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Abstract

This paper extends the multivariate index autoregressive model by Reinsel (1983) to the case of

cointegrated time series of order (1, 1). In this new modelling, namely the Vector Error-Correction Index

Model (VECIM), the first differences of series are driven by some linear combinations of the variables,

namely the indexes. When the indexes are significantly fewer than the variables, the VECIM achieves

a substantial dimension reduction w.r.t. the Vector Error Correction Model. We show that the VECIM

allows one to decompose the reduced form errors into sets of common and uncommon shocks, and that

the former can be further decomposed into permanent and transitory shocks. Moreover, we offer a

switching algorithm for optimal estimation of the VECIM. Finally, we document the practical value of

the proposed approach by both simulations and an empirical application, where we search for the shocks

that drive the aggregate fluctuations at different frequency bands in the US.
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1 Introduction

Since the seminal paper of Sims (1980), the Vector Autoregressive Model (VAR) has been used largely for

forecasting, conducting structural analyses, as well as for investigating the existence of long-term equilibria

among economic variables (Granger, 1981; Engle and Granger, 1987). However, the number of parameters

to be estimated dramatically increases with the square of the number of variables that the econometrician

wishes to include in the analysis. The literature generally addresses the issue as curse of dimensionality.

Hence, unless we impose some restrictions in order to reduce the number of free parameters, classical VARs

are not a viable option to handle medium to large information sets.

The most successful alternatives to the classical VAR in empirical applications are the Dynamic Factor

Model (DFM), the Bayesian VAR (BVAR) and, lately, sparse VARs. The attractive feature of DFMs is the

assumption that few latent factors drive the entire economy; see e.g. Stock and Watson (2016), Lippi et al.

(2022), and the references therein. BVARs (see i.a. Bańbura et al. (2010), Giannone et al. (2015), Koop

(2013)) and sparse VARs (see i.a. Hsu et al. (2008), Kock and Callot (2015), Hecq et al. (2021)) rely on

different shrinkage parameter approaches to handle medium-large VARs and are commonly used in empirical

applications.

Although most macroeconomic indicators are non-stationary, the literature on DFMs mainly focused on

stationary data, typically obtained by differencing variables before estimation. However, this practice im-

plicitly assumes that all shocks have permanent effects on the levels of variables, whereas the macroeconomic

literature agrees on the fact that some shocks are permanent (e.g. technology shocks) and are the source

of common trends, while some others are transitory (e.g. demand shocks) and generate fluctuations around

the trends. However, only a relatively small part of the literature on large systems focused on cointegration.

In the DFM framework, notable exceptions are i.a. Bai and Ng (2004), Bai (2004), Zhang et al. (2019),

Barigozzi et al. (2021), Barigozzi and Trapani (2022), and Casoli and Lucchetti (2022). Even in the fields

of regularization methods, contributions on cointegration are relatively scarce; see e.g. Diniz et al. (2020),

Smeekes and Wijler (2020) and the references therein.

In the classical VAR framework, it is well known that the usual Maximum Likelihood (ML) procedure for

cointegration analysis (Johansen, 1995) does not work properly when the number of variables n is relatively

large w.r.t. the sample size T . In particular, Monte Carlo studies show that the Likelihood Ratio Test (LRT)

tends to overreject the null of fewer cointegration relations in favor of the alternative of more of them; see i.a.

Ho and Sorensen (1996) and Gonzalo and Pitarakis (1999).1 While small sample corrections or bootstrap

procedures (see i.a. Reinsel and Ahn (1992) and Cavaliere et al. (1996)) are effective in mitigating the size

distortion of the LRT when the sample size is not large (i.e., T = 50) and the dimension is small (i.e., n ≤ 5),

Onatski and Wang (2018) proved that the usual LRT statistic does not converge under the null to the usual

asymptotic distribution when both n and T diverge. Recently, Bykhovskaya and Gorin (2022) proposed a

variant of the LRT for a VAR(1) model and found its limit distribution in a double asymptotics framework.2

In this paper, we follow a different route from previous contributions, as we focus on a medium-

dimensional framework given the diffuse evidence that no substantial gains in macroeconomic applications

are obtained by further increasing the dimension of the VAR. For instance, when the task is to forecast key

aggregate indicators, Bańbura et al. (2010) and Koop (2013) show that the gains in forecast accuracy are

1For instance, Gonzalo and Pitarakis (1999) report that in a 9−dimensional VAR(1) with one cointegration vector, the

correct decision frequency of the 5% level LR test is 27.24 [87.64] with a sample size equal to 150 [400].
2Remarkably, both Onatski and Wang (2018) and Bykhovskaya and Gorin (2022) assume that the number of cointegrating

relations is fixed as n increases. This is equivalent to assume that the number of common trends grows with n.
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small or even negative by increasing the dimension of the BVARs beyond 20, Cubadda and Guardabascio

(2019) document that properly restricted VAR models with 10 or 20 variables outperform larger models,

while Forni et al. (2019) argue that medium VARs may contain enough information to identify structural

shocks. On the technical side, this implies that we do not need to assume that the number of series diverges

for inferential purposes.

Recently, there has been renewed interest in the work of Reinsel (1983), namely the Multivariate Au-

toregressive Index Model (MAI). The MAI is obtained by imposing a particular reduced rank structure on

the coefficient matrices of a VAR such that each variable is driven by the lags of a limited number of linear

combinations of the variables, which are called the indexes and can be considered as ”observable” common

factors, in the sense that they are identified even for a finite number of series. Hence, the MAI represents a

bridge between DFMs and reduced-rank VARs; see i.a. Carriero et al. (2011), Cubadda and Hecq (2011),

and Bernardini and Cubadda (2015). The MAI has recently been employed and extended in several direc-

tions; see i.a. Carriero et al. (2016, 2022), Cubadda et al. (2017), Cubadda and Guardabascio (2019), and

Cubadda and Hecq (2022a). The present paper is strongly related to this branch of literature and aims

to expand it allowing for cointegration among variables. To the best of our knowledge, previous literature

related to the MAI has focused so far on VARs with stationary roots only.

In particular, we aim to achieve dimension reduction for medium-dimensional cointegrated VARs by

means of a new modeling such that the first differences of a set of cointegrated time series are endowed

with an index structure. We label the resulting specification as the Vector Error-Correction Index Model

(VECIM), which can be seen as a generalization of the MAI to cointegrated time series. In fact, when there

is no cointegration the VECIM reduces to a MAI for the first differences of variables.

An interesting property of the VECIM is that the indexes themselves follow a standard Vector Error-

Correction Model (VECM) with a dimension smaller than n. Moreover, the VECIM allows one to decompose

the reduced form shocks into sets of common and uncommon shocks, and the former can be further decom-

posed into permanent and transitory shocks. This opens the possibility of identifying structural shocks

from specific directions of the reduced-form errors (e.g., those that are common among variables and have

permanent effects).

We offer a switching algorithm for ML estimation, and, in light of previous research indicating that

information criteria are particularly useful in selection of the VECM specification (see e.g. Gonzalo and

Pitarakis (1999), Cavaliere et al. (2015), and Cavaliere et al. (2018)), we rely on informational methods

rather than on testing procedures for the specification of the VECIM.

This paper is organized as follows. Section 2 presents the theoretical aspects, in terms of both model

representation and statistical inference. In Section 3 a Monte Carlo study evaluates the finite sample proper-

ties of the proposed methods and shows that the inference based on the VECIM systematically outperforms

the classical ML analysis of the VECM when an index structure exists. Section 4 provides an empirical

application to a medium set of time series to assess the practical usefulness of our approach in studying

the propagation mechanism of macroeconomic shocks. The exercise is divided into two parts. First, we de-

compose the variables into two components, one of which is common while the other is uncommon, and the

former is further decomposed into a permanent and a transitory component. Based on Centoni and Cubadda

(2003), we provide a measure of the contribution of each component at the business cycle frequency band.

Second, we follow Angeletos et al. (2020) and identify the shocks that maximizes the cyclical variability

of unemployment and its common component. Moreover, we decompose the main common business cycle

driver into permanent and transitory shocks. Finally, Section 5 concludes.
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2 Theory

In this Section we first present the derivation and the properties of the proposed modelling, then we discuss

statistical inference for all possible specifications.

2.1 Representation theory

Let us assume that the n-vector time series Yt is generated by the following VAR(p) model

Yt =

p
∑

j=1

ΦjYt−j + εt, (1)

where t = 1, . . . , T , Φj is an n×nmatrix for j = 1, . . . , p with Φp 6= 0 such that the roots of det
(

In −∑p
j=1 Φjz

j
)

are equal to 1 or larger than 1 in modulus, εt is an n-vector of errors with E(εt) = 0, E(εtε
′
t) = Ω, a positive

definite matrix, finite fourth moments, E(εt|̥t−1) = 0 and ̥t is the natural filtration of the process Yt. For

simplicity, we assume that deterministic elements are absent.

We start by rewriting model (1) in the following multivariate augmented Dickey-Fuller representation

∆Yt = Π0Yt−1 +

p−1
∑

j=1

Πj∆Yt−j + εt, (2)

where ∆ = (1− L), L is the lag operator, Π0 =
∑p

j=1 Φj − In, and Πj = −∑

i>j

Φi for j = 1, . . . , p− 1.

Moreover, we assume that series Yt follow the Vector Error-Correction Model (VECM)

∆Yt = α0β
′Yt−1 +

p−1
∑

j=1

Πj∆Yt−j + εt, (3)

where α0 and β are full-rank n× r (r < n) matrices such that α0β
′ = Π0, Πj = −∑

i>j

Φi for j = 1, . . . , p− 1,

α0
′
⊥Π̄β⊥ is non-singular, and Π̄ = In −

∑p−1
j=1 Πj . Under such assumptions, it is well known that elements of

Yt are individually, at most, I(1) and that they are jointly cointegrated or order 1, in the sense that β′Yt−1

is I(0), see i.a. Johansen (1995) and the references therein.

To possibly reduce the number of parameters in the VECM, we follow Reinsel (1983) and take the

following assumptions:

Assumption 1 For Π = [Π′
1, . . . ,Π

′
p−1]

′ it holds that Π = Aω′, where ω is a full-rank n × q matrix with

q < n and A is a full-rank n(p− 1)× q matrix.

