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Abstract

In accordance with trade signals that operate in the market, we design a micro-

founded structural model of price formation that features partially informed and

noise traders. The former only have information on whether a trend in the latent price

dynamic is underway. Without any trend, the partially informed agents do not trade,

and prices do not update unless a noise agent activates. Assuming market efficiency,

we impose zero expected net profit per trade. With dedicated parametric assumptions,

we analytically derive the model’s likelihood, which allows reliable daily estimates

(exclusively based on intra-day transaction prices) of the stocks’ market liquidities

and funding liquidity (and their estimation errors).

Theory predicates that stocks’ volatilities, stocks’ market liquidities, and funding

liquidity may interact in a non-trivial fashion. To shed light on their nature and mutual

influence, we model their dynamics through an MGARCH-VAR process. The model
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is flexible enough to capture some of the well-known empirical features of financial

data, such as fat-tailed distributions and conditional heteroskedasticity. Following an

econometric methodology of standard practice in the realized volatility literature, the

model is fitted on estimates (obtained from intra-day data through the structural model

estimation) of the daily proxies for stocks’ volatilities, stocks’ market liquidities, and

funding liquidity. On a dataset of NYSE stocks, we find significant evidence in favor

of four stylized facts: (i) stocks’ volatilities, stocks’ market liquidities, and funding

liquidity co-move; (ii) co-movements are stronger when funding liquidity dries up;

(iii) stocks with lower volatility are characterized by higher market liquidity, and (iv)

funding liquidity restrictions have a stronger impact on stocks’ market illiquidities of

high-volatility stocks.

Keywords: funding illiquidity, market illiquidity, structural estimation, market microstruc-

ture.

1 Introduction

Recent theoretical works suggest that assets’ market liquidity (in its most general meaning,

defined as the ease with which assets are traded) and traders’ funding liquidity (the ease

with which traders raise funds) are mutually reinforcing (see, e.g., Gromb and Vayanos,

2002, 2010; Geanakoplos, 2003; Brunnermeier and Pedersen, 2009, and Gârleanu and

Pedersen, 2011). Low funding liquidity makes traders reluctant to take on positions,

lowering stocks’ market liquidity. On the other hand, low stocks’ market liquidities make

financiers unwilling to lend capital, reducing funding liquidity and leading to illiquidity

spirals. Similar illiquidity spirals exacerbated the liquidity and credit crunch of 2007-2008

(Brunnermeier, 2009).

However, stocks’ market liquidities and funding liquidity are not directly observable.

Accordingly, in empirical studies, they are typically replaced by a variety of proxies,

most of them based on ad hoc daily data (see Le and Gregoriou, 2020, for a survey on

market liquidity proxies). Building upon the structural approach of Bandi et al. (2017)

for stale prices (and its multivariate extension introduced in Bandi et al., 2024), this paper

proposes a micro-founded structural model of price formation designed for the estimation

of stocks’ market liquidities and market funding liquidity. The model can be estimated

by maximizing a (known analytically) likelihood function using intraday transaction

prices only. The proposed framework is thus designed to deliver historical time series of
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stocks’ market liquidities and funding liquidity (and robust estimation errors) daily. These

estimated time series are revealing of new economic insights about market dynamics.

Following Glosten and Milgrom (1985), we consider a discrete-time asymmetric in-

formation framework populated by two types of traders: noise and (partially) informed

agents. The arrival of an informed agent is assumed to have a constant probability π.

Consequently, a noise trader has a probability of 1 − π to trade at each point in time. In

addition, we postulate the existence of a (latent) price process defined as a trade signal

partially known only to non-noise traders. Accordingly, these agents base their trading

decisions on this process’s conditional (upon their private information set) expected value.

Following successful contributions of the literature (such as Hasbrouck, 2009; Brunner-

meier and Pedersen, 2009), we interpret the mean absolute deviation of the transaction

price from the latent price as a proxy of the stock market (ill-)liquidity. We also assume

that, at each transaction, the informed trader has to pay, on top of the immediacy cost (half

of the bid-ask spread) faced by all types (informed and noise) of traders, an additional

cost that, following Brunnermeier and Pedersen (2009), can be interpreted as a shadow

cost of capital. This cost is a natural proxy for market funding (ill-)liquidity.

With respect to the traditional asymmetric information framework (Kyle, 1985; Glosten

and Milgrom, 1985; Easley and O’Hara, 1987; see Madhavan, 2000, Biais et al., 2005, Bandi

et al., 2017 and Bandi et al., 2024 for a survey) our modeling approach differentiate along

two major directions.

First, we replace the assumption of perfect information, according to which the in-

formed agents have an exact knowledge of the latent price, with an assumption of partial

information for the informed agents. Specifically, we assume that the informed agents

only know the expected value of the latent price, given that a trend in the latent price

dynamics is underway. If one of such trends occurs, the informed agents trade in the

direction of the trend. Otherwise, they decide not to trade, and, as a consequence, the

transaction price is not updated. On the contrary, noise traders base their decision to buy

or sell on a coin toss. Such a partial information framework is warranted in contexts of

high-frequency automated trading (Huang et al., 2019), which are becoming increasingly

impactful1. This parallelism assumes that automated trading is equivalent to an informed

agent that trades simultaneously on multiple assets (and in real-time) against many short

1Farouh and Garcia (2021) notice that “According to a recent article in The Economist, funds run by

computers that follow rules set by humans account for 35% of American stock market, 60% of institutional

equity assets and 60% of trading activity. According to Deutsche Bank, 90% of equity-futures trades and

80% of cash-equity trades are executed by algorithms without any human input.”
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trends.

