
j=0

∆
n

(i−1)ℓn+1+j

)

√√√√Mn∑
i=1

(
Y

n

(i−1)ℓn+1

(
∆

n

(i−1)ℓn+1 − 1
kn

kn−1∑
j=0

∆
n

(i−1)ℓn+1+j

))2
, (21)

where kn denotes a deterministic sequence of integers and 1
kn

kn−1∑
j=0

∆
n

i+j ≈ β0(n, i) estimates the

time-varying intercept. The next theorem provides the asymptotic distribution of B (Y, {t(n, i)})
under HX⊥∆.

Theorem 4.2. Assume that X is an Itō semimartingale defined by equations (3) and (4). Let

Assumption C1 hold. Assume, further, that the process vn in equation (10) of Assumption C1 is

independent from X. Set ℓn = ϑn1/2+δ, ϑ > 0 and δ ∈
(
1
6
, 1
2

)
. Let the sequence of integers kn

defined in (21) be such that kn ∼ nν, where ν > 0 is such that δ + ν > 1
2
and ν < 1

2
. Then, under
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HX⊥∆, as n→ ∞,

B (Y, {t(n, i)}) weakly−→ N (0, 1) .

Proof. See Appendix A.

Theorem 4.2 imposes additional restriction on δ and kn: δ > 1/6, kn ∼ nν , δ + ν > 1
2
and

ν < 1
2
. They are required to guarantee the negligibility of the error terms of the asymptotic

approximations Y
n

i ≈ X
n

i and 1
kn

kn−1∑
j=0

∆
n

i+j ≈ β0(n, i). The critical region for HX⊥∆ is of the

form CHX⊥∆ =
{∣∣B (Y, {t(n, i)})

∣∣ ≥ qα/2
}
, where qα/2 denotes α/2-quantile of standard normal

distribution. As for the case of the T (X, {t(n, i)}) test we verify (via numerical simulations) that,

under the alternative defined by AssumptionH1, the pre-averaged based test delivers a unit power,

i.e. B (Y, {t(n, i)}) p−→ ∞.

5 Monte Carlo assessment of finite sample performances

In this section we study the finite sample performance of the proposed tests in different settings.

We consider first the case of a noiseless price process to assess the power and the size of the test

statistic in (6) and we compare them with those of the test proposed by Li et al. (2014), which is,

to the best of our knowledge, the benchmark in the reference literature for this study. To do so, we

consider a scenario in which (noiseless) prices are observed at random times, generated according

to a suitable DGP which may (to asses the power of the test) or may not (to asses the size of the

test) feature time-price dependence. Next, we provide information on the power and size of the

test statistic B and B defined, respectively, in (16) and (21).

In all the simulation settings, the efficient log-priceX is generated according the one-factor stochas-

tic volatility model

dXt = µ dt+ cσ σt dWX,t,

d log σ2
t =

(
α− β log σ2

t

)
dt+ η dWσ,t, (22)

where Wσ,t and WX,t are two Brownian motions with corr (dWσ,t, dWX,t) = ρ dt. We adopt the

values for the parameters α, β, η, µ and ρ as in Andersen et al. (2002) on S&P500. The volatility

factor cσ can be tuned to generate different scenarios. It will be equal to cσ = 4 (which corresponds

to a daily volatility of roughly 3%), unless otherwise specified.

5.1 Testing for endogeneity in absence of microstructure noise

In the first simulated experiment, we generate 104 sample paths of a process X observed on an

interval [0, 1] under two different sampling schemes. Under the null, the sampling times {t (n, i)}
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are obtained via the ACD model




t (n, 0) = 0,

t (n, i) = ψ (n, i) e (n, i) .
(23)

where ψ (n, i) = 1
n
+ 0.2 t (n, i− 1) + 0.6ψ (n, i− 1) and e (n, i) ∼ exp (1/2) is a sequence of

iid exponentially distributed random variables with mean 1/2. We consider three values for the

frequency parameter n, which are n = 11700, 23400, 46800. To illustrate, for n = 46800 we get,

on average, roughly 28000 sampling times in the interval [0, 1] that correspond to, approximately,

1.2 sampling times per second (assuming a trading day of 6.5 hours). Smaller value of n generates

more idle scenarios, i.e. price paths characterized by a less intense trading activity. Accordingly,

the integer n defines the liquidity status of the simulated path.

Under the alternative, the endogenous sampling times are defined recursively according to the

scheme




t(n, 0) = 0,

t(n, i+ 1) = inf
{
t > t (n, i)

∣∣ Xt −Xt(n,i) > n1/2a ∨Xt −Xt(n,i) < −n1/2b
}
, ∀i > 0.

(24)

for some barriers a, b > 0. We consider, as for the null, the three liquidity scenarios characterized by

n = 11700, 23400, 46800 and, in addition, we consider a range of values of the barriers a and b. We

remark that, for both sampling schemes and each generated sample, the number of observations

Nn
t , used to compute the test statistic, is random and equal to the number of instants t(n, i)’s

falling in the interval [0, 1].

Table 1 reports size and power of T (X, {t (n, i)}) under the null and three different alternative:

a symmetric barrier (a = b = 0.02), a slightly asymmetric barrier (a = 0.03 and b = 0.02) and

a more pronounced asymmetric barrier (a = 0.04 and b = 0.02). For comparison we report, in

Table 2, the same quantities for the test of Li et al. (2014) (denoted, henceforth, LMRZZ). The

table shows that the T (X, {t (n, i)}) test is correctly sized under exogenous sampling. Second,

the test has unit power against the hitting time alternatives, for all the considered values of a

and b. On the other side, the lack of power of the LMRZZ test in the alternative with symmetric

barriers (a = b = 0.02) is explained by noticing that, despite the endogeneity of time, the realized

tricity still converges to zero in this case. In the slightly asymmetric case, T (X, {t (n, i)}) largely
outperforms LMRZZ. Intuitively, the difference in performances of the two approaches can be

explained by the fact that the T (X, {t (n, i)}) test compares the sizes of the increments of the

observed process corresponding to different ∆(n, i)’s and not only the sizes of increments with

different signs, which affects the limit of the realized tricity.
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Table 1: Size and power of the T (X, {t (n, i)}) test for endogeneity in absence of microstructure
noise.

(a, b)
(1− α)(%) n Null (0.02, 0.02) (0.03, 0.02) (0.04, 0.02)

11700 9.77 100.00 100.00 100.00
90.0 23400 10.03 100.00 100.00 100.00

46800 10.20 100.00 100.00 100.00

11700 4.86 100.00 100.00 100.00
95.0 23400 4.70 100.00 100.00 100.00

46800 4.88 100.00 100.00 100.00

11700 1.11 100.00 100.00 100.00
99.0 23400 0.99 100.00 100.00 100.00

46800 0.99 100.00 100.00 100.00

11700 0.16 100.00 100.00 100.00
99.9 23400 0.09 100.00 100.00 100.00

46800 0.12 100.00 100.00 100.00

Note. The table reports the percentage of rejections of the double-sided test statistic
T (X, {t (n, i)}) when the sampling times are independent of X (null) and under three alternatives:
a symmetric barrier (a = b = 0.02), a slightly asymmetric barrier (a = 0.03 and b = 0.02) and a
more pronounced asymmetric barrier (a = 0.04 and b = 0.02). In all the simulated scenarios, the
process X follows the stochastic volatility model defined by the equation (22).

5.2 Finite sample performances of the B (Y, {t(n, i)}) test

In this simulated experiment, we generate sample paths of the process Yt(n,i) = Xt(n,i) + Ut(n,i)

defined in equation (5). As for the other settings considered so far, the efficient price process Xt(n,i)

is simulated according to equation (22). The sampling instants t (n, i)’s are simulated according to

the ACD model in equation (23). Two specifications of the microstructure noise U are considered.

In the first we generate Ut(n,i) as a sequence of iid random variables such that Ut(n,i) is distributed

according to N (0, ω2
0) and ω

2
0 = ξ 〈σ2

t 〉, where 〈σ2
t 〉 is the average volatility of X (see equation (22)

for details) and ξ is the noise-to-signal ratio at the highest frequency, whose (percentage) values

are reported in Table 3. In this setting, the microstructure noise is independent from {t (n, i)}. We

use the so obtained simulated paths to determine the finite sample size of the test B (Y, {t(n, i)}).

In the second, which is designed to determine the power of the test, we induce a time-noise
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Table 2: Size and power of the LMRZZ test for endogeneity in absence of microstructure noise.