Assumption 2 It holds that β = ωγ, where γ is a full-rank q × r matrix with q ≥ r.

Under Assumptions 2.1-2.2, the dynamics of the system are endowed with the following index structure:

∆Yt = α0γ
′ω′Yt−1 +

p−1
∑

j=1

αjω
′∆Yt−j + εt, (4)

where A = [α′
1, ..., α

′
p−1]

′ and αj is an n× q matrix for j = 1, ..., p− 1.

We call (4) the Vector Error Correction Index Model (VECIM) and label the variables ft = ω′Yt as the

indexes. The interpretation of VECIM is that there is a limited number of channels (q over n) through
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which the first differences ∆Yt are influenced by information coming from the past. This is in line with

the traditional view that few shocks are responsible for aggregate fluctuations in the economy. Note that

the VECIM has (np + r − n − q)(n − q) parameters less than the VECM, which leads to a rather more

parsimonious specification when q is small w.r.t. n.3

It is easy to see that VECIM has the following implication for the VAR representation:

∆Yt =

p
∑

j=1

θjω
′Yt−j + εt, (5)

where θj+1 = αj+1 −αj for j = 1, . . . , p− 1 with αp = 0, and θ1 = α0γ
′ −∑p

j=2 θj . In view of Equation (5),

we observe that the index structure in (4) prevents a MAI for levels Yt.

A pleasant property of VAR models with an index structure is that variables ft have the same dynamic

structure as series Yt (see Carriero et al. (2016) and Cubadda et al. (2017)) and VECIM is no exception.

Indeed, premultiplying both sides of Equation (4) by ω′ one obtains

∆ft = α0γ
′ft−1 +

p−1
∑

j=1

αj∆ft−j + ǫt, (6)

where α0 = ω′α0, αj = ω′αj for j = 1, . . . , p − 1, and ǫt = ω′εt. Equation (6) tells us that the indexes

ft follow a VECM model with a cointegration matrix equal to γ. Remarkably, when r = 0 series ∆Yt are

generated by a stationary MAI, whereas in the opposite case r = q series Yt follow a VECIM where the

same linear combinations that stationarize variables Yt are those that convey information from the past in

the first differences ∆Yt.

As noted by Carriero et al. (2016) and Cubadda and Guardabascio (2019), the index structure in VAR

models has interesting implications for the shock propagation mechanism. In particular, it is well known

that the first differences of cointegrated time series admit the following Wold representation:

∆Yt = Ψ(L)εt,

where Ψ(L)
[

(1− L)(In −∑p−1
j=1 αjω

′Lj)− α0γ
′ω′L

]

= ∆, Ψ(1) = β⊥
(
α′
0⊥Π̄β⊥

)−1
α0

′
⊥, see e.g. Johansen

(1995). Hence, inserting between Ψ(L) and εt the decomposition of the identity matrix as in Centoni and

Cubadda (2003)

Ωω(ω′Ωω)−1ω′ + ω⊥(ω
′
⊥Ω

−1ω⊥)
−1ω′

⊥Ω
−1 = In

we obtain

Yt = χt + ιt, (7)

where

χt = C∗(L)ǫt, (8)

ιt = Ψ∗(L)ω⊥(ω
′
⊥Ω

−1ω⊥)
−1ξt,

∆Ψ∗(L) = Ψ(L), C∗(L) = Ψ∗(L)Ωω(ω′Ωω)−1, and ξt = ω′
⊥Ω

−1εt.

Since E(ǫ′tξt) = 0, the components χt and ιt are not correlated at all the lags and leads. Given that χt

has the same innovations as the indexes ft, it is legitimate to interpret the former as the common component

3Since matrices ω and γ, once identified through normalizing restrictions, respectively have q(n− q) and r(q − r) unknown

elements, the VECIM has r(n+ q − r) + q(np− q) free parameters.
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of the series Yt. Hence, one can use the methods adopted in the structural DFM literature (see, i.a., Forni

et al. (2009, 2020)) to recover structural shocks from the reduced-form common shocks ǫt.

Moreover, when 0 < r < q it is possible to further decompose the reduced-form common shocks ǫt into

a component having permanent effects on Yt and another one having transitory effects only.4 Indeed, by

putting between C(L) and ǫt in Equation (8) the following decomposition of the identity matrix:

Σα0⊥(α
′
0⊥Σα0⊥)

−1α′
0⊥ + α0(α

′
0Σ

−1α0)
−1α′

0Σ
−1 = Iq,

where Σ = ω′Ωω, one obtains

χt = πt + τt, (9)

where

πt = C∗(L)Σα0⊥(α
′
0⊥Σα0⊥)

−1

︸ ︷︷ ︸

P∗(L)

α′
0⊥ǫt

︸ ︷︷ ︸

ut

,

τt = C∗(L)α0(α
′
0Σ

−1α0)
−1

︸ ︷︷ ︸

T∗(L)

α′
0Σ

−1ǫt
︸ ︷︷ ︸

ηt

Since ut are the innovations of the common trends in the multivariate Beveridge-Nelson decomposition of

the indexes ft (see, e.g., Johansen (1995)) and given that E(u′tηt) = 0, we see that the common component

χt is further separated into a common permanent component πt and a common transitory component τt,

which are not correlated with each other in any lag and lead.5

Remarkably, the VECIM allows us to conduct structural analysis by taking advantage of the features of

both the DFM, i.e. isolating shocks that are common among variables, and of the VECM, i.e. disentangling

shocks having either transitory or permanent effects. For instance, one may obtain the structural common

permanents shocks as υt = C−1Dut and the impulse response functions from P̃ ∗(L) = P ∗(L)D−1C, where

D is the matrix formed by the first s = q − r rows of P ∗(0) and C is a lower triangular matrix such that

CC ′ = DΣD′. Since the first s rows of P̃ ∗(0) form a lower triangular matrix, the usual interpretation of

structural shocks υt applies as long as the m (m ≤ s) variables of interest are placed and properly ordered

in the first m elements of Yt.

Furthermore, it is possible to measure the variability that is explained by some specific direction, or all

directions, of each component of the shocks at a given frequency band. Indeed, being the components in (7)

and (9) not cross-correlated at any lag and lead, we can decompose the spectral density of the series Yt as

follows:

F (λ) = Fπ(λ) + Fτ (λ) + Fι(λ) (10)

where

F (λ) = (1/2π)−1Ψ∗(z)ΩΨ∗(z−1)′,

Fπ(λ) = (1/2π)−1P ∗(z)α′
0⊥Σα0⊥P

∗(z−1)′,

Fτ (λ) = (1/2π)−1T ∗(z)α′
0Σ

−1α0T
∗(z−1)′,

z = exp(−iλ), and λ ∈ (0, π].

4Notice that when r = q the common component χt is I(0), whereas in the opposite case r = 0 we have that χt ∼ I(1). In

both cases, no further decompositions of χt in permanent-transitory components are possible.
5This distinctive feature of the decomposition in (9) is not shared by other popular trend-cycle decompositions such as Kasa

(1992), Gonzalo and Granger (1995) and Zhang et al. (2019) .
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Since the process Yt has some roots equal to one, its spectral density matrix is unbounded at the zero

frequency. Hence, F (λ) is strictly speaking a pseudospectral density matrix, but, for the sake of simplicity,

we will omit the adjective pseudo in the following. If it is of interest to analyze the spectral density matrix

of the first differences ∆Yt rather than F (λ), it suffices to substitute Ψ∗(L) with Ψ(L) in the formulae

underlying the decompositions (7), (9), and (10).

The decomposition (10) enables us not only to measure the effects of each component shock in a given

frequency band as in Centoni and Cubadda (2003) but also to do the same for a specific direction of such

shocks. For instance, the contribution of the first of the structural common-permanent shocks υt to the

spectral density of the k−th element of the series Yt in the frequency band [λa, λb], with 0 < λa ≤ λb ≤ π,

is given by
∫ λb

λa

e′kp̃
∗
1(z)p̃

∗
1(z

−1)′ek,

where p̃∗1(z) is the first column of the matrix P̃ ∗(L), and ek is an n−vector with unity as its k−th element

and zeroes elsewhere.

Remark 1 An alternative modelling to the VECIM consists in taking Assumption 2.1 only without intro-

ducing any constraint on the cointegration matrix β. It is easy to see that this is equivalent to assume that

all the VAR coefficient matrices but Φ1 have an index structure. The resulting formulation reads

∆Yt = α0β
′Yt−1 +

p−1
∑

j=1

αjω
′∆Yt−j + εt, (11)

Although the above model has the possible advantage of not requiring q ≥ r, we favor the VECIM for a

twofold reason. First, it is easy that the indexes ω′Yt in Equation (11) do not follow a VECM model as in

the case of Equation (4). Second, and related to the first point, if the data are generated by the model in (11),

it is generally not possible to separate the common component χt into permanent-transitory components, thus

compromising a key feature of the proposed methodology.

Remark 2 Another alternative to the VECIM consists in assuming a MAI for the levels of the series, i.e

Φ = Ā̟′, where Φ = [Φ′
1, . . . ,Φ

′
p]

′ and ̟ is a full-rank n× q matrix with q < n and Ā is a full-rank np× q

matrix. It is easy to see that under such assumption we have Π̟⊥ = 0 and α0β
′̟⊥ = −̟⊥, which is a

special case of model (11). Hence, the same considerations as in the previous remark apply.

Remark 3 A closely related modelling to VECIM is the Reduced-Rank VECM (Vahid and Engle, 1993) that

reads

∆Yt = ϕϑ′0β
′Yt−1 + ϕ

p−1
∑

j=1

ϑj∆Yt−j + εt, (12)

where ϕ is a full-rank n×q matrix with r ≤ q < n and [ϑ′0, ϑ
′
1, . . . , ϑ

′
p−1]

′ is a full-rank [n(p−1)+r]×q matrix.