The second novelty concerns the efficiency of the market. Typically, the informed

agents are assumed to trade only if trading is profitable compared with the execution costs,

thereby getting strictly positive per-trade net profits (See, e.g., Glosten and Milgrom, 1985,

and Bandi et al., 2024). We replace this assumption by postulating that partially informed

agents trade only if trading is expected to cover the execution costs, which is in accordance

with a market efficiency perspective. Strictly negative per-trade losses, even for partially

informed traders, are thus allowed in the model.

The assumption of partial information carries the notable advantage that the model

can be written in a switching regime representation with a closed-form log-likelihood

(Hamilton, 1994), whose maximization delivers daily estimates of the model parameters

(and their corresponding estimation errors) exclusively based on intra-day transaction

prices (sampled at sufficiently high frequency). The proposed framework provides para-

metric estimators of market microstructure characteristics (such as funding and stocks’

market liquidity, bid-ask spreads, learning speed of the market maker, price volatility, and

many others) that inherit all the nice well-known properties of the maximum likelihood

estimators.

Theory indicates that stocks’ volatilities, stocks’ market liquidities, and funding liq-

uidity may interact in a pretty non-trivial way. To shed light on their nature and mutual

influence, in the second part of the paper, we define daily proxies for stocks’ volatili-

ties, market liquidities, and funding liquidity. We also model their dynamics through

an MGARCH-VAR process. The model is flexible enough to capture some of the well-

known empirical features of financial data, such as fat-tailed distributions and conditional

heteroskedasticity. Following an econometric methodology of standard practice in the re-

alized volatility literature, the model is fitted on estimates (obtained from intra-day data

through the structural model) of the daily proxies for stocks’ volatilities, stocks’ market

liquidities, and funding liquidity. For this purpose, we use a dataset of intra-day transac-

tion prices of 150 NYSE-listed stocks. This empirical exercise reveals four stylized facts:

(i) stocks’ volatilities, stocks’ market liquidities, and funding liquidity co-move; (ii) co-

movements are stronger when funding liquidity dries up; (iii) stocks with lower volatility

are characterized by higher market liquidity and (iv) stocks with higher volatility are more

sensitive, in terms of their market illiquidity, to adverse shocks to funding liquidity.

The paper is organized as follows. Section 2 positions the paper in the reference liter-

ature. Section 3 introduces the micro-founded structural model. In Section 4, we define
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the daily proxies for funding liquidity, stocks’ market liquidities and stocks’ fundamental

volatilities, and the related MGARCH-VAR model. Section 5 discusses the daily prox-

ies and the MGARCH-VAR model’s estimation. Section 6 illustrates some preliminary

empirical evidence. In Section 7, we validate and test four conjectures concerning the dy-

namics of interaction between stocks’ fundamental volatilities, stocks’ market liquidities,

and funding liquidity. Section 8 concludes the paper. The technical material is collected

in the Appendices.

2 Related literature

Stocks’ market liquidity is multifaceted, encompassing multiple dimensions such as

traded volumes, trading intensity, and price impact (Le and Gregoriou, 2020). For in-

stance, the effective bid-ask spread of Roll (1984) and the Zero estimator by Lesmond et al.

(1999) measure stocks’ market liquidities in terms of transaction costs, while the Amihud

(2002) return-to-volume ratio and the Florackis et al. (2011) price-impact ratio, in terms

of the price impact due to a change in the traded volume. Liu (2006) proposes a multi-

dimensional liquidity proxy that considers volume, transaction costs, and trading speed.

Goyenko et al. (2009) find a strong correlation between the Zero measure by Lesmond et al.

(1999), the Amihud (2002) illiquidity ratio and some intraday trade-and-quote benchmarks

(see also Fong et al., 2014).

Funding liquidity is less elusive, being directly related to the cost of funding. Brun-

nermeier (2009) and Frazzini and Pedersen (2014) measure funding liquidity via the TED

spread, defined as the difference between the three-month Treasury bill rate and the three-

month LIBOR (in US dollars). An increase in the TED spread signals that lenders believe

default risk is increasing and funding conditions are getting tight. Gârleanu and Pedersen

(2011) use the LIBOR general collateral repo interest-rate spread as a proxy for funding liq-

uidity, while Park (2015) use the Libor-Overnight Index Swaps spread. Comerton-Forde

et al. (2010) use inventory positions of NYSE specialists as funding liquidity proxy. Boudt

et al. (2017) proxy for the aggregate daily funding liquidity of S&P 500 stocks using a

volume-weighted average of their stock loan rates. For the Chinese stock market, Qian

et al. (2014) use the monthly change in the number of market participants. The authors

argue that new market participants bring new funds, thereby increasing funding liquid-

ity. Other low-frequency funding liquidity measures can be found in Fontaine and Garcia

(2012), Hu et al. (2013), and Golez et al. (2017).
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Regarding the relationships between market liquidity and funding liquidity, Hameed

et al. (2010) show that changes in the value of collateralized equities affect market liquidity.