(a, b)
(1− α)(%) n Null (0.02, 0.02) (0.03, 0.02) (0.04, 0.02)

11700 10.46 0.63 88.75 99.99
90.0 23400 10.50 0.59 99.70 100.00

46800 9.86 0.59 100.00 100.00

11700 5.19 0.10 75.09 99.90
95.0 23400 5.20 0.07 98.74 100.00

46800 5.07 0.06 100.00 100.00

11700 1.09 0.01 37.80 98.99
99.0 23400 1.11 0.00 89.35 100.00

46800 1.12 0.00 99.98 100.00

11700 0.13 0.00 7.30 88.68
99.9 23400 0.13 0.00 52.54 99.99

46800 0.11 0.00 98.78 100.00

Note. The table reports the percentage of rejections of the double-sided test statistic LMRZZ when
the sampling times are independent of X (null) and under three alternatives: a symmetric barrier
(a = b = 0.02), a slightly asymmetric barrier (a = 0.03 and b = 0.02) and a more pronounced
asymmetric barrier (a = 0.04 and b = 0.02). In all the simulated scenarios, the process X follows
the stochastic volatility model defined by the equation (22).

dependence via the following mechanism:

Ut(n,i) ∼




ω1 (exp(3)− exp(1)) , if ∆(n, i) > med(∆(n, 1), . . . ,∆(n,Nn

t )),

ω1 (exp(1)− exp(3)) , if ∆(n, i) ≤ med(∆(n, 1), . . . ,∆(n,Nn
t )),

(25)

where med denotes the median and ω1 is chosen in such a way that E
[
U2
t(n,i)

]
≈ ω2

0.

Finally, to fully account for all the significant finite sample distortions at high-frequency, prices

are (in all the simulated paths) rounded to one cent.

Table 3 summarizes the results of this simulated experiment by showing that the test is appropri-

ately sized and delivers, under the alternative defined by equation (25), a unit power.
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Table 3: Size and power of test statistic B (Y, {t(n, i)}).

Size Power
ξ(%) ξ(%)

(1− α)(%) n 0.10 0.50 1.00 0.10 0.50 1.00

11700 8.78 8.32 8.32 100.00 100.00 100.00
90.00 23400 8.42 8.62 8.08 100.00 100.00 100.00

46800 8.04 7.86 7.12 100.00 100.00 100.00

11700 4.26 3.86 3.84 100.00 100.00 100.00
95.00 23400 4.08 3.96 3.62 100.00 100.00 100.00

46800 4.00 3.82 3.28 100.00 100.00 100.00

11700 0.56 0.98 0.80 100.00 100.00 100.00
99.00 23400 0.62 0.46 0.44 100.00 100.00 100.00

46800 0.66 0.72 0.44 100.00 100.00 100.00

11700 0.06 0.12 0.12 100.00 100.00 100.00
99.90 23400 0.06 0.06 0.06 100.00 100.00 100.00

46800 0.04 0.04 0.00 100.00 100.00 100.00

Note. The table reports rejections rates, for different significance levels α (first column) of the
test statistic B (Y, {t(n, i)}) defined in equation (16). We report the rates under the null of no
dependence between the noise and the sampling times (size of the test) and under the alternative
defined by equation (25) (power of the test). The parameter ξ indicates the (percentage) noise-
to-signal ratio at the highest frequency. Sampling times are generated, both under the null and
the alternative, according to the ACD model in equation (23), with the corresponding value of
n reported in the second column. Only sampling times that fall within the interval [0, 1] are
considered, generating a random number of them equal to Nn

1 = inf (i : t(n, i) > 1)− 1.

5.3 Finite sample performances of the B (Y, {t(n, i)}) test

To assess the finite sample size and power of the test B (Y, {t(n, i)}), defined in equation (21)

(and to compare them with their LMRZZ test counterparts), we generate paths of the noise-

contaminated price process Yt(n,i) = Xt(n,i) + Ut(n,i) with the sampling scheme {t (n, i)} as in

equation (23), the process Xt(n,i) as in the stochastic differential equation (22) and the noise Ut(n,i)

as in (25). We thus allow, under the null, a dependence between the noise and the sampling

times, while keeping the efficient price X independent from them (as it is prescribed under the

null). This modeling choice is made specifically to test the robustness of the pre-average method

to noise-sampling time dependence and it is also justified by the empirical findings described in
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Section 6.

Finally, we determine the power of the test by changing the data generating process of the {t (n, i)}
to the hitting time sampling model in equation (24), while keeping all other details unchanged.

As for the other simulated scenarios considered so far, observed prices are (both under the null

and the alternative) rounded to one cent.

Tables 4 and Table 5 illustrate the results of the experiment. The former reports the percentage

rejection rates for B (Y, {t(n, i)}), while the latter shows the same quantities but for the LMRZZ

test. The comparison is in net favour of B (Y, {t(n, i)}), which is more correctly sized and deliver

a significantly higher power.
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Table 4: Size and power of test statistic B (Y, {t(n, i)}).

Size Power
ξ(%) ξ(%)

(1− α)(%) n 0.10 0.50 1.00 0.10 0.50 1.00

11700 12.16 12.12 11.94 62.32 59.56 56.78
90.00 23400 11.64 11.36 11.30 74.44 71.74 68.36

46800 10.76 10.44 10.32 86.42 84.02 81.02

11700 6.42 6.28 5.86 49.48 46.58 43.46
95.00 23400 5.96 5.98 5.78 62.96 59.30 55.40

46800 5.24 5.36 5.22 77.70 74.50 70.80

11700 1.08 1.20 1.12 24.18 22.42 20.28
99.00 23400 1.22 1.12 1.22 36.64 33.16 30.22

46800 1.12 1.08 1.22 55.34 51.82 47.38

11700 0.12 0.12 0.14 6.74 6.00 4.96
99.90 23400 0.16 0.14 0.18 13.56 11.76 9.62

46800 0.06 0.04 0.08 27.46 24.14 20.54

Note. The table reports rejections rates, for different significance levels α (first column) of the
test statistic B (Y, {t(n, i)}), defined in equation (21). We report the rates under the null of no
dependence between the efficient time process X and the sampling times {t (n, i)} (size of the test)
and under the alternative defined by the hitting time sampling scheme of equation (24) (power of
the test). The parameter ξ indicates the (percentage) noise-to-signal ratio at the highest frequency.
Noise and sampling times are generated as dependent random variables (both under the null and
the alternative) using the mechanism described in equation (25). Sampling times are generated,
under the null, according to the ACD model in equation (23), with the corresponding value of n
reported in the second column, which also represents, under the alternative, the parameter n of
the hitting sampling scheme (24). In both cases, only sampling times that fall within the interval
[0, 1] are considered, generating a random number of them equal to Nn

1 = inf (i : t(n, i) > 1)− 1.
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Table 5: Size and power of test statistic LMRZZ.

Size Power
ξ(%) ξ(%)

(1− α)(%) n 0.10 0.50 1.00 0.10 0.50 1.00

11700 3.02 1.56 1.16 10.36 4.04 3.20
90.00 23400 2.42 1.34 1.26 8.22 3.68 3.30

46800 2.48 1.40 1.34 7.10 3.28 3.30

11700 1.36 0.54 0.40 6.04 1.70 1.46
95.00 23400 1.10 0.46 0.28 4.62 1.86 1.42

46800 1.12 0.64 0.52 3.50 1.54 1.56

11700 0.16 0.00 0.00 1.62 0.50 0.34
99.00 23400 0.08 0.00 0.00 1.32 0.28 0.26

46800 0.14 0.02 0.02 0.70 0.24 0.30

11700 0.00 0.00 0.00 0.16 0.08 0.02
99.90 23400 0.02 0.00 0.00 0.14 0.02 0.02

46800 0.00 0.00 0.00 0.08 0.02 0.02

Note. The table reports rejections rates, for different significance levels α (first column) of the
test statistic LMRZZ. We report the rates under the null of no dependence between the efficient
time process X and the sampling times {t (n, i)} (size of the test) and under the alternative
defined by the hitting time sampling scheme of equation (24) (power of the test). The parameter ξ
indicates the (percentage) noise-to-signal ratio at the highest frequency. Noise and sampling times
are generated as dependent random variables (both under the null and the alternative) using the
mechanism described in equation (25). Sampling times are generated, under the null, according to
the ACD model in equation (23), with the corresponding value of n reported in the second column,
which also represents, under the alternative, the parameter n of the hitting sampling scheme (24).
In both cases, only sampling times that fall within the interval [0, 1] are considered, generating a
random number of sampling times equal to Nn

1 = inf (i : t(n, i) > 1)− 1.
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6 Time endogeneity in financial assets’ data

We use our newly derived tests as a microscope of the structure of financial asset prices to un-

cover a dependence between the components of the observed price (i.e. the efficient price and the

microstructure noise) and the instants at which it is sampled.

First, we investigate time endogeneity at the highest possible frequency. To do so, we take all

the transactions of the top 250 liquid (in terms of total traded volume) stocks of the NYSE

in 2014. For each day and for each stock, we compute, whenever at least 1000 transactions are

available, the noise-time dependence test B (Y, {t(n, i)}) and the efficient price-noise dependence

test B (Y, {t(n, i)}), using all the observed prices and the corresponding trading times (tick-by-tick

sampling scheme). On average, a single test is obtained using 3251.54 observations, which is the

average number of transactions per stock per day. In order to provide solid empirical evidence, we

pool the results of the two tests across days and stocks.

Figure 1 summarizes our empirical findings. We report, respectively on the left and right panel,

the histograms of the pooled samples of the tests B (Y, {t(n, i)}) and B (Y, {t(n, i)}). As a red

dotted line, we superimpose the probability density function of a standard Gaussian variable.