Due to its interpretation in terms of common trends and common cycles in the multivariate Beveridge-Nelson

decomposition, model (12) has extensively been applied and generalized in various directions, see e.g. Cubadda

and Hecq (2022b) and the references therein. Moreover, it implies that the marginal processes of series Yt

follow parsimonious univariate models, thus solving the so-called autoregressivity paradox (Cubadda et al.,

2009). Although models (4) and (12) have a similar structure and the same number of parameters, we stress

that the latter does not allow to disentangle shocks that are common among the variables as the former does.
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Remark 4 A contribution that has close analogies to the VECIM in terms of representation theory is

Barigozzi et al. (2021), who propose a large DFM with I(1) factors that can be cointegrated and are driven by

a number of shocks that is smaller than their dimension. These features are shared by the common component

χt in (7). However, unlike Barigozzi et al. (2021), it is not necessary to let n diverge to infinity to identify

and estimate the common component χt in our framework.

2.2 Estimation and model identification

Based on Boswijk (1995) and Cubadda et al. (2017), we offer some switching algorithms that have the

property of increasing the Gaussian likelihood of model (4) in each step. In detail, when 0 < r < q, the

procedure goes as follows:

1. Given (initial) estimates of both γ and ω, maximize the conditional Gaussian likelihood L(A†,Ω|γ, ω)
by estimating A† = [α′

0, A
′]′ and Ω with OLS on Equation (4).

2. Premultiply by Ω−1/2 and apply the Vec operator to both the sides of Equation (4), then use the

property Vec(ABC) = (C ′ ⊗A)Vec(B) to get

Ω−1/2∆Yt =

(

Y ′
t−1 ⊗ Ω−1/2α0γ

′ +
p−1∑

j=1

∆Y ′
t−j ⊗ Ω−1/2αj

)

Vec(ω′) + Ω−1/2εt (13)

Given the previously obtained estimates of A†, γ, and Ω, maximize L(ω|A†, γ,Ω) by estimating Vec(ω′)

with OLS on Equation (13).

3. Given the previously obtained estimates of ω, maximize L(γ|ω) by estimating γ as the eigenvectors

that correspond to the r largest eigenvalues of the matrix

S−1
11 S10S

−1
00 S01 (14)

where Sij =
∑T

t=p+1Ri,tR
′
j,t for i, j = 0, 1, R0,t and R1,t are, respectively, the residuals of an OLS

regression of ∆Yt and ω
′Yt−1 on [∆Y ′

t−1ω, . . . ,∆Y
′
t−p+1ω

′]′.

4. Repeat steps 1 to 3 until numerical convergence occurs.

When r = 0, step 3 is clearly not needed and step 1 and 2 must be modified as follows:

1.1 Given (initial) estimates of ω, maximize L(A,Ω|ω) by estimating A and Ω with OLS on the following

model

∆Yt =

p−1
∑

j=1

αjω
′∆Yt−j + εt

2.1 Given the previously obtained estimates of A and Ω, maximize L(ω|A,Ω) by estimating Vec(ω′) with

OLS on the following model

Ω−1/2∆Yt =

(
p−1∑

j=1

∆Y ′
t−j ⊗ Ω−1/2αj

)

Vec(ω′) + Ω−1/2εt (15)

Finally, when r = q, we can assume without loss of generality that γ = Iq. Then step 3 is again not

needed, whereas steps 1 and 2 must be modified as follows
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1.3 Given (initial) estimates of ω, maximize L(A†,Ω|ω) by estimating A† and Ω with OLS on the following

model

∆Yt = α0ω
′Yt−1 +

p−1
∑

j=1

αjω
′∆Yt−j + εt

2.3 Given the previously obtained estimates of A† and Ω, maximize L(ω|A†,Ω) by estimating Vec(ω′) with

OLS on the following model

Ω−1/2∆Yt =

(

Y ′
t−1 ⊗ Ω−1/2α0 +

p−1∑

j=1

∆Y ′
t−j ⊗ Ω−1/2αj

)

Vec(ω′) + Ω−1/2εt (16)

As argued by Cubadda and Guardabascio (2019), switching algorithms have several advantages over

Newton-type optimization methods, such as computational simplicity, no need for normalization conditions

on ω and γ, explicit optimization at each step, and ease of application of regularization schemes or linear

restrictions on parameters. Furthermore, when the switching algorithm is initialized with consistent estimates

and is iterated sufficiently often, the resulting estimator is asymptotically equivalent to the ML estimator

(MLE) being numerically approximated (Hautsch et al., 2022). Therefore, a proper choice of initial values for

ω and γ is crucial to boost numerical and statistical convergence. For the former, we rely on the right-singular

vectors that correspond to the q largest singular values of the matrix α0β
′ +

∑p−1
j=1 Γj having estimated the

coefficient matrices of the VECM with the usual Johansen procedure. For the latter, we suggest using the

relation γ = (ω′ω)−1ω′β having fixed ω to its initial value.

In order to specify the values for p, r, and q, two alternative approaches are in principle viable. The

first one relies on sequential LR testing in order to fix initially p, then r conditionally on p and finally q

conditionally on p and r. The second approach consists in simultaneously establishing the triple (p, r, q) by

means of informational methods. In particular, model (4) is estimated for all plausible values of (p, r, q) and

the triple that minimizes a certain information criterion (IC) is selected. Most common IC may be used, i.e.

those named after Akaike (AIC), Hannan-Quinn (HQIC) and the Bayesian IC (BIC). In line with previous

contributions indicating that consistent IC are particularly effective in specification of cointegrated VAR

models (see e.g. Gonzalo and Pitarakis (1999), Cavaliere et al. (2015), and Cavaliere et al. (2018)), we opt

for determining the triple (p, r, q) in one single search.6

Remark 5 As correctly pointed out by the referees, economic theory often dictates zero restrictions on the

cointegration matrix β. Given the index structure of the VECIM, this requires the existence of r1 (r1 ≤ r)

cointegrating vectors with the following form

β′
1 = γ′1

r1×q1

[ ω′
1

q1×n1

, 0
q1×(n−n1)

]

where r1 ≤ q1 ≤ n1 < n. If the zero restrictions on both ω and γ are overidentifying,7 constrained estimation

of ω simply requires to impose the appropriate zeros in OLS estimation of model (13), whereas for the

restrictions on γ it is convenient to modify step 3 of the switching algorithm as follows

6Remarkably, BIC and HQIC remain consistent for r even under forms of heteroskedasticity that invalidate the limit distri-

bution of the LR test, and joint IC-based estimation of p and r outperforms in finite samples sequential procedures based on

either IC or tests (Cavaliere et al. (2018)).
7Notice that just-identifying restrictions such as ω′ = [Iq , ν′], where ν is a (n − q) × q matrix, can be easily imposed in

estimation, see p. 339 of Cubadda et al. (2017),.

9



3.1 Proceed as in step 2 but with a different factorization of the matrix Ω−1/2α0γ
′ω′ when applying

Vec(ABC) to get

Ω−1/2∆Yt −
(

p−1∑

j=1

∆Y ′
t−j ⊗ Ω−1/2αj

)

Vec(ω′) (17)

=
(

Y ′
t−1ω ⊗ Ω−1/2α0

)

Vec(γ′) + Ω−1/2εt

Given the previously obtained estimates of α, ω, and Ω, maximize L(γ|α, ω,Ω) by estimating Vec(γ′)

with OLS on Equation (17).8

Then it is straightforward to impose zero restrictions on γ in the estimation of the model (17). Restricted

VECIM specifications can be compared with the unrestricted one using IC.

Remark 6 As a referee stressed, if ω were known, Assumption 2.2 would correspond to the case of the

same restrictions on all cointegration vectors in Johansen (1995). Therefore, the method in step 3 would

provide the MLE of γ (then the MLE of β = ωγ), which would converge at rate T and its limit distribution

would be mixed normal. However, when ω is unknown, since it is a coefficient matrix of both Yt−1 and

[∆Y ′
t−1, . . . ,∆Y

′
t−p+1]

′ in (4), its MLE converges at the slowest rate of the estimated coefficients that are

attached to either I(1) or I(0) regressors only, i.e.
√
T (see, e.g., Sims et al. (1990)). If one wishes

to preserve the asymptotic properties of the unrestricted MLE of β, a route to go is first to estimate the

cointegration vectors by the usual Johansen procedure, then to estimate ω and A† conditionally on β by the

switching algorithm but without step 3 and having substituted (13) in step 2 with the following:

Ω−1/2 (∆Yt − α0β
′Yt−1) =

(
p−1∑

j=1

∆Y ′
t−j ⊗ Ω−1/2αj

)

Vec(ω′) + Ω−1/2εt

Finally, γ could be estimated through the relation γ = (ω′ω)−1ω′β having fixed both ω and β to their estimates.

Given the super-consistency of the unrestricted MLE of β, it is easy to recognize that this procedure leads to

an estimator of the parameters of model (11) that is asymptotically equivalent to the MLE, thus providing

inefficient inference for the VECIM parameters.9

3 Monte Carlo analysis

In this Section we perform a Monte Carlo study to evaluate the finite sample performances of the proposed

approach. We consider the following n-dimensional cointegrated VAR(3) process

Yt =
3∑

j=1

ΦjYt−j + εt, (18)

where t = 1, . . . , T , Φ1 = ω+(diag(δ1) − Iq)ω
′ + In, ω

+ = ω(ω
′

ω)−1, the elements of ω are generated by

independent U(−1, 1) distributions, δ1 = [δ′1,1, δ
′
1,2]

′, δ1,1 = 2m1⊙cos(λ1)+ρ1, δ1,2 = 2m2⊙cos(λ2)+1q−r, ⊙
denotes element-wise multiplication,m1 is an r−vector andm2 is an (q−r)−vector such thatm = [m′

1,m
′
2]

′ =

8We do not suggest to resort to (17) in place of (14) if no restrictions on γ must be imposed. The reason is that in the

former γ is estimated conditionally on α, ω,Ω whereas in the latter γ is estimated conditionally on ω only, thus speeding up

numerical convergence of the switching algorithm.
9On the light of the beforementioned contributions documenting the poor small-sample properties of the Johansen procedure

in medium dimensional VARs, which will be confirmed by our Monte Carlo study, we do no suggest such approach.
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1q0.7, λ1 is an r−vector and λ2 is an (q − r)−vector such that λ = [λ′1, λ
′
2]

′ is drawn from a Uq[π/16, π/3],

ρ1 is an r−vector and ρ2 is an (q − r)−vectors such that ρ = [ρ′1, ρ
′
2]

′ = 1n0.7, Φj = ω+diag(δj)ω
′ and

δj = [δ′j,1, δ
′
j,2]

′ for j = 2, 3, δ2,1 = −[2ρ1 ⊙m1 ⊙ cos(λ1) +m1 ⊙m1], δ2,2 = −[2m2 ⊙ cos(λ2) +m2 ⊙m2],

δ3,1 = ρ1 ⊙m1 ⊙m1, δ3,2 = m2 ⊙m2, and εt are i.i.d. Nn(0, In). Notice that the cointegration matrix β is

composed of the first r columns of ω when r > 0.