Comerton-Forde et al. (2010) show that liquidity-supplier financing constraints affect time-

variation in market liquidity. Mancini-Griffoli and Ranaldo (2011) compare the effect of

secured versus unsecured borrowing by arbitrageurs and conclude that funding liquidity

affects market liquidity. Mancini et al. (2013) analyze liquidity in foreign exchange markets

and provide evidence of liquidity spirals between traders’ funding liquidity and market-

wide foreign exchange liquidity. Boudt et al. (2017) show that the effect of market liquidity

on funding liquidity differs in stabilizing and destabilizing regimes. Farouh and Garcia

(2021) study the effect of funding liquidity conditions on time variation in bid-ask spreads

in the last 30 years. They find that three-quarters of the firms are significantly impacted

by funding liquidity. Macchiavelli and Zhou (2022) focus on the dealer’s perspective and

find that the dealer’s repo trading terms affect the dealer’s liquidity provision in securities

markets.

3 Micro-founded structural model

In what follows, we interchangeably indicate with {xt | t = 0, 1, 2, . . . }, {xt} or, simply, x a

discrete-time stochastic process defined on a filtered probability space (Ω,F , {Ft} ,P). Our

partial information framework features four (main) stochastic processes (in discrete time):

a latent log-price, {et}, the market maker’s mid-quote, indicated with {mt}, the transaction

log-price,
{

pt

}

and a trade signal,
{

gt

}

. We consider three kinds of agents: noise agents,

partially informed agents (sometimes referred to simply as informed traders/agents), and

the market maker. The latent price process {et} is unknown to all agents. The mid-quote

and the transaction price processes, respectively {mt} and
{

pt

}

, are public information.

Finally, the trade signal
{

gt

}

is known only by informed agents. We first introduce a

semiparametric model that, with some suitable parametric assumptions, allows for the

definition of a maximum likelihood (ML) estimator.

3.1 The semiparametric model

We assume that the trade signal, whose role is clarified later in this section, follows a

Markov process with values in {−g, 0, g} for some real g > 0. We denote with Gt �

σ
{

gr,mr

∣

∣

∣ 0 ≤ r ≤ t
}

the filtration generated, at time t, by the processes
{

gt

}

and {mt}. In the

model’s logic, this filtration is interpreted as the private information set of the partially
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informed agents. We postulate that, for each t, gt = ēt −mt, where

ēt � E {et | mt,Gt−1} , t = 1, 2, . . . ,T, (1)

denotes the latent price expected by the partially informed agents at time t, and T denotes

the time horizon. Accordingly, the trade signal coincides with the signed profit, gross

of the execution costs, expected by partially informed agents at time t. Noticing that

ēt = gt + mt, the information set of the partially informed agents can equivalently be

defined as Ēt � σ {ēr,mr | 0 ≤ r ≤ t}. The terminology partially informed is warranted to

stress the fact that this kind of players has access to only the expected latent price {ēt}, but

not the latent price process {et}.
We assume that {ēt} evolves according to the recursive equation

ēt = ēt−1 + ηt, t = 1, 2, . . . ,T, (2)

with ē0 = 0 and where the shocks η’s are such that

E
{

ηt

∣

∣

∣ Ēt−1

}

= 0, E
{

η2
t

}

= σ2
η and ση ≥ 0. (3)

The innovation process
{

ηt

}

is thus a (stationary) martingale difference with respect to Ēt−1.

Accordingly, {ēt} follows a random walk.

Even though the market maker does not know {ēt}, in line with previous studies (see,

for example, Hasbrouck and Ho, 1987; Amihud and Mendelson, 1987; Bandi et al., 2017),

we assume that it can partially infer, from the order flow, its value. Borrowing from Bandi

et al. (2017), we implement this model feature by assuming that {mt} evolves as

mt = mt−1 + δ(ēt −mt−1) + (1 − δ)ζt, t = 1, 2, . . . ,T, (4)

where

E
{

ζt

∣

∣

∣ Ēt−1

}

= 0, E
{

ζ2
t

}

= σ2
ζ, and σζ ≥ 0. (5)

Moreover, we assume that the innovations
{

ηt

}

and {ζt} are orthogonal, that is

E
{

ηtζt

}

= 0, t = 1, 2, . . . ,T. (6)

The parameter δ in equation (4) can be interpreted as the learning speed of the market

maker: the closer the δ to one (resp. to zero), the faster (resp. the slower) the market

maker adjusts mt toward ēt.

In the spirit of Glosten and Milgrom (1985), we assume that at time t > 0, either a noise

agent or an informed agent arrives. The probability of arrival of an informed agent is
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denoted with π. A noise agent either sells at pt = mt − s or buys at pt = mt + s with equal

probability, where s > 0 denotes the half of the bid-ask spread. An informed agent sells at

pt = mt − s if gt = −g, buys at pt = mt + s if gt = g and refrains from trading in the market

whenever gt = 0. In the latter case, trading does not occur, and the transaction price does

not update, i.e. pt = pt−1 (borrowing from the nomenclature of Bandi et al., 2020, we will

refer to this event as a stale price). As initial value we set p0 = 0.