This empirical application highlights two crucial features of asset price dynamics that have never

been documented so far to the best of our knowledge. First, the efficient price process does not

show a dependence on trading instants, not at least one that our tests is capable to detect (as, for

example, that of a hitting time barrier). Second, the microstructure noise and the trading time

cannot be assumed to be independent, as there is a clear violation of the null documented by the

B (Y, {t(n, i)}) test statistic . This result points toward an extension of some important studies

of the literature (see Jacod et al., 2017; Merrick and Linton, 2022, among others) for inference

regarding the join distribution of noise and sampling times.

As a further empirical exercize, using the same dataset and the same pooling strategy, we consider

other two random sampling schemes. The first, which will be addressed, following Oomen (2006),

as business time sampling, consists in sampling the price process every time that the number of

traded prices is a multiple of a given integer quantity. So, for example, prices are sampled every

ten, twenty etc. transactions. The tick-by-tick sampling is therefore a particular case of business

time sampling. Trivially, the total number of sampling instants is a random quantity. In the second,

which we address as dollar-volume sampling, we follow the idea of volume bucketing described

in Easley et al. (2012). This scheme consists in sampling a traded price every time that a given

amount (a bucket) of dollar-volume is traded. The bucket is chosen as a percentage of the total

volume traded during the day. The larger the bucket the larger the average distance between two

consecutive sampling points (and, accordingly, the smaller the average sampling frequency). So,

for example, if prices are sampled every time that an eightieth of the total daily dollar-volume

is traded we will have a sampling scheme with exactly 80 points. Nevertheless, given the discrete

nature of the trading process, the sampling scheme may generate repeated times. Being repetitions
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Figure 1: We report the (normalized) histograms of the samples obtained by pooling, across days
and stocks, the values of the test statistic B (Y, {t(n, i)}) (left panel) and B (Y, {t(n, i)}) (right
panel). To obtain the two samples, we use all the transactions of the top 250 liquid (in terms
of average traded volume) stocks of the NYSE in 2014. We compute the tests for each stock in
the sample and for days with at least 1000 transactions. Accordingly, tests are computed on a
daily basis using all the time stamps (tick-by-tick sampling) and the corresponding transaction
prices. Superimposed, as a red dotted line, we report the probability density function of a standard
Gaussian variable.

not allowed, they are removed producing, as a consequence, a random number of sampling points,

as for the business time sampling scheme.

Table 6 summarizes the results of this empirical investigation. We report, for different significance

level, the rejection rates of the tests (computed, as mentioned above, by pooling across days and

stocks) T (X, {t (n, i)}), B (Y, {t (n, i)}) and B (Y, {t (n, i)}) defined, respectively, in equations (6),

(16) and (21). For each sampling scheme we also indicates with ∆ the average time distance (in

minutes) between two consecutive points of the sampling partition. We consider different average

sampling frequencies, from high (∆ ≈ 0.20 minutes) to low (∆ ≈ 11 minutes). For the case of the

test T (X, {t (n, i)}), we report rejection rates only if ∆ ≥ 7 minutes. We do so because the test

is reliable if the microstructure noise is negligible. The figures in Table 6 confirm, for the cases

of B (Y, {t (n, i)}) and B (Y, {t (n, i)}), the same findings obtained with the tick-by-tick sampling:

the efficient price is independent from both sampling schemes, while the microstructure noise

shows a strong level of dependence. We remark that these two tests are designed to work for

high-frequency data, so the rejection rates for large value of ∆ ≈ 11 should not be considered as

indicative. Finally, the rejection rates associated to T (X, {t (n, i)}) reveal that both the business

time and the dollar volume sampling scheme, at low frequency, are endogenous.
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Table 6: Empirical rejection rates under business time sampling and dollar-volume time sampling.

Business time sampling Dollar-volume time sampling

(1− α)(%) ∆ T B B ∆ T B B

0.19 - 29.70 0.98 0.56 - 17.88 0.58
1.56 - 9.04 0.39 1.47 - 7.55 0.33

99.00 5.46 - 1.64 0.07 3.72 - 2.04 0.07
7.03 14.49 1.20 0.06 7.42 14.25 0.70 0.00
11.00 12.12 0.53 0.01 11.01 12.16 0.40 0.00

0.19 - 42.34 4.78 0.56 - 30.89 4.03
1.56 - 19.67 3.81 1.47 - 18.07 3.53

95.00 5.46 - 7.64 3.12 3.72 - 8.58 2.82
7.03 23.57 6.28 2.73 7.42 21.94 5.34 1.97
11.00 19.73 4.74 1.70 11.01 18.82 4.34 0.49

0.19 - 50.10 9.76 0.56 - 39.39 8.78
1.56 - 27.75 8.82 1.47 - 26.26 8.30

90.00 5.46 - 14.31 9.15 3.72 - 15.41 7.96
7.03 30.06 12.63 9.03 7.42 27.63 11.36 7.61
11.00 25.32 10.84 8.34 11.01 23.83 10.29 7.58

Note. The table reports empirical rejection rates, for different significance level α (first column),
of the tests T (X, {t (n, i)}), B (Y, {t (n, i)}) and B (Y, {t (n, i)}) defined, respectively, in equations
(6), (16) and (21). Data are all transactions (and the relative timestamps) of the top 250 liquid
(in terms of total traded volume) NYSE stocks in the year 2014. Data are sampled, as indicated in
the first row of the table, either according to the business time or the dollar-volume schemes, both
described in the main text. For each type of sampling scheme we report, in the column indicated
as ∆, the average (across all days and all stocks) time distance in minutes between two consecutive
points of the scheme. In the case of the test T, we report only rejections rates relative to a ∆ ≥ 7
minutes, since the test is designed to work in absence of microstructural noise.

7 Conclusions

Trading occurs at random instants. The non-deterministic nature of the sampling process raises

the question of its endogeneity. The implications are indeed innumerable: both form a purely

econometric point of view but also for a better understanding of the price formation mechanisms.

This study provides new tools to shed light on time endogeneity in financial markets. We derive

test statistics for detecting price-time dependence in the presence of microstructure noise. Our

tests are designed in such a way that we can separately identify the dependence between sampling
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times and the microstructure noise and between sampling times and the efficient component of

the observed price process.

When applied on stocks’ data, we document that microstructure noise and trade arrival instants

cannot be considered as independent variables. On the other side, we provide statistically robust

evidence that the efficient component of the observed prices does not show a dependence with the

trading instants of the kind defined by symmetric or asymmetric hitting time sampling.

Finally, using business time and dollar-volume sampling schemes with moderate (average) sam-

pling frequencies (ones for which the impact of the microstructure noise is negligible) we document

that the observed price process (now assumed noiseless) depends on the corresponding sampling

times.
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A Appendix: Proofs

A.1 Proofs of results in absence of microstructural noise

Proof of Theorem 3.1 .

Let βn
i = σt(n,i−1)∆(n, i)−1/2∆n

i W and β′n
i = σt(n,i−2)∆(n, i)−1/2∆n

i W denote the two approximations for the rescaled

increments of X and consider an approximation for the numerator of T (X, {t(n, i)}) defined by

U
n
t =

√
rn

Nn
t −1∑

i=1

∆(n, i)
(
|βn

i |r −
∣∣β′n

i+1

∣∣r)α(n, i).

The proof consists of showing three convergence results:

1. A central limit theorem for the approximation:

U
n
t

F0−stably−−−−−−−→
√

2 (µ2r − µ2
r)

∫ t

0

σr
s

√
ã(2)s dW

′
s, (26)

where W ′ is a Winer process independent from W .

2. The asymptotic negligibility of the approximation error:

U
n
t −√

rn

Nn
t −1∑

i=1

∆(n, i)
(
∆(n, i)−

r
2 |∆n

i X|r −∆(n, i+ 1)−
r
2

∣∣∆n
i+1X

∣∣r)α(n, i) u.c.p.−→ 0. (27)

3. The convergence of the denominator of the test statistic :

rn
µ2r

Nn
t −1∑

i=1

∆(n, i)2−r |∆n
i X|2r α(n, i) u.c.p.−→

∫ t

0

σ2r
s ã(2)s ds. (28)

We start by deriving a central limit theorem for Un
t . Notice that Un

t can be expressed as:

U
n
t =

√
rn

Nn
t −1∑

i=1

∆(n, i)
(
|βn

i |r −
∣∣β′n

i+1

∣∣r)α(n, i) = √
rn



Nn

t −1∑

i=1

∆(n, i) |βn
i |r α(n, i)−

Nn
t −1∑

i=1

∆(n, i)
∣∣β′n

i+1

∣∣r α(n, i)




=
√
rn



Nn

t −1∑

i=1

∆(n, i) |βn
i |r α(n, i)−

Nn
t∑

i=2

∆(n, i− 1) |β′n
i |r α(n, i− 1)




=
√
rn



Nn

t −1∑

i=1

∆(n, i) |βn
i |r α(n, i)−

Nn
t −1∑

i=1

∆(n, i− 1) |β′n
i |r α(n, i− 1)