Some remarks are in order. Premultiplying both sides of (18) by ω′ we see that indexes ft follow a

diagonal VAR(3) with q − r roots equal to 1, and r real inverse roots that are equal to 0.7 as in Gonzalo

and Pitarakis (1999), and q pairs of complex conjugate inverse roots with a modulus that is equal to 0.7 and

angular frequencies that belong to the business cycle band for quarterly data.10 Premultiplying both sides of

(18) by ω′
⊥ we see that the uncommon component ω′

⊥Yt follows instead a multivariate random walk. Hence,

the DGP is constructed to mimic a system of I(1) quarterly time series with common trends and common

business cycles.

From (18) we simulate systems with q = 2, 4, 6 and r = 0, q/2, q for n = 8, 12, 16 variables. The number

of observations is T = 240, 480, 720. We generate T + 50 observations, and the first 50 points are used as a

burn-in period, the remaining ones for estimation.

The proposed approach is evaluated in combination with the various IC using the following statistics.

First, the percentage of correct estimation of the number of indexes q. Second, the percentage of correct

estimation of the couple (p, r). Third, the Frobenius distance between the estimated VAR coefficients and

the true ones, relative to the Frobenius norm of the true coefficients (RFD). Fourth, the average of the mean

square 1-step ahead forecast errors over the n series (AMSFE). For comparative purposes, all the statistics

but the first one are also computed for the VECM estimated by the usual Johansen procedure. The results

reported below are based on 1000 replications for each combination.

From Table (1) we see that the HQIC outperforms competitors in estimating q but the cases with n = 8,

for which the BIC performs similarly. Interestingly, the HQIC offers a percentage of correct identification

that is equal to or close to 100% in all cases, whereas the AIC systematically overestimates the correct

number of indexes.

In Table (2) VECIM and VECM are compared in terms of the percentage of correct identification of the

couple (p, r). Since the HQIC performs best by a clear margin, we limit our comments to the results obtained

with this IC. We observe that the percentage of correct estimation of the couple (p, r) is systematically higher

for VECIM in all cases. For VECM, this percentage is low, often equal to zero, when n is greater than 8. This

evidence confirms that the VECM clearly suffers from the dimensionality problem. Even the performance

of the VECIM deteriorates with n, in particular when q = r. It should be noted that in such cases our

DGP imposes q stationary real roots that are not far from 1, which is notoriously a circumstance where all

cointegration tests suffer from a lack of power.

Table (3) compares VECIM and VECM in terms of accuracy of estimation measured by the RFD. First,

we notice that the HQIC tends to perform best and the BIC stays slightly behind. Second, the VECIM

systematically provides more efficient estimates than the VECM, even with the smallest system dimension.

This evidence shows that significant improvements in inference can be obtained by exploiting the possible

existence of common components in the cointegrated VAR model.

Table (4) reports the ARMSFE of both models. Remarkably, HQIC and BIC perform very similarly

in terms of forecast accuracy. Again, the VECIM outperforms the VECM in all cases, although the gap

between the two methods tends to decrease as the sample size increases.

10Notice that the AR polynomial of the generic index fi,t is (1− ρiL)(1− 2mi cos(λi)L+m2

iL
2) for i = 1, ..., q.
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Table 1: Percentages of correct estimation of q for VECIM

T =240 T = 480 T = 720

N q r AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC

8 2 0 38.3 99.6 100.0 46.4 100.0 100.0 45.4 100.0 100.0

1 41.5 99.1 99.9 53.6 100.0 100.0 58.5 100.0 100.0

2 47.7 98.7 99.0 63.7 100.0 100.0 66.3 100.0 100.0

4 0 25.0 99.5 99.9 37.8 100.0 100.0 46.5 100.0 100.0

2 42.8 98.6 99.9 56.8 100.0 100.0 62.3 100.0 100.0

4 56.4 99.9 98.4 71.4 100.0 100.0 78.6 100.0 100.0

6 0 32.7 100.0 99.3 48.9 100.0 100.0 53.5 100.0 100.0

3 54.8 99.5 99.4 68.2 100.0 99.9 78.1 100.0 100.0

6 80.0 100.0 100.0 91.2 100.0 100.0 91.2 100.0 100.0

12 2 0 16.8 78.8 100.0 35.0 100.0 100.0 39.2 100.0 100.0

1 23.5 68.5 99.8 40.4 100.0 100.0 47.2 100.0 100.0

2 23.3 73.1 99.3 52.3 100.0 100.0 56.8 100.0 100.0

4 0 7.4 70.1 99.9 25.9 100.0 100.0 32.9 100.0 100.0

2 18.8 64.0 99.6 43.8 100.0 100.0 49.4 100.0 100.0

4 26.2 69.4 96.5 54.3 100.0 100.0 63.4 100.0 100.0

6 0 8.5 77.2 99.9 22.3 100.0 100.0 30.1 100.0 100.0

3 16.8 65.5 98.9 41.7 100.0 100.0 50.9 100.0 100.0

6 30.0 77.1 94.9 66.1 100.0 99.8 75.4 100.0 100.0

16 2 0 10.0 52.4 98.2 25.0 96.9 100.0 33.4 100.0 100.0

1 9.7 44.4 96.3 28.7 94.2 100.0 39.2 100.0 100.0

2 7.2 34.0 98.2 36.8 96.2 100.0 45.5 100.0 100.0

4 0 2.5 33.5 95.5 16.4 97.5 100.0 24.9 100.0 100.0

2 3.5 23.6 94.1 25.1 93.8 100.0 35.8 100.0 100.0

4 5.1 18.7 90.9 38.7 97.5 99.8 50.2 100.0 100.0

6 0 1.1 31.0 94.3 12.6 98.0 100.0 15.7 100.0 100.0

3 2.7 26.6 90.6 22.4 94.8 100.0 38.0 100.0 100.0

6 4.7 18.6 90.0 43.4 98.4 100.0 59.4 100.0 100.0

Notes: Percentages with which each IC correctly estimates the true number of indexes q.

Furthermore, we report in Table (5) the percentages of correct identification of the number of indexes

when the data are generated by a VECM without index structure (i.e. q = n). For the sake of space, we

report the results only for n = 12.11 In almost all cases, the estimates of q are equal to n, confirming that

the suggested identification approach leads to correctly specify the model even when there is no common

component in the data.

4 Empirical application

In this section, we illustrate the practical value of our methodology. We start by comparing the VECIM

and the VECM in modelling ten key aggregate US time series, then we use the decomposition by Centoni

and Cubadda (2003) to recover the common components of the variables and to further decompose it into

11Results for n = 8, 16 are available upon request.
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Table 2: Percentages of correct identification of the couple (p, r) for the VECIM (VECM)

T =240 T = 480 T =720

N q r AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC

8 2 0 29.6 ( 0.4) 99.4 ( 0.0) 99.7 (13.5) 32.6 ( 1.8) 100.0 ( 3.9) 99.6 (94.4) 33.0 ( 0.7) 100.0 (83.3) 100.0 (97.7)

1 40.8 ( 1.6) 11.2 ( 0.0) 80.2 ( 1.1) 47.9 ( 2.9) 74.3 ( 0.0) 99.2 (56.8) 52.9 ( 3.5) 96.7 ( 2.3) 99.8 (95.8)

2 55.8 ( 2.1) 0.1 ( 0.0) 45.7 ( 0.0) 67.7 ( 4.7) 57.9 ( 0.0) 99.6 ( 0.9) 70.4 ( 6.0) 97.1 ( 0.0) 100.0 (33.3)

4 0 5.6 ( 0.1) 99.9 (27.9) 94.3 (74.9) 13.1 ( 1.1) 100.0 (100.0) 98.9 (94.4) 17.0 ( 2.3) 100.0 (100.0) 99.3 (97.6)

2 29.1 ( 3.6) 3.3 ( 0.0) 66.6 (32.0) 41.8 ( 6.5) 55.3 ( 7.1) 96.7 (87.0) 44.7 ( 6.7) 93.8 (55.2) 99.4 (94.4)

4 69.0 (13.5) 0.0 ( 0.0) 57.7 ( 0.4) 78.0 (10.8) 78.3 ( 0.0) 99.9 (78.4) 83.8 (10.2) 99.8 (20.5) 100.0 (91.0)

6 0 0.9 ( 0.0) 100.0 (99.7) 82.6 (72.5) 4.1 ( 1.3) 100.0 (100.0) 98.3 (95.4) 5.4 ( 0.9) 100.0 (100.0) 96.9 (95.2)

3 19.3 ( 6.7) 1.3 ( 0.7) 54.9 (40.7) 23.0 ( 6.0) 47.9 (16.6) 94.6 (88.6) 24.5 ( 7.0) 93.2 (74.6) 95.4 (95.5)

6 87.8 (30.2) 0.0 ( 0.0) 84.3 (19.1) 94.7 (28.3) 96.2 (24.4) 100.0 (77.2) 93.5 (27.3) 100.0 (98.2) 100.0 (82.1)

12 2 0 14.7 ( 0.0) 82.5 ( 0.0) 99.4 ( 0.0) 28.6 ( 0.2) 100.0 ( 0.0) 100.0 ( 0.1) 34.8 ( 0.0) 100.0 ( 0.0) 100.0 (47.5)