Let us denote by {It} and {Bt} two Bernoulli processes with success probability π and

1/2, respectively. The two processes are assumed to be independent of each other and of
{

ηt

}

and {ζt}. They are assumed to control the arrival of noise and informed traders and

their trading decisions. More specifically, at a generic time t, the event It = 0 corresponds

to the arrival of a noise trader while It = 1 to that of an informed agent. The decision at

time t, to sell or buy is based, for a noise trader, upon the value of Bt as illustrated by the

following scheme:

It = 0→














Bt = 0→ pt = mt − s (sale),

Bt = 1→ pt = mt + s (buy).
(7)

For an informed agent, the trading decisions depend on the trade signal, gt, according to

the following scheme:

It = 1→



























gt = −g→ pt = mt − s (sale),

gt = 0→ pt = pt−1 (no trade),

gt = g→ pt = mt + s (buy).

(8)

Equations (7–8) provide the data generating process (DGP) of the transaction (log) price

process
{

pt

}

. Recalling that the informed agents trade exclusively whenever gt , 0, we

interpret g as the expected gross profit for an informed trade. The corresponding expected

net profit is assumed to be, at any given time t, equal to g−c, where c denotes the per-trade

execution cost for an informed agent. We set c � f + s, where f > 0 denotes the per-trade

cost of funding borne by the informed agents (the “shadow cost of capital”, Brunnermeier

and Pedersen, 2009). Then, we identify f by imposing a market efficiency assumption. We

assume that c = g, which amounts to postulating a zero net expected profit for informed

agents2. Accordingly, we get that f = g−s, whence we impose s < g for f to be meaningful.

To complete our semiparametric framework, we assume that the latent price {et} evolves

as et = et−1 + ηt + εt, where e0 = 0 and {εt} is an innovation process, independent of

2This assumption does not contradict the possibility for an informed trader to gain using her private

information. Perhaps it imposes a global market efficiency across the collection of all the trades.
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{(

ηt, ζt, It,Bt

)}

and such that E {εt} = 0, for t = 1, 2, . . . ,T. For {et} to be consistent with the

definition of the triplet
{

(ēt,mt, pt)
}

, it suffices to verify that E
{

et

∣

∣

∣ mt, Ēt−1

}

= ēt, as required

by (1). This is immediate, since

et =

t
∑

j=1

η j +

t
∑

j=1

ε j = ēt + ε̄t, (9)

where ε̄t �
∑t

j=1 ε j, for t ≥ 0. Whence

E
{

et

∣

∣

∣ mt, Ēt−1

}

= E
{

ēt

∣

∣

∣ mt, Ēt−1

}

+ E
{

ε̄t

∣

∣

∣ mt, Ēt−1

}

= ēt + E {ε̄t} = ēt + 0 = ēt,

where we replaced E
{

ε̄t

∣

∣

∣ mt, Ēt−1

}

with E {ε̄t} because {εt} is independent of
{(

ηt, ζt

)}

.

3.2 Parametric specification and closed-form log-likelihood

Assuming that the econometrician observes only
{

pt

}

, it is possible to derive an ML estima-

tor of the model parameters as soon as a parametric model for the vector of innovations
{(

ηt, ζt

)}

and for the trade signal
{

gt

}

is specified. In doing this, the parametric choice

ought to be consistent with the fact that 1)
{

(ηt, ζt)
}

is a stationary orthogonal martingale

difference and 2)
{

gt

}

is a Markov process with values in {−g, 0, g}, for some g > 0. The

following theorem describes how to obtain what we are looking for.

Theorem 3.1. Let the following assumptions hold.

A0 - The innovations
{

ηt

}

and {ζt} are such that

ηt � νt + γηut and ζt � νt − γζut, t = 1, . . . ,T, (10)

where

ut � gt − ωgt−1, γη �
a

ω(a + b)
, γζ �

b

ω(a + b)
, (11)

with a > 0 and b > 0 real positive parameters and ω � 1 − δ.

A1 - The process
{

gt

}

is a Markov process taking values in {−g, 0, g}, with g > 0 a real constant

given by

g �
√

a + b · ω√
1 − ω2

·
√

2 − ω − ψ
1 − ψ , (12)

where ψ ∈ (0, 1). The transition matrix T of
{

gt

}

, whose generic entry is

Ti j � P
{

gt = ℓig
∣

∣

∣ gt−1 = ℓ jg
}

,
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for i, j = 1, 2, 3, where (ℓ1, ℓ2, ℓ3) � (−1, 0, 1) and t = 1, . . . ,T, is given by

T �

























ω 1 − ω 0

(1 − ψ)/2 ψ (1 − ψ)/2

0 1 − ω ω

























. (13)

A2 - The distribution of the initial value g0 is

P
{

g0 = −g
}

� P
{

g0 = g
}

� (1−ψ)/(2(2−ω−ψ)), P
{

g0 = 0
}

= 1−2P
{

g0 = g
}

. (14)

A3 - The process {νt} is a Gaussian white noise with variance

E
{

ν2
t

}

� σ2
ν � (ab)/(a + b), t = 1, . . . ,T. (15)

Under Assumptions from A0 to A3, it follows that equations (3) and (5-6) hold with E
{

η2
t

}

= a

and E
{

ζ2
t

}

= b. In particular, it holds that ēt −mt = gt, for all t.