+ b

(1)
n,t. (29)

where, using the (immaterial) border condition α (n, 0) = 0, we have b
(1)
n,t = −√

rn ∆(n,Nn
t − 1)

∣∣∣β′
Nn

t

∣∣∣ α (n,Nn
t − 1) and,

due to Assumption B2, b
(1)
n,t

ucp−→
n→∞

0 is a negligible border term. Whence

U
n
t =

√
rn

Nn
t −1∑

i=1

[
∆(n, i)

(
|βn

i |r − µr σ
r
t(n,i−1)

)
α(n, i)−∆(n, i− 1)

(
|β′n

i |r − µr σ
r
t(n,i−2)

)
α(n, i− 1)

]
+
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+
√
rn µr

Nn
t −1∑

i=1

[
∆(n, i)σr

t(n,i−1) α(n, i)−∆(n, i− 1)σr
t(n,i−2)α(n, i− 1)

]

︸ ︷︷ ︸
b
(2)
n,t

+b
(1)
n,t (30)

and the term b
(2)
n,t can be written as

b
(2)
n,t =

√
rn µr

Nn
t −1∑

i=1

∆(n, i)σr
t(n,i−1) α(n, i)−

√
rn µr

Nn
t −2∑

i=0

∆(n, i)σr
t(n,i−1)α(n, i)

=
√
rn µr ∆(n,Nn

t − 1) σr
t(n,Nn

t −2) α (n,Nn
t − 1)

ucp−→
n→∞

0.

where we have used, again, the border condition α (n, 0) = 0. In summary

U
n
t =

Nn
t∑

i=1

(ξni − ξ′ni ) + bt,n,

where

ξni =
√
rn∆(n, i)

(
|βn

i |r − µr

∣∣σt(n,i−1)

∣∣r)α(n, i),
ξ′ni =

√
rn∆(n, i− 1)

(
|β′n

i |r − µr

∣∣σt(n,i−2)

∣∣r)α(n, i− 1),

and bt,n = b
(1)
t,n + b

(2)
t,n is an asymptotically negligible reminder containing the border terms. Hence, in order to obtain a

central limit theorem for Un
t , it is enough to derive a central limit theorem for

Nn
t∑

i=1

ζni , where ζ
n
i = (ξni − ξ′ni ).

Consider the σ-fields F ′
i = Ft(n,i) ∨ σ (∆(n, i+ 1)) and denote by E

′
i−1 [·] the conditional expectation with respect to

F ′
i−1. As pointed out by Hayashi et al. (2011), in order to prove F0-stable convergence we can apply Theorem IX.7.13

of Jacod and Shiryaev (2003). Since F ′
i−1 = Ft(n,i−1) ∨ σ (t(n, i)− t (n, i− 1)) and since, under the null, W and ∆ (n, i)

are independent, it holds that E
′
i−1 [|∆n

i W |r] = ∆ (n, i)
−r/2

µr, whence E
′
i−1 [ξ

n
i ] = E

′
i−1 [ξ

′n
i ] = 0 and so E

′
i−1 [ζ

n
i ] = 0.

Consequently it is enough to prove the following properties:

Nn
t∑

i=1

E
′
i−1

[
(ζni )

2
]

P−→ 2
(
µ2r − µ2

r

) ∫ t

0

σ2r
s ã(2)s ds,

Nn
t∑

i=1

E
′
i−1

[
(ζni )

2
1{|ζn

i |>ε}
]

P−→ 0,

Nn
t∑

i=1

E
′
i−1 [ζ

n
i ∆iM ]

P−→ 0,

(31)

for all t and ε > 0 and M is either a bounded F0-martingal orthogonal to W or M =W .

We have:

E
′
i−1

[
(ζni )

2
]
= E

′
i−1

[
(ξni )

2
+ (ξ′ni )

2 − 2ξni ξ
′n
i

]
= E

′
i−1

[
(ξni )

2
+ (ξ′ni )

2
]
,

where the second equality follows from the fact that ξni ξ
′n
i = 0 by construction, since

α(n, i)α(n, i− 1) = 1{∆(n,i)>∆(n,i+1)}1{∆(n,i−1)≤∆(n,i)}1{∆(n,i−1)>∆(n,i)}1{∆(n,i−2)≤∆(n,i−1)} = 0.
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By construction, α(n, i)k = α(n, i) for all integers k ∈ N. Consequently, we have:

E
′
i−1

[
(ξni )

2
]
= rn∆(n, i)2

(
µ2r − µ2

r

) ∣∣σt(n,i−1)

∣∣2r α(n, i).

Since σ is cadlag, Assumption B2 (with q = 2) implies:

Nn
t∑

i=1

E
′
i−1

[
(ξni )

2
]

ucp−→
n→∞

(
µ2r − µ2

r

) ∫ t

0

σ2r
s ã(2)s ds.

Analogously, we obtain that
∑Nn

t

i=1 E
′
i−1

[
(ξ′ni )

2
]
converges in probability to the same limit, which implies:

Nn
t∑

i=1

E
′
i−1

[
(ζni )

2
]

P−→ 2
(
µ2r − µ2

r

) ∫ t

0

σ2r
s ã(2)s ds.

We can prove the convergence
∑Nn

t

i=1 E
′
i−1

[
(ζni )

2
1{|ζn

i |>ε}
]

P−→ 0 by noticing that first that (ξni )
2
(ξ′ni )

2
= 0, whence

(ζni )
4
= (ξni )

4
+ (ξ′ni )

4
. Now consider that

E
′
i−1

[
(ξni )

4
]
= r2n ∆(n, i)

4
σ4 r
t(n,i−1)

(
µ4 r + µ4

r − 4µ3 r µr + 6µ2 r µ
2
r − 4µ4

r

)

whence Assumption B2 implies
∑Nn

t

i=1 E
′
i−1

[
(ξni )

4
]

ucp−→
n→∞

0 and, similarly,
∑Nn

t

i=1 E
′
i−1

[
(ξ′ni )

4
]

ucp−→
n→∞

0, from which

Nn
t∑

i=1

E
′
i−1

[
(ζni )

4
]

ucp−→
n→∞

0

and the second of the conditions in (31) is satisfied.

Besides, mirroring the same argument used in the proof of Theorem Hayashi et al. (2011), it can be easily seen that

E
′
i−1 [ξ

n
i ∆iW ] = E

′
i−1 [ξ

′n
i ∆iW ] = 0. In fact E

′
i−1 [ξ

n
i ∆iW ] = E

′
i−1 [ξ

′n
i ∆iW ] ∼ E [|u| u] = 0 with u distributed as a

N (0, 1).

Finally, for any martingale M such that [M,W ] ≡ 0, the identity E
′
i−1 [ξ

n
i ∆iM ] = E

′
i−1 [ξ

′n
i ∆iM ] = 0 follows from the

same argument of Example 2 in Podolskij and Vetter (2010) (and, again, the independence between W and ∆ (n, i)),

which completes the proof of (26).

In order to prove the asymptotic negligibility of the approximation error we notice that

∣∣∣∣∣∣
√
rn

Nn
t −1∑

i=1

∆(n, i)
(
|βn

i |r −∆(n, i)−
r
2 |∆n

i X|r
)
α(n, i)

∣∣∣∣∣∣
≤ √

rn

Nn
t −1∑

i=1

∆(n, i)
∣∣|βn

i |r −∆(n, i)−
r
2 |∆n

i X|r
∣∣ .

The right-hand side of the above inequality is asymptotically negligible as shown in the proof of Theorem 3.2 of Hayashi

et al. (2011). Analogously, it is possible to show that the same convergence holds when βn
i is replaced by β′n

i , which

completes the proof of the convergence (27).

Now, to complete the proof we have to prove the equation (28). Consider an approximation:

rn

Nn
t −1∑

i=1

∆(n, i)2 |βn
i |2r α(n, i) =

Nn
t −1∑

i=1

ηni ,
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where ηni = rn∆(n, i)2 |βn
i |2r α(n, i). We have E

′
i−1 [η

n
i ] = rn∆(n, i)2µ2r

∣∣σt(n,i−1)

∣∣2r α(n, i), and

E
′
i−1

[(
ηni − E

′
i−1 [η

n
i ]
)2]

=
(
µ4r − µ2

2r

)
r2n∆(n, i)4

∣∣σt(n,i−1)

∣∣4r α(n, i).

Consequently, by Assumption B2,
Nn

t −1∑

i=1

E
′
i−1

[(
ηni − E

′
i−1 [η

n
i ]
)2] P−→ 0,

which implies that
Nn

t −1∑

i=1

(
ηni − E

′
i−1 [η

n
i ]
) u.c.p−→ 0.

On the other hand, using Assumption B2 again, we obtain:

Nn
t −1∑

i=1

E
′
i−1 [η

n
i ] =

Nn
t −1∑

i=1

rn∆(n, i)2µ2r

∣∣σt(n,i−1)

∣∣2r α(n, i) u.c.p−→ µ2r

∫ t

0

σ2r
s ã(2)s ds.