1 25.6 ( 0.0) 0.1 ( 0.0) 42.0 ( 0.0) 40.7 ( 0.1) 19.2 ( 0.0) 93.0 ( 0.0) 48.0 ( 0.0) 70.1 ( 0.0) 99.3 ( 0.5)

2 30.0 ( 0.0) 0.0 ( 0.0) 3.4 ( 0.0) 59.7 ( 0.0) 0.4 ( 0.0) 86.8 ( 0.0) 61.8 ( 0.4) 49.8 ( 0.0) 99.3 ( 0.0)

4 0 2.6 ( 0.0) 92.9 ( 0.0) 99.4 ( 1.2) 16.7 ( 0.0) 100.0 ( 0.1) 99.8 (94.5) 18.1 ( 0.0) 100.0 (52.4) 100.0 (98.8)

2 24.1 ( 0.0) 0.0 ( 0.0) 17.0 ( 0.0) 38.3 ( 0.8) 4.4 ( 0.0) 87.6 (19.4) 42.5 ( 0.7) 49.1 ( 0.0) 99.3 (86.2)

4 44.0 ( 0.6) 0.0 ( 0.0) 0.6 ( 0.0) 65.6 ( 2.1) 0.0 ( 0.0) 87.7 ( 0.0) 69.7 ( 1.6) 44.9 ( 0.0) 99.9 ( 3.7)

6 0 1.0 ( 0.0) 96.0 ( 0.2) 95.4 (44.1) 3.7 ( 0.0) 100.0 (83.4) 98.6 (95.2) 7.7 ( 0.0) 100.0 (100.0) 99.9 (99.0)

3 14.2 ( 0.3) 0.0 ( 0.0) 8.9 ( 0.3) 27.8 ( 0.5) 1.3 ( 0.0) 83.7 (46.1) 33.4 ( 0.9) 33.4 ( 0.3) 98.7 (86.0)

6 48.5 ( 7.8) 0.0 ( 0.0) 0.6 ( 0.0) 77.2 ( 6.9) 0.0 ( 0.0) 96.5 ( 1.9) 81.4 ( 4.8) 70.8 ( 0.0) 100.0 (87.5)

16 2 0 10.3 ( 0.0) 37.9 ( 0.0) 96.9 ( 0.0) 24.0 ( 0.0) 100.0 ( 0.0) 100.0 ( 0.0) 32.9 ( 0.0) 100.0 ( 0.0) 100.0 ( 0.0)

1 17.0 ( 0.0) 0.0 ( 0.0) 13.5 ( 0.0) 32.9 ( 0.0) 1.1 ( 0.0) 73.6 ( 0.0) 42.2 ( 0.0) 27.8 ( 0.0) 97.0 ( 0.0)

2 14.3 ( 0.0) 0.0 ( 0.0) 0.0 ( 0.0) 44.5 ( 0.0) 0.0 ( 0.0) 39.6 ( 0.0) 53.1 ( 0.0) 1.6 ( 0.0) 93.7 ( 0.0)

4 0 1.3 ( 0.0) 38.9 ( 0.0) 99.1 ( 0.0) 11.8 ( 0.0) 100.0 ( 0.0) 100.0 ( 0.9) 18.4 ( 0.0) 100.0 ( 0.0) 100.0 (88.3)

2 12.8 ( 0.0) 0.0 ( 0.0) 2.5 ( 0.0) 26.0 ( 0.0) 0.0 ( 0.0) 56.2 ( 0.0) 34.6 ( 0.0) 6.5 ( 0.0) 92.7 ( 0.2)

4 19.9 ( 0.0) 0.0 ( 0.0) 0.0 ( 0.0) 52.2 ( 0.0) 0.0 ( 0.0) 31.5 ( 0.0) 58.3 ( 0.1) 0.0 ( 0.0) 94.6 ( 0.0)

6 0 0.1 ( 0.0) 40.9 ( 0.0) 97.8 ( 0.0) 4.6 ( 0.0) 100.0 ( 0.0) 99.9 (91.6) 6.6 ( 0.0) 100.0 ( 0.5) 100.0 (98.8)

3 9.3 ( 0.0) 0.0 ( 0.0) 0.9 ( 0.0) 22.1 ( 0.0) 0.0 ( 0.0) 40.4 ( 0.0) 31.4 ( 0.0) 0.8 ( 0.0) 91.3 (38.0)

6 29.2 ( 0.1) 0.0 ( 0.0) 0.0 ( 0.0) 59.9 ( 1.5) 0.0 ( 0.0) 37.2 ( 0.0) 68.2 ( 0.8) 0.0 ( 0.0) 96.6 ( 0.0)

Notes: Percentages with which each IC correctly estimates the true couple (p, r) for the VECIM and, in parentheses, for the

VECM.

permanent and transitory components, finally we show how the VECIM may contribute to better interpret

two shocks that are obtained by applying the identification procedure of Angeletos et al. (2020) to the

common permanent-transitory components of the considered variables.

4.1 Comparison with the VECM

In this empirical analysis we use quarterly US macroeconomic data from the FRED database. The sample

covers the period between 1955Q1 and 2019Q4 and variables are transformed such that they are at most I(1).

Specifically, we take the following ten variables: real GDP per capita, real consumption per capita, computed

as the sum of non-durable consumption and services, real investment per capita, computed as the sum of

investment and durable consumption, hours worked per person, inflation, obtained from the difference of the

log of the GDP deflator, the unemployment rate, the nominal interest rate, as measured by the FED Funds

rate, TFP, which is the cumulated sum of the utilization-adjusted TFP as computed in Fernald (2014), the

non-farm business sector labor productivity and labor share. We take the log of real variables and the first

difference of the log of nominal variables. The remaining variables are left unmodified.

As a first step, it is of interest to check whether a VECM or a VECIM fits better to the data by means
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Table 3: RFD of the VAR coefficients for the VECIM (VECM)

T =240 T = 480 T =720

N q r AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC

8 2 0 0.18 (0.25) 0.15 (0.40) 0.15 (0.35) 0.12 (0.17) 0.10 (0.34) 0.10 (0.17) 0.10 (0.14) 0.08 (0.17) 0.08 (0.13)

1 0.19 (0.28) 0.19 (0.39) 0.16 (0.34) 0.12 (0.18) 0.11 (0.32) 0.11 (0.23) 0.10 (0.14) 0.09 (0.30) 0.09 (0.14)

2 0.20 (0.30) 0.24 (0.38) 0.20 (0.30) 0.13 (0.20) 0.13 (0.27) 0.11 (0.27) 0.10 (0.15) 0.09 (0.26) 0.09 (0.22)

4 0 0.18 (0.20) 0.16 (0.33) 0.16 (0.19) 0.12 (0.13) 0.11 (0.13) 0.11 (0.13) 0.09 (0.11) 0.09 (0.11) 0.09 (0.11)

2 0.19 (0.22) 0.19 (0.35) 0.18 (0.24) 0.12 (0.14) 0.12 (0.17) 0.12 (0.14) 0.10 (0.12) 0.09 (0.12) 0.09 (0.11)

4 0.20 (0.24) 0.27 (0.32) 0.21 (0.31) 0.13 (0.16) 0.13 (0.29) 0.12 (0.17) 0.10 (0.13) 0.10 (0.22) 0.10 (0.13)

6 0 0.17 (0.18) 0.15 (0.16) 0.16 (0.17) 0.11 (0.12) 0.10 (0.11) 0.10 (0.11) 0.09 (0.09) 0.08 (0.09) 0.08 (0.09)

3 0.18 (0.19) 0.18 (0.22) 0.17 (0.19) 0.12 (0.12) 0.12 (0.13) 0.11 (0.12) 0.09 (0.10) 0.09 (0.10) 0.09 (0.10)

6 0.19 (0.21) 0.27 (0.30) 0.20 (0.26) 0.13 (0.14) 0.13 (0.20) 0.13 (0.14) 0.10 (0.11) 0.10 (0.11) 0.10 (0.11)

12 2 0 0.23 (0.37) 0.23 (0.54) 0.17 (0.42) 0.14 (0.23) 0.12 (0.41) 0.12 (0.34) 0.11 (0.19) 0.10 (0.36) 0.10 (0.26)

1 0.24 (0.37) 0.27 (0.53) 0.20 (0.41) 0.15 (0.25) 0.14 (0.41) 0.12 (0.31) 0.11 (0.20) 0.10 (0.33) 0.10 (0.30)

2 0.25 (0.34) 0.27 (0.49) 0.23 (0.40) 0.15 (0.28) 0.19 (0.42) 0.13 (0.28) 0.12 (0.22) 0.12 (0.29) 0.10 (0.26)

4 0 0.23 (0.29) 0.25 (0.42) 0.19 (0.39) 0.15 (0.19) 0.13 (0.37) 0.13 (0.19) 0.12 (0.15) 0.11 (0.25) 0.11 (0.15)

2 0.24 (0.32) 0.30 (0.42) 0.22 (0.37) 0.15 (0.20) 0.16 (0.34) 0.14 (0.28) 0.12 (0.16) 0.12 (0.33) 0.11 (0.16)

4 0.26 (0.34) 0.31 (0.46) 0.28 (0.34) 0.16 (0.22) 0.23 (0.30) 0.15 (0.29) 0.12 (0.18) 0.13 (0.28) 0.12 (0.28)

6 0 0.23 (0.25) 0.23 (0.40) 0.20 (0.29) 0.15 (0.17) 0.13 (0.20) 0.13 (0.16) 0.12 (0.13) 0.11 (0.13) 0.11 (0.13)

3 0.24 (0.28) 0.30 (0.38) 0.23 (0.36) 0.15 (0.18) 0.16 (0.33) 0.15 (0.18) 0.12 (0.14) 0.12 (0.17) 0.12 (0.14)

6 0.26 (0.31) 0.32 (0.35) 0.30 (0.34) 0.16 (0.20) 0.24 (0.31) 0.16 (0.29) 0.13 (0.16) 0.13 (0.30) 0.12 (0.16)

16 2 0 0.27 (0.41) 0.32 (0.53) 0.20 (0.52) 0.16 (0.32) 0.14 (0.50) 0.13 (0.38) 0.13 (0.23) 0.10 (0.43) 0.10 (0.34)