Proof. See Appendix A.

The model for
{

pt

}

given in (2), (4), and (7–8), with
{

(ηt, ζt)
}

defined as in Theorem 3.1,

turns out to be parameterized by the vector θ̃ � (s, a, b, δ, π, ψ)⊤, where ψ represents a

probability. While the parameters {a, b, δ, π, ψ} are variation-free, the parameter s is subject

to s < g, where g is the function of {a, b, δ, ψ} defined in (12). Noticing that (σ2
η, σ

2
ζ
) = (a, b),

and definingφ � f/s, we can reparameterize
{

pt

}

, more conveniently, in terms of the vector

θ � (φ, ση, σζ, δ, π, ψ)⊤.

Unlike the parameters in θ̃, the parameters in θ are all variation-free3.

The parameter φ can be interpreted as a normalized funding cost and plays a crucial

role in the definition of our funding ill-liquidity proxy4. Recalling the formula of the

transition matrix T of the trade signal
{

gt

}

given in (13), the parameterψ can be interpreted

3To recover θ = (φ, ση, σζ, π, δ, ψ)⊤ from θ̃ = (s, a, b, δ, π, ψ)⊤, we first replace (a, b) with (σ2
η, σ

2
ζ
) as an

application of the last part of Theorem 3.1. Then, applying definition (12), and using ω = 1− δ, we compute

g as

g =
√

σ2
η + σ

2
ζ
· 1 − δ
√

δ (2 − δ)
·
√

1 + δ − ψ
1 − ψ .

Finally, recalling that g = f + s, we compute f as f = g− s, and we set φ = f/s. To recover θ̃ from θ, we first

replace (σ2
η, σ

2
ζ
) with (a, b). Then, we compute g applying (12), with ω = 1− δ. Finally, applying φ = f/s, and

g = f + s, we derive s as s = g/(1 + φ).
4See Section 4.
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as the persistence of unprofitable (expected) trades, in formula ψ = P
{

gt = 0
∣

∣

∣ gt−1 = 0
}

.

On the other hand, the parameter ω in T measures the persistence of the profitable trades,

that is ω = P
{

gt = −g
∣

∣

∣ gt−1 = −g
}

= P
{

gt = g
∣

∣

∣ gt−1 = g
}

. Since ω = 1− δ, the persistence of

the profitable trades is a decreasing function of the learning speed of the market maker.

We now provide the closed form of the distribution of
{

pt

}

, given the information set of

the econometrician. This is assumed to be the filtration generated by transaction prices,

that is

Ft � σ{pt, pt−1, . . . , p0}, t = 1, . . . ,T, (16)

having further assumed that p0 = 0. First, we need to introduce some notations.

Let {st}, with st ∈ {−s, 0, s}, denote the sequence of immediacy costs, with the convention

that st = 0 if no trades occur at time t. Let tq denote the q-th point in time in which a price

change occurs, with the convention that t0 = 0. For q = 0, 1, . . . and for tq < t ≤ tq+1, let

Pt−1(st, gt, stq , gtq) denote the probability mass function of (st, gt, stq , gtq) conditional on Ft−1,

with the convention that (st0
, gt0

) = (s0, g0) � (0, 0). Let S � {−s, 0, s} and G � {−g, 0, g}. Let

1( · ) denote the indicator function. Let fG(x;µ, λ) denote the Gaussian density with mean

µ and variance λ. Finally, let ft−1(pt;θ) denote the probability density function of pt given

Ft−1. The following theorem provides the closed form of ft−1(pt;θ).

Theorem 3.2. In the model for
{

pt

}

given in (2), (4), and (7–8), with
{

(ηt, ζt, gt)
}

defined as in

Theorem 3.1, it holds, for q = 0, 1 . . . and for tq < t ≤ tq+1, that

ft−1(pt;θ) =
∑

st=0, (gt,stq ,gtq )∈G×S×G

Pt−1(st, gt, stq , gtq) · 1(pt = pt−1)+

∑

st,0, (gt,stq ,gtq )∈G×S×G

Pt−1(st, gt, stq , gtq) · 1(pt , pt−1) · fG(pt;µt, λt),
(17)

with µt � ptq + st + ρgt − stq + ξgtq , ρ � δ/ω − γζ, ξ � γζω, and λt � (t − tq)σ
2
ν.

Proof. See Appendix A.