Hence, it remains to prove that

rn

Nn
t −1∑

i=1

(
∆(n, i)2 |βn

i |2r −∆(n, i)2−r |∆n
i X|2r

)
α(n, i)

u.c.p−→ 0,

which follows from the proof of Theorem 3.1 of Hayashi et al. (2011) (in particular, form equations (6.8) and (6.9) in the

proof with j = 1, q = 1 and p = 2).

Proof of Theorem 3.2 .

The proof follows from the same arguments as in Barndorff-Nielsen et al. (2006) and Mancini (2009) and omitted for

brevity.

A.2 Proofs of results in presence of microstructural noise

Proof of Theorem 4.1.

The proof consists of the three steps:

1. the proof of the convergence in distribution of the numerator of the test statistic :

U
n
t =

√
n

Nt−kn∑

i=1

∆n
i Y


∆(n, i)− 1

kn

kn−1∑

j=0

∆(n, i+ j)


 weakly−→

√
m2 −m2

1

∫ t

0

usvs dW
′
s = Ut.

2. The proof of the convergence in probability of the estimator of the variance:

V
n
t = n

Nt−kn∑

i=1


∆n

i Y


∆(n, i)− 1

kn

kn−1∑

j=0

∆(n, i+ j)






2

p−→
(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds = Vt.

3. The proof of the joint convergence in distribution:

(Un
t ,V

n
t )

′ weakly−→ (Ut,Vt)
′
,
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which allows to conclude that Un
t /

√
Vn
t

weakly−→ Ut/
√
Vt and completes the proof.

To simplify the notations, we set m = Nn
t − kn everywhere below. Notice that under the assumptions of Theorem 4.1 it

holds that m = Op (n).

Step 1. Consider the decomposition

m∑

i=1

∆n
i Y


∆(n, i)− 1

kn

kn−1∑

j=0

∆(n, i+ j)


 = A1 + A2 + A3 + A4,

where

A1 =
m∑

i=1

∆n
i U ∆̃i,

A2 =
m∑

i=1

∆n
i X ∆̃i,

A3 =

m∑

i=1

∆n
i U


E [∆(n, i) | Fi−1]−

1

kn

kn−1∑

j=0

∆(n, i+ j)


 ,

A4 =

m∑

i=1

∆n
i X


E [∆(n, i) | Fi−1]−

1

kn

kn−1∑

j=0

∆(n, i+ j)


 .

and ∆̃i = ∆(n, i)−E [∆(n, i) | Fi−1] and we have used Y = X+U . The leading term is A1. We prove that
√
nA1 converges

in law and, for i = 2, 3, 4,
√
nAi are asymptotically negligible.

First, consider
√
nA1. Write:

√
nA1 =

m∑

i=1

ζni ,

where ζni =
√
n∆n

i U ∆̃i. In order to condition on the noise sequence, we defined the σ-fields FU
i = Ft(n,i) ∨ σ

(
∆n

i+1U
)
.

Then, we have:
m∑

i=1

E
[
ζni

∣∣ FU
i−1

]
= 0,

since ∆̃i is a martingale difference independent from ∆n
i U , which is adapted to FU

i−1.

Next,
m∑

i=1

E

[
(ζni )

2
∣∣∣ FU

i−1

]
=

m∑

i=1

(m2 −m2
1) (∆

n
i U)

2
(
vnt(n,i−1)

)2 1

n

p−→ (m2 −m2
1)

∫ t

0

u2sv
2
s ds.

Finally, we have:
m∑

i=1

E

[
(ζni )

4
∣∣∣ FU

i−1

]
=

m∑

i=1

(∆n
i U)

4
(
vnt(n,i−1)

)4

E

[
(ε(n, i)−m1)

4
] 1

n2
p−→ 0.

Consequently,
m∑

i=1

ζni
weakly−→

√
m2 −m2

1

∫ t

0

usvs dW
′
s.

Now, consider
√
nA2. We have:

√
nA2 =

m∑

i=1

ζni (2),
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where ζni (2) =
√
n∆n

i X ∆̃i. By conditioning on ∆(n, i) and using the estimate in (11), we obtain:

∣∣∣∣∣

m∑

i=1

E

[√
n∆n

i X∆̃i

∣∣∣ Fi−1

]∣∣∣∣∣ =

∣∣∣∣∣

m∑

i=1

Ei−1

[
E

[√
n∆n

i X∆̃i

∣∣∣ Fi−1 ∨ σ(∆(n, i))
]]∣∣∣∣∣

≤
m∑

i=1

Ei−1

[∣∣∣E
[√

n∆n
i X ∆̃i

∣∣∣ Fi−1 ∨ σ(∆(n, i))
]∣∣∣
]

=

m∑

i=1

Ei−1

[∣∣∣
√
n ∆̃iE [∆n

i X | Fi−1 ∨ σ(∆(n, i))]
∣∣∣
]

≤
m∑

i=1

Ei−1

[√
n
∣∣∣∆̃i

∣∣∣∆(n, i)α
]

=
m∑

i=1

Ei−1

[√
n

∣∣∣∣∆(n, i)− 1

n
vnt(n,i−1)m1

∣∣∣∣
1

nα
(vnt(n,i−1))

αε(n, i)α
]

=
m∑

i=1

Ei−1

[√
n

∣∣∣∣
1

n
vt(n,i−1)ε(n, i)−

1

n
vnt(n,i−1)m1

∣∣∣∣
1

nα
(vnt(n,i−1))

αε(n, i)α
]

=
m∑

i=1

Ei−1

[√
n |ε(n, i)−m1|

1

nα+1
(vnt(n,i−1))

1+α ε(n, i)α
]

=
m∑

i=1

√
nE

[∣∣ε(n, i)1+α − ε(n, i)αm1

∣∣] 1

nα+1
(vnt(n,i−1))

1+α

≤ C
√
n

1

nα+1

m∑

i=1

(
E
[
ε(n, i)1+α

]
+ E [ε(n, i)α]m1

)
.

Consequently, ∣∣∣∣∣

m∑

i=1

E [ζni (2) | Fi−1]

∣∣∣∣∣ = Op

(
n

1
2−α

)
p−→ 0,

having used α > 1
2 as in Assumption E2 and

∑m
i=1

(
E
[
ε(n, i)1+α

]
+ E [ε(n, i)α]m1

)
= Op (n). Similarly, using the estimate

in (12), we obtain:

E
[
ζni (2)

2
∣∣ Fi−1

]
≤ C nE

[
∆̃2

i∆(n, i)2α/2
∣∣∣ Fi−1

]
= C n−1−α.

Consequently,
m∑

i=1

E

[
(ζni (2))

2
∣∣∣ Fi−1

]
= Op

(
n−α

) p−→ 0,

which implies, using Lemma 4.1 in Jacod (2012), that
√
nA2 is asymptotically negligible. Next, consider

√
nA3, which

can be re-written as
√
nA3 =

m∑

i=1

ζni (3),

where ζni (3) =
√
n∆n

i U

(
E [∆(n, i) | Fi−1]− 1

kn

kn−1∑
j=0

∆(n, i+ j)

)
. Using the definition of ∆(n, i)’s we obtain the decom-

position:

ζni (3) =
√
n∆n

i U


 1

kn

kn−1∑

j=0

E [∆(n, i) | Fi−1]−
1

kn

kn−1∑

j=0

∆(n, i+ j)



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=
√
n∆n

i U


 1

kn

kn−1∑

j=0

(
1

n
vnt(n,i−1)m1 −

1

n
vnt(n,i+j−1)ε(n, i+ j)

)
 = ζni (3, 1) + ζni (3, 2), (32)

where

ζni (3, 1) =
√
n∆n

i U


 1

kn

kn−1∑

j=0

(
1

n
vnt(n,i−1) (m1 − ε(n, i+ j))

)
 ,

ζni (3, 2) =
√
n∆n

i U


 1

kn

kn−1∑

j=0

(
1

n

(
vnt(n,i−1) − vnt(n,i+j−1)

)
ε(n, i+ j)

)
 .

So, it is enough to show the two sums,
m∑
i=1

ζni (3, 1) and
m∑
i=1

ζni (3, 2), converge to zero in probability. Concerning the first

sum we notice that, since ∆n
i U is independent from the sampling times and E [∆n

i U ] = 0, we have

E

[
m∑

i=1

ζni (3, 1)

]
= E

[
m∑

i=1

ζni (3, 2)

]
= 0.

Next, we notice that

E



(

m∑

i=1

ζni (3, 1)

)2

 = E




m∑

i=1

ζni (3, 1)
2 + 2

m−1∑

i=1

ζni (3, 1)ζ
n
i+1(3, 1) + . . .+ 2

m−(kn−1)∑

i=1

ζni (3, 1)ζ
n
i+kn−1(3, 1)


 .