1 0.28 (0.40) 0.31 (0.50) 0.23 (0.50) 0.17 (0.32) 0.16 (0.49) 0.14 (0.36) 0.13 (0.26) 0.12 (0.43) 0.11 (0.31)

2 0.29 (0.39) 0.30 (0.45) 0.24 (0.45) 0.17 (0.29) 0.20 (0.45) 0.16 (0.34) 0.13 (0.26) 0.17 (0.44) 0.11 (0.27)

4 0 0.28 (0.39) 0.38 (0.58) 0.23 (0.42) 0.17 (0.24) 0.15 (0.40) 0.15 (0.36) 0.13 (0.19) 0.12 (0.36) 0.12 (0.21)

2 0.29 (0.40) 0.38 (0.59) 0.27 (0.41) 0.18 (0.26) 0.18 (0.40) 0.16 (0.34) 0.14 (0.21) 0.14 (0.33) 0.13 (0.32)

4 0.31 (0.37) 0.37 (0.55) 0.29 (0.40) 0.18 (0.30) 0.24 (0.43) 0.18 (0.30) 0.14 (0.23) 0.20 (0.29) 0.13 (0.28)

6 0 0.28 (0.33) 0.39 (0.44) 0.24 (0.41) 0.17 (0.22) 0.16 (0.38) 0.15 (0.21) 0.14 (0.17) 0.12 (0.37) 0.12 (0.17)

3 0.30 (0.37) 0.40 (0.48) 0.28 (0.39) 0.18 (0.23) 0.19 (0.35) 0.17 (0.34) 0.14 (0.18) 0.15 (0.34) 0.13 (0.19)

6 0.32 (0.37) 0.39 (0.56) 0.32 (0.36) 0.19 (0.26) 0.26 (0.32) 0.19 (0.31) 0.15 (0.20) 0.21 (0.30) 0.14 (0.29)

Notes: Frobenius distance between the VAR coefficients and their estimates relative to the Frobenius norm of the true coefficients

for the VECIM and, in parentheses, for the VECM.

of the traditional IC. The results, reported in Table 6, show that all the criteria favor the VECIM, having

values of each IC systematically lower than the VECM.

Concentrating on the outcome of the best performing IC in our Monte Carlo study, the HQIC selects a

VECIM that is not only more parsimonious than the VECM, but provides evidence of a unique stochastic

trend in the common components of the series. Instead, the VECM specification suggests the existence of

eight permanent shocks, which is at odds with the common view that few stochastic trends lead the economy

in the long run.

4.2 Contribution of shocks to the US business cycle

We rely on HQIC for model selection of the VECIM and set p = 2, r = 4 and q = 5. As shown in Section 2.1,

we can exploit our model’s features and decompose variables into two components, one of which is common,

χt, and the other uncommon, ιt. Afterwards, we can disentangle the part of the common component which

has permanent effects, πt, from another that is instead transitory, τt. Furthermore, being πt, τt, and ιt not

cross-correlated at any lead and lag, we can measure the contribution of each component to the variability
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Table 4: AMSFE of VECIM (VECM)

T =240 T = 480 T =720

N q r AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC

8 2 0 1.45 (1.97) 1.03 (1.20) 1.03 (1.61) 1.14 (1.33) 1.03 (1.11) 1.02 (1.07) 1.11 (1.20) 1.05 (1.08) 1.05 (1.07)

1 1.40 (1.94) 1.07 (1.23) 1.07 (1.54) 1.11 (1.31) 1.05 (1.14) 1.04 (1.15) 1.09 (1.19) 1.05 (1.14) 1.05 (1.08)

2 1.29 (1.75) 1.11 (1.30) 1.09 (1.43) 1.07 (1.23) 1.05 (1.12) 1.03 (1.12) 1.09 (1.18) 1.07 (1.14) 1.07 (1.12)

4 0 1.82 (2.10) 1.03 (1.40) 1.06 (1.34) 1.22 (1.30) 1.01 (1.02) 1.01 (1.05) 1.05 (1.12) 0.99 (1.00) 0.99 (1.00)

2 1.47 (1.77) 1.10 (1.42) 1.13 (1.41) 1.12 (1.22) 1.05 (1.08) 1.04 (1.10) 1.02 (1.07) 0.99 (1.00) 0.99 (1.01)

4 1.26 (1.54) 1.21 (1.42) 1.14 (1.48) 1.06 (1.14) 1.04 (1.17) 1.03 (1.10) 1.03 (1.07) 1.02 (1.07) 1.02 (1.04)

6 0 2.29 (2.24) 1.06 (1.07) 1.18 (1.37) 1.29 (1.30) 1.07 (1.08) 1.08 (1.09) 1.12 (1.14) 1.01 (1.01) 1.01 (1.02)

3 1.50 (1.68) 1.15 (1.24) 1.26 (1.38) 1.17 (1.22) 1.09 (1.10) 1.10 (1.13) 1.03 (1.06) 1.00 (1.01) 1.00 (1.02)

6 1.18 (1.27) 1.22 (1.31) 1.17 (1.30) 1.03 (1.06) 1.04 (1.11) 1.03 (1.05) 1.04 (1.06) 1.04 (1.06) 1.04 (1.05)

12 2 0 1.84 (2.64) 1.05 (1.56) 1.04 (1.82) 1.20 (1.44) 1.02 (1.16) 1.02 (1.24) 1.10 (1.22) 1.01 (1.09) 1.01 (1.09)

1 1.59 (2.48) 1.05 (1.50) 1.03 (1.64) 1.20 (1.47) 1.07 (1.24) 1.07 (1.23) 1.09 (1.23) 1.04 (1.11) 1.04 (1.12)

2 1.62 (2.32) 1.10 (1.28) 1.11 (1.46) 1.15 (1.45) 1.08 (1.27) 1.06 (1.22) 1.05 (1.20) 1.02 (1.10) 1.02 (1.08)

4 0 2.17 (2.72) 1.08 (1.29) 1.05 (2.69) 1.23 (1.45) 1.01 (1.14) 1.01 (1.07) 1.11 (1.21) 1.02 (1.09) 1.02 (1.04)

2 1.78 (2.67) 1.17 (1.43) 1.12 (2.16) 1.18 (1.44) 1.05 (1.24) 1.05 (1.30) 1.11 (1.21) 1.06 (1.17) 1.05 (1.10)

4 1.55 (2.30) 1.25 (1.53) 1.22 (1.79) 1.13 (1.35) 1.11 (1.24) 1.08 (1.25) 1.05 (1.18) 1.04 (1.13) 1.03 (1.13)

6 0 2.57 (2.65) 1.06 (1.53) 1.06 (2.15) 1.37 (1.50) 1.04 (1.09) 1.05 (1.09) 1.15 (1.21) 1.00 (1.02) 1.00 (1.02)

3 1.97 (2.52) 1.25 (1.60) 1.22 (2.30) 1.22 (1.42) 1.10 (1.32) 1.10 (1.20) 1.08 (1.17) 1.04 (1.08) 1.03 (1.08)

6 1.39 (1.92) 1.29 (1.49) 1.27 (1.73) 1.10 (1.26) 1.14 (1.28) 1.08 (1.28) 1.07 (1.15) 1.06 (1.16) 1.05 (1.11)

16 2 0 2.20 (3.12) 1.10 (2.00) 1.06 (2.72) 1.23 (1.65) 0.98 (1.35) 0.98 (1.20) 1.09 (1.27) 0.98 (1.11) 0.98 (1.10)

1 2.01 (3.04) 1.11 (1.48) 1.10 (2.21) 1.23 (1.66) 1.02 (1.36) 1.02 (1.20) 1.06 (1.28) 0.98 (1.15) 0.98 (1.07)

2 2.01 (2.96) 1.12 (1.22) 1.14 (1.44) 1.14 (1.52) 1.02 (1.22) 1.01 (1.18) 1.04 (1.24) 1.00 (1.17) 0.99 (1.06)

4 0 2.62 (3.35) 1.16 (2.46) 1.07 (2.88) 1.39 (1.68) 1.07 (1.20) 1.07 (1.53) 1.17 (1.32) 1.04 (1.13) 1.04 (1.11)

2 2.33 (3.66) 1.24 (2.30) 1.17 (2.65) 1.27 (1.64) 1.06 (1.28) 1.06 (1.38) 1.13 (1.28) 1.05 (1.17) 1.04 (1.21)

4 2.03 (3.06) 1.22 (1.51) 1.31 (2.10) 1.19 (1.55) 1.10 (1.33) 1.08 (1.30) 1.10 (1.28) 1.09 (1.18) 1.05 (1.18)

6 0 3.36 (3.55) 1.18 (1.45) 1.07 (3.68) 1.45 (1.64) 1.04 (1.17) 1.04 (1.13) 1.21 (1.30) 1.02 (1.14) 1.02 (1.04)

3 2.50 (3.73) 1.32 (1.89) 1.26 (2.84) 1.31 (1.63) 1.07 (1.30) 1.09 (1.52) 1.11 (1.26) 1.04 (1.18) 1.04 (1.10)

6 2.03 (2.94) 1.35 (1.75) 1.42 (2.28) 1.18 (1.50) 1.15 (1.34) 1.11 (1.40) 1.11 (1.25) 1.11 (1.20) 1.07 (1.21)

Notes: Average of the mean square 1−step ahead forecast errors over the n series for the VECIM and, in parentheses, for the

VECM.

Table 5: Percentages of the correct estimation of q for the VECIM when q = n

T =240 T = 480 T = 720

N q r AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC

12 12 0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3 100.0 97.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 100.0 95.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: Percentages with which each IC correctly estimates the true number of indexes q when q = n

of the k−th element of Yt at a specific frequency band. In order to evaluate the sample variability of our

estimates, we implement a bootstrap procedure by sampling 2000 times with replacement from the VECIM

residuals keeping the specification of the model fixed over replications.