The expression of ft−1(pt;θ) given in equation (17) delivers a discrete/continuous mixture

distribution, where the discrete components are the (degenerate) components of the form

1(pt = pt−1), and the continuous components are the Gaussian components of the form

1(pt , pt−1)· fG(pt;µt, λt). The discrete components model the stale prices, pt = pt−1, while the

continuous components model the price changes. The mixture weights, which are given

by Pt−1(st, gt, stq , gtq), for (st, gt, stq , gtq) ∈ S×G×S×G, can be computed via Bayesian forward

recursion, as described in Appendix B.5 Since ft−1

(

pt;θ
)

has a closed-form expression,

5The model of {pt} turns out to be a switching regime model (see Hamilton, 1994, Chapter 22).
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the prediction-error decomposition
∑T

t=1 log ft−1

(

pt;θ
)

of the log-likelihood of θ admits a

closed form too.
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Figure 1: Simulated trajectories of the micro-founded structural model. In Panel A the

parameters used are (φ, ση, σζ, δ, π, ψ) = (9, 0.03, 0.02, 0.10, 0.5, 0.98), while, in Panel B, we

set (φ, ση, σζ, δ, π, ψ) = (9, 0.03, 0.02, 0.20, 0.8, 0.98). In both panels the latent price {et} is

generated applying equation (9), with {ε̄t}modeled as an AR(1) process.

To better illustrate the dynamics of the model, we report in Figure 1 two simulated

trajectories (see Panel A and Panel B, respectively). The grey vertical bands highlight the

profitable trends. The parameter values of the two DGPSs are the same, except for the

couple (δ, π) which is (δ, π) = (0.10, 0.50) in Panel A and (δ, π) = (0.20, 0.80) in Panel B. The

latent price {et} is obtained by generating the process {ε̄t} in equation (9) from a zero-mean

12



AR(1) process.

The persistence of the profitable trends, measured by ω = 1 − δ, is more significant

in Panel A, which results in wider grey bands. The probability of arrival of an informed

agent, π, is more significant in Panel B, as witnessed by the longer periods in which the

price stays constant. Within the grey bands, staleness disappears (the price moves at each

point) as the informed agents (the only ones responsible for price staleness) keep active

during profitable trends. Recalling that informed agents trade exclusively in the direction

of the trends, we have that
{

pt

}

follows {ēt}within the grey bands.

4 Daily proxies of volatility and illiquidity

We work under the assumption that funding liquidity has a systematic nature or, in

other words, that its across-stock variation is negligible. As a consequence, a consistent

estimation of this market feature requires a multivariate version of the model, something

that we obtain by simply replicating N times the DGP described in Sections 3 and 3.2,

where N is the number of stocks available for estimation. Let d = 1, . . . ,D be a discrete

index that runs across the day in the sample. The model parameters for the DGP of the

i-th process, with i = 1, . . . ,N, shall be denoted as

θ(i)

d
� (φ(i)

d
, σ(i)

η,d
, σ(i)

ζ,d
, π(i)

d
, δ(i)

d
, ψ(i)

d
)⊤. (18)

Accordingly, the corresponding transaction log-price time series is denoted as
{

p(i)

d,t

}

, with

the convention that p(i)

d,t
denotes the transaction log-price of the i-th stock at the t-th time

instant of the day d. An identical notation shall be used for all the other model time series.

Within the structural framework, a natural proxy for stock volatility is the daily volatil-

ity of the latent log price expected by the informed agents. Following this idea, we define

ς(i)

d
� ς(i)

η,d
�

√
Tσ(i)

η,d
,

as the i-th stock fundamental volatility for the d-th day.

To derive a proxy for market illiquidity, in line with the theoretical framework of

Brunnermeier and Pedersen (2009), we proxy, at an intraday time-scale, stock market

illiquidity as

Λ(i)

d,t
�

∣

∣

∣p(i)

d,t
− ē(i)

d,t

∣

∣

∣ ,

i.e. the absolute deviation of the transaction log-price, p(i)

d,t
, from the latent log-price

expected by the informed agents, ē(i)

d,t
. At a daily time scale, the proxy for the stock market

illiquidity is defined as Λ(i)

d
� T−1

∑T
t=1Λ

(i)

d,t
, that is the intra-daily average.

13



Concerning the identification of a proxy for daily funding illiquidity, we remind that,

in the micro-founded structural model, funding and transaction costs are represented,

for a given stock i and a given day d, by the parameters f (i)

d
and s(i)

d
, respectively. In this

context, a funding cost of, say, one basis point over a half bid-ask spread of, say, one basis

point is expected to be associated with a more liquid state of the world than that of a

funding cost of, still, one basis point over a half bid-ask spread of, say, ten basis points.

For this reason, we adopt, as a funding illiquidity proxy at a stock level, the normalized

funding cost

φ(i)

d
�

f (i)

d

s(i)

d

.

On top of this, we assume a value of φ(i)

d
common across all stocks, that we denote with

Φd, which means that we work under the assumption that

φ(i)

d
= Φd, for all i = 1, . . . ,N. (19)

The volatility and illiquidity proxies are, by construction, positive quantities. Hence, we

are allowed to collect them in a vector of logarithms

Yd �

(

log ς(1)

d
, . . . , log ς(N)

d
, logΛ(1)

d
, . . . , logΛ(N)

d
, logΦd

)⊤
, (20)

whose length is M � 2N + 1. We postulate the following assumption concerning the

dynamics of the vector time series defined in equation (20).