Using the independence of ∆n
i U ’s from the sampling times and the boundedness of vnt(n,i−1), for some constant C > 0,

we obtain

E
[
ζni (3, 1)

2
]

= E



n (∆n

i U)
2

k2n n
2




kn−1∑

j=0

(
vnt(n,i−1) (m1 − ε(n, i+ j))

)



2

 ≤ C

E

[
(∆n

i U)
2
]

k2n n
E



kn−1∑

j=0

(m1 − ε(n, i+ j))2




= C
1

k2nn
kn(m2 −m2

1),

and2

∣∣E
[
ζni (3, 1)ζ

n
i+1(3, 1)

]∣∣ =

nE
[∣∣∆n

i U∆n
i+1U

∣∣] E



∣∣∣∣∣∣


 1

kn

kn−1∑

j=0

(
1

n
vnt(n,i−1) (m1 − ε(n, i+ j))

)



 1

kn

kn−1∑

j=0

(
1

n
vnt(n,i) (m1 − ε(n, i+ 1 + j))

)

∣∣∣∣∣∣




≤ C nE
[∣∣∆n

i U∆n
i+1U

∣∣] 1

k2n n
2
E







kn−1∑

j=0

(m1 − ε(n, i+ j))




2

 = C

1

k2nn
kn(m2 −m2

1).

For k ≥ 2, E
[
ζni (3, 1)ζ

n
i+k(3, 1)

]
= 0, since E

[
∆n

i U∆n
i+kU

]
= 0. Consequently, E

[(
m∑
i=1

ζni (3, 1)

)2
]
∼ k−1

n converges to

2We use
cov (X,Y ) ≤ max

(
var

(
σ2
X

)
, var

(
σ2
Y

))
, (33)

and the boundedness of vn. We do the same in deriving the inequality in (34).
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zero, which implies that
m∑

i=1

ζni (3, 1)
p−→ 0.

Now, we consider the second sum
m∑
i=1

ζni (3, 2) and notice that

E



(

m∑

i=1

ζni (3, 2)

)2

 =

m∑

i=1

E
[
ζni (3, 2)

2
]
+ 2

m−1∑

i=1

E
[
ζni (3, 2)ζ

n
i+1(3, 2)

]
≤ C

m∑

i=1

E
[
ζni (3, 2)

2
]

(34)

We have

E
[
ζni (3, 2)

2
]

= nE
[
(∆n

i U)
2
]
E





 1

nkn

kn−1∑

j=0

((
vnt(n,i−1) − vnt(n,i+j−1)

)
ε(n, i+ j)

)



2



=
E

[
(∆n

i U)
2
]

nk2n

(
kn−1∑

j=0

E

[((
vnt(n,i−1) − vnt(n,i+j−1)

)
ε(n, i+ j)

)2
]

+ 2

kn−1∑

j=0

j−1∑

k=1

E

[(
vnt(n,i−1) − vnt(n,i+j−1)

)(
vnt(n,i−1) − vnt(n,i+k−1)

)
ε(n, i+ j)ε(n, i+ k)

])

︸ ︷︷ ︸
Bn

.

Since vnt is a bounded semimartingale, we have the inequality:

E

[∣∣∣vnt(n,i−1) − vnt(n,i+j−1)

∣∣∣
2
∣∣∣∣ Fi−1

]
≤ E [t(n, i+ j − 1)− t(n, i− 1) | Fi−1] ≤ Cm1

j

n
,

so that, by the Jensen inequality,

E

[∣∣∣vnt(n,i−1) − vnt(n,i+j−1)

∣∣∣
∣∣∣ Fi−1

]
≤ C

√
j

n
.

Consequently,
kn−1∑

j=0

E

[((
vnt(n,i−1) − vnt(n,i+j−1)

)
ε(n, i+ j)

)2
]
≤ Cm2

kn(kn − 1)

2n
∼ k2n

n
,

which, using the Cauchy-Schwartz inequality, gives

|Bn| ≤ C

kn−1∑

j=0

j−1∑

k=1

√
j k

n2
m2

1 ≤ C

kn−1∑

j=0

j−1∑

k=1

√
j2

n2
m2

1 ≤ C

kn−1∑

j=0

j2

n
= C

kn(kn − 1)(2kn − 1)

6n
∼ k3n

n
,

which implies that E
[
ζni (3, 2)

2
]
= O

(
kn/n

2
)
. As a result, we have

E



(

m∑

i=1

ζni (3, 2)

)2

 −→ 0 and

m∑

i=1

ζni (3, 2)
p−→ 0.

Consequently,
√
nA3 converges to zero in probability. Finally, consider

√
nA4. Consider the decomposition

√
nA4 =

m∑

i=1

ζni (4, 1) +

m∑

i=1

ζni (4, 2) +

m∑

i=1

ζni (4, 3),
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where

ζni (4, 1) =
√
n∆iX

1

kn
(E [∆(n, i) | Fi−1]−∆(n, i)) ,

ζni (4, 2) =
√
n∆iX

1

kn

kn−1∑

j=1

(E [∆(n, i) | Fi−1]− E [∆(n, i+ j) | Fi−1]) ,

ζni (4, 3) =
√
n∆iX

1

kn

kn−1∑

j=1

(E [∆(n, i+ j) | Fi−1]−∆(n, i+ j)) .

Using Assumption E2 and boundedness of vn, for the first term we obtain

E [|ζni (4, 1)| | Fi−1] ≤ C

√
n

kn
E

[
∆(n, i)α/2 |E [∆(n, i) | Fi−1]−∆(n, i)|

∣∣∣ Fi−1

]
≤ C

n(1+α)/2kn
.

A similar computation shows that

E [|ζni (4, 3)| | Fi−1] ≤
C

n(1+α)/2
.

So we have
m∑

i=1

E [|ζni (4, 1)|]
p−→ 0,

m∑

i=1

E [|ζni (4, 3)|]
p−→ 0.

Finally, for the second term, notice that

|E [∆(n, i)−∆(n, i+ j) | Fi−1]| =
m1

n

∣∣∣E
[
vnt(n,i−1) − vnt(n,i+j−1)

∣∣∣ Fi−1

]∣∣∣ ≤ m1

n

j∑

k=1

∆(n, i+ k − 1),

where we have used the (semimartingale) property
∣∣∣E

[
vnt(n,i) − vnt(n,i−1)

∣∣∣ Fi−1

]∣∣∣ ≤ C∆(n, i) and a telescopic sum.

Consequently, using Assumption E2 and boundedness of vn again, we obtain

E [|ζni (4, 2)| | Fi−1] ≤
C√
nkn

E


∆(n, i)α/2

kn−1∑

j=1

j∑

k=1

∆(n, i+ k − 1)

∣∣∣∣∣∣
Fi−1


 ≤ C

kn(kn + 1)

n(α+1)/2+1kn
,

which implies that
m∑

i=1

E [|ζni (4, 2)| | Fi−1]
p−→ 0.

This completes the proof of the first step.

Step 2. We now prove that

n
m∑

i=1


∆n

i Y


∆(n, i)− 1

kn

kn−1∑

j=0

∆(n, i+ j)






2

p−→
(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds.

Consider the decomposition

n
m∑

i=1


∆n

i Y


∆(n, i)− 1

kn

kn−1∑

j=0

∆(n, i+ j)






2

= B1 + B2 + 2B3,
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where

B1 = n
m∑

i=1

(
∆n

i Y

(
∆(n, i)− 1

n
vnt(n,i−1)m1

))2

,

B2 = n
m∑

i=1


∆n

i Y


 1

n
vnt(n,i−1)m1 −

1

kn

kn−1∑

j=0

∆(n, i+ j)






2

,

B3 = n

m∑

i=1

(∆n
i Y )

2

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)
 1

n
vnt(n,i−1)m1 −

1

kn

kn−1∑

j=0

∆(n, i+ j)


 .

The decomposition Y = X + U implies for B1 the structure

B1 =

m∑

i=1

(bni (1, 1) + bni (1, 2) + 2bni (1, 3)) ,

where bni (1, 1), b
n
i (1, 2) and b

n
i (1, 3) are given by

bni (1, 1) = n (∆n
i U)

2

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)2

,

bni (1, 2) = n (∆n
i X)

2

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)2

,

bni (1, 3) = n∆n
i U∆n

i X

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)2

.

Note that bni (1, 1) ≥ 0 and that

E
[
bni (1, 1)

∣∣ FU
i−1

]
= (∆n

i U)
2 (
m2 −m2

1

) (
vnt(n,i−1)

)2 1

n
.

By Assumption E1, we have the convergence

m∑

i=1

(∆n
i U)

2 (
m2 −m2

1

) (
vnt(n,i−1)

)2 1

n

p−→
(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds.

On the other hand, it can be easily seen that

m∑

i=1

E

[
(bni (1, 1)− E [bni (1, 1) | Fi−1])

2
∣∣∣ Fi−1

]
p−→ 0.

Consequently,
m∑

i=1

bni (1, 1)
p−→

(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds.

The other terms in B1 are asymptotically negligible. Indeed, we have:

E [bni (1, 2) | Fi−1] ≤ C
1

n1+α
.

Since, bni (1, 2) is positive, this implies the negligibility of
m∑
i=1

bni (1, 2). The asymptotic negligibility of
m∑
i=1

bni (1, 3) follows

from analogous arguments.
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Next, analogously to the proof of the asymptotic negligibility of the term

ζni (3) =
√
n∆n

i U


E [∆(n, i) | Fi−1]−

1

kn

kn−1∑

j=0

∆(n, i+ j)




defined in (32), we can conclude that B2 is asymptotically negligible.