Table 7 shows the percentage of the variance of each variable that is explained by each component at the

business cycle frequency band, i.e. λ ∈ [2π/32, 2π/6]. The common component explains most of the cyclical
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Table 6: Information Criteria for the VECIM and the VECM

AIC BIC HQIC

VECIM -17.351 -15.984 -16.586

p, r, q 4,5,6 3,0,1 2,4,5

VECM -17.254 -15.773 -16.296

p, r 2,6 1,2 2,2

Notes: p, r, q [p, r] indicate the selected specification of the VECIM [VECM] for each IC.

variability of all the variables taken into account. The shares of the uncommon component are less than

20% for all variables but Labor Productivity and TFP, which are, respectively, around 35% and 59%.

Table 7: Variance contribution of each component at the business cycle frequencies

Common Permanent Transitory

Unemployment 97.5 [ 95.6, 98.7 ] 23.9 [ 7.8, 40.5 ] 76.1 [ 59.5, 92.2 ]

Output 95.6 [ 92.6, 97.6 ] 31.2 [ 13.3, 48.5 ] 68.8 [ 51.5, 86.7 ]

Hours Worked 86.7 [ 80.4, 91.4 ] 25.4 [ 8.2, 42.6 ] 74.6 [ 57.4, 91.8 ]

Investment 95.8 [ 93.1, 97.6 ] 24.2 [ 7.8, 42.4 ] 75.8 [ 57.6, 92.2 ]

Consumption 94.5 [ 87.8, 98.0 ] 34.3 [ 21.5, 48.1 ] 65.7 [ 51.9, 78.5 ]

TFP 41.2 [ 28.2, 54.2 ] 10.6 [ 3.1, 27.0 ] 89.4 [ 73.0, 96.9 ]

Labor Prod. 65.2 [ 53.7, 75.8 ] 25.8 [ 9.7, 46.1 ] 74.2 [ 53.9, 90.3 ]

Labor Share 92.9 [ 85.3, 97.0 ] 11.8 [ 3.8, 26.2 ] 88.2 [ 73.8, 96.2 ]

Inflation 80.2 [ 68.5, 89.5 ] 33.5 [ 11.8, 57.0 ] 66.5 [ 43.0, 88.2 ]

Nom. Int. rate 87.1 [ 79.5, 92.5 ] 21.0 [ 5.8, 42.5 ] 79.0 [ 57.5, 94.2 ]

Notes: Medians and, in brackets, the 16th and 84th percentiles of the variance contribution at the business cycle frequencies

of each component. The distributions are obtained with bootstrap.

Within the common component the transitory shocks play a more important role than the permanent

one, but the latter still explains a non-negligible portion of variation in the short run with values ranging

between 11% and 34%. Surprisingly, the highest shares of the transitory component are for TFP and Labour

Share, with more than 88% of explained cyclical variability.

4.3 Identification of the business cycle driver

The source of the business cycle is of great interest in macroeconomics. Understanding what drives macroe-

conomic fluctuations in the short-run is a key information for policy makers. The standard approach suggests

to identify structural shocks consists in imposing some restrictions coming from economic theory on the re-

duced form errors. Afterwords, the assessment of the features of each structural shock is done by computing

its impulse response function (IRF) and forecasting error variance decomposition at various time horizons.

Clearly, the validity of such procedure strongly depends on the underlying restrictions. The fact that the

results may largely vary depending on ex-ante economic assumptions has led a branch of the literature to

propose an ”agnostic” methodology, based on the maximization of the variance of a given variable in a set

of time horizons or in a frequency band. The max-share identification strategy has been originally proposed
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by Uhlig (2004) and further extended by other authors, among which Barsky and Sims (2011), Francis et al.

(2014) and Angeletos et al. (2020). In particular, the latter authors identify the Main Business Cycle shock

(MBC) as the one that maximes the variability of the the unemployment rate at the business cycle frequen-

cies, and claim that it behaves as neither a standard technology shock nor a classic demand type shock,

because it displays a disconnection to both TFP and inflation. For this reason, they interpret it as a demand

shock not affecting nominal rigidities.12

Our empirical application builds on Angeletos et al. (2020) and aims to give additional insight on the

transmission of such shock. For structural analysis, we proceed as follows. Let us first focus on the spectral

density matrix of the structural representation of process Yt

F (λ) =
1

2π
Ψ̃∗(z)HH ′Ψ̃∗(z−1)′, (19)

where Ψ̃∗(z) = Ψ∗(z)S, SS′ = Ω, H is an n × n matrix such that HH ′ = I and the structural shocks are

H ′S−1εt. Hence, the contribution of the generic j−th structural shock to the spectral density of the k−th

element of series Yt at frequency λ is

f(k, j, λ) =
1

2π
ψ̃∗
k(z)

′hh′ψ̃∗
k(z

−1) =
1

2π
h′ψ̃∗

k(z
−1)ψ̃∗

k(z)
′h ≡ h′Θ(k, λ)h, (20)

where ψ̃∗
k(z)

′ is the k−th row of the matrix Ψ̃∗(z), and h is the j−th column of H.13

Angeletos et al. (2020) propose to identify the j−th structural shock in an atheoretical way, ie, as the

shock that maximizes the variability of k−th series at the frequency band [λa, λb], with 0 < λa ≤ λb ≤ π. In

view of Equation (20), this requires one to choose h as the eigenvector corresponding to the largest eigenvalue

of the matrix

Θ(k, λa, λb) =
1

2π

∫ λb

λa

ψ̃∗
k(z

−1)ψ̃∗
k(z)

′dλ

When [λa, λb] = [2π/32, 2π/6] and k−th series is a procyclical variable, Angeletos et al. (2020) label the

structural shock h′S−1εt as the MBC and its IRF is obtained as Ψ̃∗(L)h.

Similarly, we can apply the same procedure on the common component of the k−th variable and obtain

the Main Common Business Cycle shock (MCBC). This is motivated by the fact that, if the model correctly

identifies the common errors as those that span the structural shocks, the uncommon errors should basically

be noise that do not contain additional economic information, see e.g. Cubadda and Hecq (2022a).

Specifically, the spectral density matrix of the structural representation of the common component χt is

Fχ(λ) =
1

2π
C̃∗(z)H ′

χHχC̃
∗(z−1)′,

where C̃∗(z) = C∗(z)Sχ, C
∗(z) = Ψ∗(z)ΩωΣ−1, SχS

′
χ = Σ, and Hχ is the q × q orthonormal matrix that

identifies the structural common shock. The j−th column of the matrix Hχ, denoted as hχ, is the eigenvector

corresponding to the largest eigenvalue of the matrix

Θχ(k, 2π/32, 2π/6) =
1

2π

∫ 2π/6

2π/32

c̃∗k(z
−1)c̃∗k(z)

′dλ,

where c̃∗k(z)
′ is the k−th row of the matrix C̃∗(z). Hence, the MCBC is h′χS

−1
χ ω′εt and its IRF is C̃∗(L)hχ.

12Angeletos et al. (2020) show that alternatively targeting unemployment, output, hours worked, consumption and investment,

their approach provides very similar impulse responses functions for the variables of interest.
13The orthogonality of the structural shocks implies that the spectral density of the k−th series is equal to

∑n
j=1

f(k, j, λ).
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Following Angeletos et al. (2020), we use the unemployment rate as the target variable, i.e. the k−th

series for which the variability [of its common component] at the business cycle frequencies is maximized by

the MBC [MCBC]. Figure (1) compares the IRFs that are respectively associated with the MBC and the

MCBC. The sign of such shocks is established so to have a positive effect on GDP on impact.

Figure 1: Impulse responses of MBC and MCBC

Notes: the red dotted line is the point estimation of the responses to the Main Common Business Cycle shock, the blue solid

line is the point estimation of the responses to the Main Business Cycle shock whereas the shaded areas are the 1 standard

deviation confidence bands obtained with bootstrap.

Overall, the responses of the MBC and the MCBC are almost indistinguishable, confirming that the

uncommon errors are basically noise that contain no relevant information for structural analysis. More-

over, we observe a pro-cyclical response to the M(C)BC of investment, output, consumption, hours worked,

and unemployment. Nevertheless, the responses of both inflation and TFP are quite flat, thus apparently

precluding a straightforward interpretation as either a traditional demand shock or a supply shock.

Table (8) shows the portion of the business cycle variability explained by the MBC and MCBC of,

respectively, the variables and their common components. The MBC explains most of the cyclical variation

of almost all the variables, whereas leave unexplained some of them, in particular inflation, TFP and labor

productivity. When considering the MCBC, we see that these conclusions are essentially confirmed for output,

unemployment, consumption, investment, hours worked and labor share, whereas the picture changes for

labor productivity, and, especially, TFP, whose relative explained cyclical variability improves from 17% to

48%. Recalling that TFP and Labor Productivity are characterized by a smaller common component w.r.t.

the other variables, the superior share of the MCBC is due to the exclusion of the uncommon component,

which de-emphasizes the role of the MBC on TFP and apparently causes the disconnection of such variable

from the business cycle documented by Angeletos et al. (2020). Regarding the disconnection of inflation, an

analogous reasoning does not apply since the MCBC and MBC display similar shares, although we observe

a larger contribution of such shocks to the short-run variability of inflation w.r.t. Angeletos et al. (2020)

Let us complete the portrait of the identified shocks by looking at columns 3 and 4 of Table (8), which

reports the variance contributions at the long run frequency band. Since the spectral density of I(1) variables

is unbounded at the zero frequency, we consider the frequencies corresponding to quarters in the range
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Table 8: Variance contribution of MBC and MCBC

Short-run Long-run

MBC MCBC MBC MCBC

Unemployment 66.1 [ 56.1, 78.3 ] 65.9 [ 55.9, 78.3 ] 24.7 [ 6.9, 63.5 ] 30.9 [ 9.3, 74.5 ]

Output 55.0 [ 44.5, 66.9 ] 59.5 [ 48.0, 72.4 ] 12.3 [ 2.4, 47.4 ] 14.9 [ 2.9, 56.7 ]

Hours Worked 50.2 [ 40.0, 61.0 ] 60.0 [ 48.5, 72.0 ] 17.0 [ 5.9, 37.6 ] 29.5 [ 9.7, 64.3 ]

Investment 58.7 [ 47.2, 70.2 ] 63.4 [ 50.4, 76.0 ] 14.2 [ 3.9, 41.7 ] 19.2 [ 5.0, 56.0 ]

Consumption 28.6 [ 15.0, 45.9 ] 31.3 [ 16.4, 49.9 ] 9.0 [ 1.2, 38.7 ] 10.4 [ 1.3, 43.5 ]

TFP 17.0 [ 6.8, 29.5 ] 48.1 [ 22.4, 70.1 ] 5.6 [ 0.5, 28.3 ] 12.6 [ 1.1, 54.0 ]

Labor Prod. 22.8 [ 13.3, 34.3 ] 36.7 [ 22.9, 50.8 ] 6.5 [ 0.6, 31.2 ] 11.9 [ 1.0, 51.9 ]

Labor Share 30.9 [ 18.7, 44.4 ] 34.7 [ 21.6, 48.8 ] 13.5 [ 3.3, 37.5 ] 20.0 [ 4.7, 53.9 ]

Inflation 13.4 [ 4.9, 26.7 ] 18.8 [ 7.5, 35.5 ] 6.8 [ 1.4, 21.0 ] 18.2 [ 3.9, 50.9 ]

Nom. Int. rate 33.9 [ 16.9, 58.8 ] 46.3 [ 24.2, 73.7 ] 13.6 [ 4.7, 30.4 ] 33.5 [ 11.1, 65.4 ]

Notes: Medians and, in brackets, the 16th and 84th percentiles of the variance contribution of the MBC and the MCBC at the

various frequency bands. The distributions are obtained with bootstrap.