Assumption 4.1. The vector time series {Yd} defined in (20) follows a VAR(L) process (Hamilton,

1994), that is

Yd = c0 + C1Yd−1 + C2Yd−2 + · · · + CLYd−L +Ud, (21)

where L > 0 is a given lag index, the vector of innovations Ud �

(

U(1)

d
, . . . ,U(M)

d

)⊤
is such that

E
{

Ud

∣

∣

∣ Yd−1

}

= 0 (martingale difference) and whereYd denotes, for all d, the σ-algebra defined as

Yd � σ {Yr | r = −L + 1, . . . , d}.

To allow for conditional heteroskedasticity, we model the conditional var-covar matrix

Hd � E
{

U
d

U⊤
d

∣

∣

∣ Yd−1

}

as a MGARCH process (Bauwens et al., 2006; Silvennoinen and

Teräsvirta, 2009). In particular, we adopt the following Diagonal VECH specification

(Bollerslev et al., 1988)

Hd =W ⊙ (IM,M − A − B) + A ⊙Ud−1U⊤d−1 + B ⊙Hd−1, (22)
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where ⊙ denotes the element-wise matrix product, IM,M denotes the M ×M-dimensional

matrix whose entries are all ones, W, A and B are M×M parameter matrices. In particular,

the conditional variance of the i-th element U(i)

d
follows the GARCH(1,1) model

H(i,i)

d
=W(i,i)(1 − A(i,i) − B(i,i)) + A(i,i)

(

U(i)

d−1

)2
+ B(i,i)H

(i,i)

d−1
,

where (i, j) denotes typical matrix element.

For {Hd} to be positive definite we impose that the matrices A, B, and W⊙ (IM,M−A−B)

are positive definite (Ding and Engle, 2001). A consequence of this is that

A(i,i) + B(i,i) < 0, for i = 1, . . . ,M. (23)

Under additional regularity conditions (Bollerslev et al., 1988; Boussama et al., 2011), {Ud}
is strictly and weakly stationary with unconditional second moment

E
{

Ud U⊤d

}

=W.

The number of distinct parameters in each of the Hd’s is 3M(M + 1)/2, where M(M + 1)/2

corresponds to the number of distinct entries in each of the parameter matrices W,

A, and B. To reduce the number of parameters, we take advantage of the partition

Y
d
�

(

Y(ς)⊤
d
,Y(λ)⊤

d
,Y

(φ)

d

)⊤
, with subvectors defined as Y(ς)⊤

d
�

(

log ς(1)

d
, . . . , log ς(N)

d

)⊤
, Y(λ)⊤

d
�

(

logΛ(1)

d
, . . . , logΛ(N)

d

)⊤
, and Y

(φ)

d
� logΦ

d
. Following Billio et al. (2006), we force the dy-

namic parameters to be equal across homogeneous variance-covariance processes, getting

block structured A and B of the form

A =

























ας,ςIN,N ας,λIN,N ας,φIN,1

αλ,ςIN,N αλ,λIN,N αλ,φIN,1

αφ,ςI1,N αφ,λI1,N αφ,φI1,1

























, B =

























βς,ςIN,N βς,λIN,N βς,φIN,1

βλ,ςIN,N βλ,λIN,N βλ,φIN,1

βφ,ςI1,N βφ,λI1,N βφ,φI1,1

























, (24)

where α and β denote scalar parameters. For instance, the conditional covariance between

any stock market log-illiquidity, logΛ(N+i)

d
, i = 1, . . . ,N, and any stock fundamental log-

volatility, log ς
( j)

d
, j = 1, . . . ,N, takes the form

H
(N+i, j)

d
=W(N+i, j)(1 − αλ,ς − βλ,ς) + αλ,ςU(N+i)

d−1
U

( j)

d−1
+ βλ,ςH

(N+i, j)

d−1
,

where the scalar parameters αλ,ς and βλ,ς do not depend on (i, j). Irrespective of N,

the distinct entries of A and B are now 12 in total, as we have 6 distinct scalar entries,

(ας,ς, αλ,ς, αφ,ς, αλ,λ, αφ,λ, αφ,φ), in A, plus 6 distinct scalar entries, (βς,ς, βλ,ς, βφ,ς, βλ,λ, βφ,λ, βφ,φ),

in B.

15



Having implemented conditional heteroskedasticity, we implement fat-tailed inno-

vations by modeling the conditional distribution of the innovations {Ud} as a M-variate

t-distribution, that is

f (U)(Ud|Yd−1) �
Γ[(M + κ)/2]

Γ[κ/2](κπ)M/2|Sd|1/2
(

1 +
1

κ
U⊤d S−1

d Ud

)−(M+κ)/2

, (25)

where Γ[ · ] is the gamma function, Sd is, for all d, a positive definite matrix, and κ ∈ (0,∞)

is the kurtosis parameter (Kotz and Nadarajah, 2004). For κ −→ ∞, the distribution tends

to the multivariate standard normal distribution. If κ > 2 the conditional second moment

of each of the Ud’s is finite and equal to Sdκ/(κ − 2), in which case Sd = Hd(κ − 2)/κ.