Finally, consider the decomposition:

B3 =
m∑

i=1

n (∆n
i Y )

2 1

n
vnt(n,i−1) (ε(n, i)−m1)


 1

n
vnt(n,i−1)m1 −

1

nkn

kn−1∑

j=0

vnt(n,i+j−1)ε(n, i+ j)


 =

m∑

i=1

(bni (3, 1) + bni (3, 2)) ,

where

bni (3, 1) =
1

nkn
(∆n

i Y )
2
(
vnt(n,i−1)

)2

(ε(n, i)−m1) (m1 − ε(n, i)) ,

bni (3, 2) =
1

nkn
(∆n

i Y )
2
vnt(n,i−1) (ε(n, i)−m1)

kn−1∑

j=1

(
vnt(n,i−1)m1 − vnt(n,i+j−1)ε(i+ j)

)
.

For the first term we have

m∑

i=i

E [|bni (3, 1)| | Fi−1] ≤ C

m∑

i=i

E

[
(ε(n, i)−m1)

2
∣∣∣ Fi−1

] 1

nkn
= C

m∑

i=i

(
m2 −m2

1

) 1

nkn
−→ 0,

which implies that
m∑
i=i

bni (3, 1) is asymptotically negligible. Next, since vn is a semimartingale and Y = X + U with X

semimartingale and U bounded in probability, we have

∣∣∣Ei−1

[
vnt(n,i−1) − vnt(n,i+j−1)

]∣∣∣ ≤ C
j

n
, (∆n

i Y )
2
= Op (1)

whence

∣∣∣∣∣

m∑

i=1

E [bni (3, 2) | Fi−1]

∣∣∣∣∣ =

=
1

nkn

∣∣∣∣∣∣

m∑

i=1

Ei−1


(∆n

i Y )
2
vnt(n,i−1) (ε(n, i)−m1)

kn−1∑

j=1

(
vnt(n,i−1)m1 − vnt(n,i+j−1)ε(n, i+ j)

)


∣∣∣∣∣∣
≤

≤ C k−1
n n−1

∣∣∣∣∣∣

m∑

i=1




kn−1∑

j=1

Ei−1

[
m1

(
vnt(n,i−1) − vnt(n,i+j−1)

)]
+

kn−1∑

j=1

Ei−1

[
vnt(n,i+j−1) (m1 − ε(n, i+ j))

]


∣∣∣∣∣∣

≤ C k−1
n n−1

m∑

i=1

kn−1∑

j=1

j

n
≤ C

kn
n

p−→ 0.

where we have used Ei−1

[
vnt(n,i+j−1) (m1 − ε(n, i+ j))

]
= 0 which follows from the facts that vnt(n,i+j−1) and ε(n, i+ j)

are independent, with ε (n, i) iid and E [ε(n, i)] = m1. Since (∆
n
i Y )

4
is bounded, using the boundedness of vn and, again,

the decomposition

vnt(n,i−1)m1−vnt(n,i+j−1)ε(n, i+j) = vnt(n,i−1)−vnt(n,i+j−1)+v
n
t(n,i+j−1) (m1 − ε(n, i+ j)) = ∆v

n
i−1,j+v

n
t(n,i+j−1) (m1 − ε(n, i+ j))
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where the last identity is definitional for ∆v
n
i−1,j . We obtain

E
[
bni (3, 2)

2
∣∣ Fi−1

]
≤ C

n2k2n
E







kn−1∑

j=1

(
vnt(n,i−1)m1 − vnt(n,i+j−1)ε(n, i+ j)

)



2
∣∣∣∣∣∣∣
Fi−1




=
C

n2k2n
E







kn−1∑

j=1

(
∆v

n
i−1,j + vnt(n,i+j−1) (m1 − ε(n, i+ j))

)



2
∣∣∣∣∣∣∣
Fi−1




=
C

n2k2n
Ei−1



kn−1∑

j=1

(
∆v

n
i−1,j + vnt(n,i+j−1) (m1 − ε(n, i+ j))

)2


+

+
C

n2k2n
Ei−1


∑

ℓ>j

(
∆v

n
i−1,j + vnt(n,i+j−1) (m1 − ε(n, i+ j))

)(
∆v

n
i−1,ℓ + vnt(n,i+ℓ−1) (m1 − ε(n, i+ ℓ))

)

 .

Since vn and ε are independent, by conditioning upon the path of vn we obtain

E
[
bni (3, 2)

2
∣∣ Fi−1

]
≤ C

n2k2n

kn−1∑

j=1

Ei−1

[(
∆v

n
i−1,j

)2
+

(
vnt(n,i+j−1)

)2

(m1 − ε(n, i+ j))
2

]
+

C

n2k2n

∑

ℓ>j

Ei−1

[
∆v

n
i−1,j ∆v

n
i−1,ℓ

]

≤ C

n2k2n




kn−1∑

j=1

j

n
+ kn


+

C

n2k2n

∑

ℓ>j

Ei−1

[(
∆v

n
i−1,j

)2
+∆v

n
i−1,j ∆v

n
i+j,ℓ−j−1

]

≤ C

n2k2n

(
kn (kn − 1)

2n
+ kn

)
+

C

n2k2n




kn−1∑

j=1

kn−1∑

ℓ=j+1

j

n
+

kn−1∑

j=1

kn−1∑

ℓ=j+1

Ei−1

[
∆v

n
i−1,j ∆v

n
i+j,ℓ−j−1

]



≤ C

n2k2n

(
kn (kn − 1)

2n
+ kn

)
+

C

n2k2n

(
k3n
n

+
k4n
n2

)
.

where we have used the semimartingale property of v after suitable conditioning inside the expectations and the summation

rules
kn−1∑

j=1

kn−1∑

ℓ=j+1

j =
1

6
kn (kn − 1) (kn − 2) ,

kn−1∑

j=1

kn−1∑

ℓ=j+1

j (ℓ− j − 1) =
1

24

(
k2n − 5 kn + 6

)
kn (kn − 1)

Consequently,

kn

m∑

i=i

E

[
(bni (3, 2))

2
∣∣∣ Fi−1

]
≤ C

nkn

(
kn (kn − 1)

2n
+ kn

)
+

C

nkn

(
k3n
n

+
k4n
n2

)
p−→ 0,

which implies the asymptotic negligibility of
m∑
i=i

bni (3, 2). Hence, B3 is asymptotically negligible, which completes the proof

of the second step.

Step 3. As well known, we have that the vector (Un
t ,V

n
t )

′
converges in distribution to (Ut,Vt)

′
if and only if for any real

numbers a1 and a2,

a1U
n
t + a2V

n
t

weakly−→ a1Ut + a2Vt.

Previous steps shows that the leading terms in U
n
t and V

n
t are respectively

m∑
i=1

√
n∆n

i U
(
∆(n, i)− 1

nv
n
t(n,i−1)m1

)
and

m∑
i=1

n (∆n
i U)

2
(
∆(n, i)− 1

nv
n
t(n,i−1)m1

)2

. Hence, it is enough to prove the convergence

m∑

i=1

ξni
weakly−→ a1Ut + a2Vt,
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where ξni is defined for generic a1 and a2 as

ξni = a1
√
n∆n

i U

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)
+ a2 n (∆

n
i U)

2

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)2

.

Recall the definition FU
i = Ft(n,i) ∨ σ

(
∆n

i+1U
)
, we have

E
[
ξni

∣∣ FU
i−1

]
=
a2
n

(∆n
i U)

2
(
vnt(n,i−1)

)2 (
m2 −m2

1

)
,

which, by Assumption E1, implies:

m∑

i=1

E
[
ξni

∣∣ FU
i−1

] p−→ a2
(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds.

Next, consider the decomposition:

m∑

i=1

(
E

[
(ξni )

2
∣∣∣ FU

i−1

]
− E

[
ξni

∣∣ FU
i−1

]2)
=

m∑

i=1

E
[
cni (1) + cni (2) + cni (3)

∣∣ FU
i−1

]
,

where

cni (1) = a21 n (∆n
i U)

2

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)2

,

cni (2) = a22 n
2 (∆n

i U)
4

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)4

−
(a2
n

)2

(∆n
i U)

4
(
vnt(n,i−1)

)4 (
m2 −m2

1

)2
,

cni (3) = 2a1a2 n
3
2 (∆n

i U)
3

(
∆(n, i)− 1

n
vnt(n,i−1)m1

)3

.

Assumption E1 implies that
m∑

i=1

E
[
cni (1)

∣∣ FU
i−1

] p−→ a21
(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds,

while computations similar to those in Step 2 show that
m∑
i=1

E
[
cni (2)

∣∣ FU
i−1

] p−→ 0. For the third term we have

m∑

i=1

∣∣E
[
cni (3)

∣∣ FU
i−1

]∣∣ ≤ C
m∑

i=1

∣∣∣(∆n
i U)

3
E

[
(ε(n, i)−m1)

3
∣∣∣ FU

i−1

]∣∣∣n− 3
2

p−→ 0.