[80, 256]. The contribution of the MBC at these frequencies is larger than what was found by Angeletos

et al. (2020) but still small. As for the short run, the MCBC explains relatively more variability than the

MBC also in longer periods.

A possible reason why the MCBC has not a straightforward economic interpretation may lie in the fact

that the atheoretical identification scheme picks up a linear combination of two structural shocks with a

different nature, e.g. a demand shock and productivity shock, both of them having a non negligible role in

determining the business cycle fluctuations (Dieppe et al., 2021). Hence, we aim at identifying the Main

Common Transitory Business Cycle shock (MCTBC) as the shock that maximizes the cyclical variability of

the common-transitory component of unemployment. Formally, the spectral density matrix of the structural

representation of the common transitory component τt is

Fτ (λ) =
1

2π
T̃ ∗(z)H ′

τHτ T̃
∗(z−1)′,

where T̃ ∗(z) = C∗(z)α0(α
′
0Σ

−1α0)
−1Sχ, SχS

′
χ = α′

0Σ
−1α0, and Hτ is the r × r orthonorrmal matrix that

identifies the structural common transitory shocks. The j−th column of the matrix Hτ , denoted as hτ , is

then the eigenvector corresponding to the largest eigenvalue of the matrix

Θτ (k, 2π/32, 2π/6) =
1

2π

∫ 2π/6

2π/32

t̃∗k(z
−1)t̃∗k(z)

′dλ,

where t̃∗k(z)
′ is the k−th row of the matrix T̃ ∗(z). Hence, the MCTBC is h′τS

−1
τ α′

0Σ
−1ω′εt and its IRF is

T̃ ∗(L)hχ.

An analogous strategy can be used to identify the main common permanent business cycle shock but,

given that in our empirical model we set q = 5 and r = 4, we have a unique common permanent shock.

Thus, the Main Common Permanent Business Cycle shock (MCPBC) is simply proportional to such shock.

As we can observe in Figure 2, the newly identified shocks have a much more insightful behavior than

the M(C)BC. In particular, the IRFs of the MCTBC confirm its temporary nature since, after a peak in

the first period, the effects on variables rapidly decay towards zero. As for MBC and MCBC, inflation and

nominal interest rate react positively to MCTBC, even though the effect on the former is not particularly
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large, whereas the impact on TFP and labor productivity is negative for the horizons where it is significant.

Instead, the MCPBC triggers a long-lasting effect on most of the variables, especially GDP, consumption,

TFP and productivity. Differently from its transitory counterpart, the impact of MCPBC on inflation and

nominal interest rate is significantly negative at shorter horizons and then decays towards zero after some

periods. Remarkably, the contemporaneous impact on TFP is small and not significant and it tends to

steadily increase after 3 quarters. All in all, the MCTBC exhibits the main features of a demand shock

whereas the MCPBC may be interpreted as a news shock à la Beaudry and Portier (2014).

The contributions over the common component variability are displayed in Table 9. We see that the

MCTBC explains a sizeable portion of the common component variation in the short run, whereas only a

small part in the long run, in particular for TFP, labor productivity, GDP and consumption. Analogously,

the MCPBC covers only a modest, but still non-negligible, part of the common component cyclical volatil-

ity. Consumption, output and inflation display the highest figures in this setting, with a share of cyclical

variability explained by the MCPBC that is larger than 31%. Remarkably, consumption is explained more

by MCPBC than by MCTBC in short horizons; a result that is consistent with permanent income theories,

according which volatility in consumption is mostly due to fluctuations in permanent income. Furthermore,

the MCPBC plays a clear dominant role in the long-run frequency band, confirming that we have successfully

identified a permanent and a transitory shock.

Table 9: Variance contribution of MCPBC and MCTBC

Short-run Long-run

MCPBC MCTBC MCPBC MCTBC

Unemployment 23.9 [ 7.8, 40.5 ] 59.9 [ 46.5, 73.2 ] 56.2 [ 18.6, 83.2 ] 15.8 [ 4.8, 48.4 ]

Output 31.2 [ 13.3, 48.5 ] 51.4 [ 35.9, 65.7 ] 87.6 [ 54.1, 95.9 ] 3.4 [ 0.9, 13.7 ]

Hours Worked 25.4 [ 8.2, 42.6 ] 53.8 [ 40.1, 67.4 ] 55.2 [ 16.4, 84.3 ] 18.4 [ 5.7, 46.1 ]

Investment 24.2 [ 7.8, 42.4 ] 55.5 [ 40.7, 69.6 ] 68.6 [ 24.3, 89.7 ] 8.8 [ 2.6, 27.3 ]

Consumption 34.3 [ 21.5, 48.1 ] 27.6 [ 11.7, 43.5 ] 91.4 [ 75.3, 95.9 ] 2.4 [ 0.6, 9.3 ]

TFP 10.6 [ 3.1, 27.0 ] 48.0 [ 23.4, 70.2 ] 45.3 [ 4.9, 80.8 ] 4.4 [ 0.5, 25.2 ]

Labor Prod. 25.8 [ 9.7, 46.1 ] 33.1 [ 19.9, 47.0 ] 67.6 [ 24.0, 87.9 ] 3.4 [ 0.5, 18.4 ]

Labor Share 11.8 [ 3.8, 26.2 ] 29.2 [ 16.6, 42.2 ] 54.6 [ 13.4, 84.6 ] 10.4 [ 2.4, 32.4 ]

Inflation 33.5 [ 11.8, 57.0 ] 19.7 [ 8.0, 34.6 ] 21.5 [ 3.5, 62.6 ] 12.6 [ 2.8, 38.7 ]

Nom. Int. rate 21.0 [ 5.8, 42.5 ] 49.3 [ 30.4, 67.9 ] 14.7 [ 1.9, 49.3 ] 29.8 [ 9.1, 63.3 ]

Notes: Medians and, in brackets, the 16th and 84th percentiles of the variance contribution of the MCPBC and the MCTBC

at the various frequency bands. The distributions are obtained with bootstrap.

Interestingly, our findings are to some extent in agreement with those of Avarucci et al. (2022), who,

using a DFM approach, document that the bulk of the business cyle fluctuations is explained by a transitory

shock, and, to a minor extent, by a permanent shock. On the basis of variance decomposition at different

frequency bands, they argue that it is tempting to interpret the former as a demand shock and the latter as

a supply shock. However, Avarucci et al. (2022) do not provide estimates of the impulse response function

of those shocks, in absence of which it is somewhat cumbersome to corroborate economic interpretations.

Moreover, the variability at frequency zero of series ∆Yt that is explained by the shock that Avarucci et al.

(2022) label as transitory is relatively small but not null by construction as in the case of the MCTBC.
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Figure 2: Impulse responses of MCPBC and MCTBC

Notes: the red solid line is the point estimation of the responses to the MCPBC, the blue solid line is the point estimation of

the responses to the MCTBC whereas the shaded areas are the 1 standard deviation confidence bands obtained with bootstrap.

5 Conclusions

Modern time series econometrics has stressed the advantages of departing from the traditional small-scale

models for both forecasting and structural analysis. Unfortunately, standard inference for cointegrated VARs

becomes unreliable as we include more variables in the analysis. In order to achieve dimension reduction

for cointegrated VARs of medium dimensions, we propose a novel model consisting in a particular reduced-

rank structure on the parameters of the VECM. The resulting formulation, i.e. the VECIM, allows to

parsimoniously express the first differences of a set cointegrated time series as a linear function of the lags

of a smaller number of observable factors. Moreover, the VECIM enables to decompose variables into

three components that are uncorrelated at any lag or lead: a common permanent component, a common

transitory component, and an uncommon component. Hence, the new model combines an attractive feature

of the DFM, i.e. disentangling the shocks that are common among variables, with one of the VECM, i.e.

decomposing shocks into permanent and transitory ones.

We provide a switching algorithm for Gaussian ML estimation of the VECIM parameters, we opt for

informational methods to specify the model, and we assess the finite sample performances of the proposed

methodology by means of a comprehensive Monte Carlo study. The results show that our model outperforms

the VECM when an index structure is present in the data. This outcome becomes clearer as the number of

variables increases.

Finally, we use the peculiar features of our model in order to identify the shocks that drive the business

cycle. On the on hand, we decompose a set of key US macro variables in all the aforementioned components,

on the other hand, we identify two shocks: one that explains the bulk of variation of the common transitory

component of unemployment at the business cycle frequencies, and the second one which does the same but

for the common permanent component of unemployment. These two shocks reveal to be endowed with a

neater economic interpretation than a unique main business cycle shock identified according to Angeletos

et al. (2020).

21



Overall, the method is not difficult to implement and promises to be useful in both handling medium

datasets and adding insights to structural analysis.
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