Consequently,
m∑

i=1

(
E

[
(ξni )

2
∣∣∣ FU

i−1

]
−

(
E
[
ξni

∣∣ FU
i−1

])2) p−→ a21
(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds.

Finally, by the analogous arguments as in the above proofs it can be easily seen that
m∑
i=1

E

[
(ξni )

4
∣∣∣ FU

i−1

]
p−→ 0, which

implies
m∑

i=1

ξni
weakly−→ a1

√
m2 −m2

1

∫ t

0

usvs dW
′
s + a2

(
m2 −m2

1

) ∫ t

0

(usvs)
2
ds,

which completes the proof.
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B Proof of Theorem 4.2

The proof of Theorem 4.2 follows from a series of lemmas and theorems presented below. Consider the decomposition

Mn∑

i=1

Y
n

(i−1)ℓn+1


∆

n

(i−1)ℓn+1 −
1

kn

kn−1∑

j=0

∆
n

(i−1)ℓn+1+j


 = D1 + D2 + D3 + D4,

where

D1 =

Mn∑

i=1

σt(n,(i−1)ℓn)W
n

(i−1)ℓn+1

(
∆

n

(i−1)ℓn+1 − E

[
∆

n

(i−1)ℓn+1

∣∣∣ F(i−1)ℓn

])
,

D2 =

Mn∑

i=1

U
n

(i−1)ℓn+1

(
∆

n

(i−1)ℓn+1 − E

[
∆

n

(i−1)ℓn+1

∣∣∣ F(i−1)ℓn

])
,

D3 =

Mn∑

i=1

(
X

n

(i−1)ℓn+1 − σt(n,(i−1)ℓn)W
n

(i−1)ℓn+1

)(
∆

n

(i−1)ℓn+1 − E

[
∆

n

(i−1)ℓn+1

∣∣∣ F(i−1)ℓn

])
,

D4 =

Mn∑

i=1

Y
n

(i−1)ℓn+1


E

[
∆

n

(i−1)ℓn+1

∣∣∣ F(i−1)ℓn

]
− 1

kn

kn−1∑

j=0

∆
n

(i−1)ℓn+1+j


 .

The leading term is D1. Below we show that nλ
D1 converges in distribution to a centred normal random variable when

λ = 3−2 δ
4 (Theorem B.1) and the other terms D2, D3 and D4 are asymptotically negligible (Theorems B.2, B.3 and B.4).

Lemma 1. Under the assumptions of Theorem 4.2, for some constant C > 0 and for every q > 0, we have the following

estimates

E

[∣∣∣Y n

(i−1)ℓn+1

∣∣∣
q ∣∣∣ F(i−1)ℓn

]
≤ C

(
ℓn
n

)q/2

.

and

E

[∣∣∣Xn

(i−1)ℓn+1 − σt(n,(i−1)ℓn)W
n

(i−1)ℓn+1

∣∣∣
q ∣∣∣ F(i−1)ℓn

]
≤ C

(
ℓn
n

)q

.

Proof. The proof of the first inequality is analogous to the proof of Lemma 1 of Podolskij and Vetter (2009).

Lemma 2. Let H be any bounded cadlag process. Then, under the assumptions of Theorem 4.2, as n→ ∞, we have:

Mn∑

i=1

Ht(n,(i−1)ℓn)
ℓn
n

u.c.p.−→
∫ t

0

Hs

m1vs
ds.

Proof. Using the results in Lemma 2.3(b) of Hayashi et al. (2011) we have

m∑

i=1

Ht(n,i) ∆(n, i) =

m∑

i=1

Ht(n,i)
1

n
vnt(n,i−1) ε (n, i)

u.c.p.−→
∫ t

0

Hs ds.

Similar computations show that

Mn∑

i=1


Ht(n,(i−1)ℓn)

ℓn∑

j=1

∆(n, (i− 1)ℓn + j)


 u.c.p.−→

∫ t

0

Hs ds.
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Consider now the following decomposition

Mn∑

i=1


Ht(n,(i−1)ℓn)

ℓn∑

j=1

∆(n, (i− 1)ℓn + j)


 = E1 − E2 − E3,

where

E1 =

Mn∑

i=1

Ht(n,(i−1)ℓn)
ℓn
n
m1vt(n,(i−1)ℓn),

E2 =

Mn∑

i=1

Ht(n,(i−1)ℓn)


ℓn
n
m1vt(n,(i−1)ℓn) − E




ℓn∑

j=1

∆(n, (i− 1)ℓn + j)

∣∣∣∣∣∣
F(i−1)ℓn




 ,

E3 =

Mn∑

i=1

Ht(n,(i−1)ℓn)


E




ℓn∑

j=1

∆(n, (i− 1)ℓn + j)

∣∣∣∣∣∣
F(i−1)ℓn


−

ℓn∑

j=1

∆(n, (i− 1)ℓn + j)


 .

It can be easily seen that E2 and E3 are asymptotically negligible. Consequently,

E1
u.c.p.−→

∫ t

0

Hs ds,

which implies the thesis
Mn∑

i=1

Ht(n,(i−1)ℓn)
ℓn
n

u.c.p.−→
∫ t

0

Hs

m1vs
ds.

Theorem B.1. Under the assumptions of Theorem 4.2 with λ = (3− 2δ) /4 we have, as n→ ∞, that

nλ D1
weakly−→

√
ΣB

t N (0, 1) ,

where D1 =
Mn∑
i=1

σt(n,(i−1)ℓn)W
n

(i−1)ℓn+1

(
∆

n

(i−1)ℓn+1 − E

[
∆

n

(i−1)ℓn+1

∣∣∣ F(i−1)ℓn

])
and

ΣB

t = ϑ

∫ t

0

σ2
s v

3
s ψ1,2 ds, (35)

where

ψ1,2 =

∫ 1

0

∫ 1

0

(gu)
2(gs)

2K(u, s) du ds, (36)

with

K(u, s) =




E

[
ε(n, 1) (ε(n, 1)−m1)

2
]
, if u = s,

E

[
ε(n, 2) (ε(n, 1)−m1)

2
]
, if u 6= s.

Moreover, we have the joint convergence:

(
nλ D1, n

2λ Σ
(B,n)
t

)
weakly−→

(√
ΣB

t N (0, 1) ,ΣB

t

)
,

where

Σ
(B,n)
t =

Mn∑

i=1

(
σt(n,(i−1)ℓn)W

n

(i−1)ℓn+1

(
∆

n

(i−1)ℓn+1 − E

[
∆

n

(i−1)ℓn+1

∣∣∣ F(i−1)ℓn

]))2

(37)
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Proof. We have

nλ D1 =

Mn∑

i=1

ξni , n2λ Σ
(B,n)
t =

Mn∑

i=1

(ξni )
2
,

where ξni = nλ σtn
(i−1)ℓn

W
n

(i−1)ℓn+1

(
∆

n

(i−1)ℓn+1 − E

[
∆

n

(i−1)ℓn+1

∣∣∣ F(i−1)ℓn

])
. In what follows, for notational convenience,

we use the convention εnj = ε (n, j) and tnj = t (n, j). Observe that under H0, E
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Note that, as n→ ∞,
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where ψ1,2 is defined in equation (36). On the other hand, since ℓn = ϑn
1
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4 , we have:
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Consequently, by Lemma 2,
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Tedious but straightforward computations allow to show that
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which completes the proof of the convergence nλ
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Theorem B.2. Under the assumptions of Theorem 4.2 with λ = 3−2δ
4 we have, as n→ ∞, that

nλ D2
u.c.p.−→ 0.

Proof of Theorem B.2. Let
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To prove it, consider first that, by Hōlder inequality, we have
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Notice that, for every index i, we have:
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For the second term we have
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Since ℓn = ϑn
1
2+δ and λ = 3−2δ

4 , we have

nλ−1 =
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n
ϑ−1nλ−( 1

2+δ) =
ℓn
n
ϑ−1n
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4 .

Consequently, using Lemma 2, we obtain
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which implies that
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Theorem B.3. Under the assumptions of Theorem 4.2 hold and with λ = 3−2δ
4 we have that, as n → ∞, the following

convergence holds
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Consequently, using Hōlder inequality and the above estimates we obtain
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which completes the proof.

Theorem B.4. Under the assumptions of Theorem 4.2 hold and with λ = 3−2δ
4 we have that, as n → ∞, the following

convergence holds
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where
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It is enough to prove that the terms
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Consequently,
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which implies that the array
Mn∑
i=1

ηn(i−1)ℓn+1 is asymptotically negligible and completes the proof.

Theorems B.1, B.2, B.3 and B.4 together imply that the numerator of the test statistic B (Y, {t (n, i)}) converges in

distribution to a normal random variable with random variance ΣB
t defined in equation (35).

Analogously to the proofs of Theorems B.2, B.3 and B.4 it is possible to prove that the difference between the denominator

of the test statistic B (Y, {t (n, i)}) and the estimator Σ
(B,n)
t defined in equation (37) of Theorem B.1 is negligible, which

concludes the proof of Theorem 4.2.
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