5 Estimation

An inherent benefit of structural modeling lies in its ability to provide daily realized mea-

sures of market and funding liquidity (as measured by their proxies defined in Section

4) based on high-frequency intra-day transaction data. These estimates are, in nature,

parametric, so they differ in this aspect from the typical approach used in the realized

volatility literature (where, very frequently, integrated volatility is estimated via function-

als of the intra-day time series of log-returns). We illustrate, in what follows, how such

estimates can be obtained. The resulting estimated daily realized time series of volatility

and (market plus funding) illiquidity constitute the inputs for the dynamical model pos-

tulated in Assumption 4.1, which, once fitted on market data, we deem to be revealing on

the self and mutual influence among these market characteristics. We also comment on

the estimation of the MGARCH-VAR in this section.

To begin, let θ̂(i)

d
� (φ̂(i)

d
, σ̂(i)

η,d
, σ̂(i)

ζ,d
, π̂(i)

d
, δ̂(i)

d
, ψ̂(i)

d
)⊤ denote, for i = 1, . . . ,N and d = 1, . . . ,D,

the univariate ML estimator of the vector of parameters θ(i)

d
, defined in equation (18).

For any given i = 1, . . . ,N, the numerical computation of the vector time series
{

θ̂(i)

d

∣

∣

∣ d = 1, . . . ,D
}

is straightforward, as the prediction-error decomposition of the log-

likelihood of each of the θ(i)

d
’s has the closed form derived from equation (17). After

computing the θ̂(i)

d
’s we estimate the ς(i)

d
’s through ς̂(i)

d
�

√
Tσ̂(i)

η,d
.

The daily stock market illiquidity proxy, Λ(i)

d
= T−1

∑T
t=1Λ

(i)

d,t
= T−1

∑T
t=1

∣

∣

∣p(i)

d,t
− ē(i)

d,t

∣

∣

∣, de-

pends on the latent process
{

ē(i)

d,t

}

, which is, by definition, not available to the researcher.

Nevertheless, its intraday fixed interval smoothing mean, namely E
{

ē(i)

d,t

∣

∣

∣ FT

}

(where FT,

defined in equation (16), is the information set available to the researcher), computed at

the ML estimator θ̂(i)

d
, can be estimated. We prove this in Appendix C, where we define an
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estimator ê(i)

d,t
of E
{

ē(i)

d,t

∣

∣

∣ FT

}

. Having at our disposal the time series
{

ê(i)

d,t

}

, we can estimate
{

Λ(i)

d

}

through

Λ̂(i)

d
� T−1

T
∑

t=1

Λ̂(i)

d,t
� T−1

T
∑

t=1

∣

∣

∣p(i)

d,t
− ê(i)

d,t

∣

∣

∣ ,

Finally, to estimate theΦd’s we simply compute, for each day d = 1, . . . ,D, the across-stock

median of the estimated univariate normalized funding costs, a quantity that we indicate

with the symbol Φ̂d.

To conclude this section, we comment on estimating the MGARCH-VAR model, as

postulated in Assumption 4.1. Following an econometric methodology that is well known

in the literature on realized volatility (Andersen and Teräsvirta, 2009), as a preliminary

estimation step, we replace each of the unobserved Yd’s with its estimates. Hence, we

define

Ŷd �

(

log ς̂(1)

d
, . . . , log ς̂(N)

d
, log Λ̂(1)

d
, . . . , log Λ̂(N)

d
, log Φ̂d

)⊤
, d = 1, . . . ,D, (26)

where (ς̂(1)

d
, . . . , ς̂(N)

d
, Λ̂(1)

d
, . . . , Λ̂(N)

d
, Φ̂

d
)⊤ is the estimate of (ς(1)

d
, . . . , ς(N)

d
, Λ(1)

d
, . . . , Λ(N)

d
, Φ

d
)⊤

computed from the intraday data. Then, we fit the parameters of the MGARCH-VAR

model conditionally on {Yd} =
{

Ŷd

}

.

Despite the constraints discussed in Section 4, the joint estimation of the parameters

is still challenging to implement. We consider a multi-step estimation procedure based

on a composite likelihood (Pakel et al., 2021) as a possible workaround. Similarly to

the traditional quasi-log-likelihood, the composite likelihood is robust to non-gaussian

innovations, and, in addition, it typically provides less biased estimates. If the composite

likelihood is of bivariate kind, as the one adopted here, the maximization algorithms

are numerically stable as they do not require matrix inversions. We refer the reader to

Appendix D for all the technical details concerning the estimation of the MGARCH-VAR

model.

6 Dataset and preliminary estimation results

We employ a dataset whose constituents are the 250 most liquid stocks (in terms of average

transaction volume during the period considered). We have all trades for each stock from

January 2006 to December 2014. We apply suitable quality cuts6, reducing the original

6We compute, for each stock and on each day, 1) the total volume traded, 2) the total number of

transactions, and 3) the longest time interval with no trading, obtaining three 250 × 2265 matrices, one for
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Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Average

VAR L̂ 5 5 9 4 5 5 5 5 5 5 5 4 5 5 7 5.267

ρ̂ 0.996 0.995 0.998 0.996 0.995 0.996 0.995 0.998 0.993 0.997 0.997 0.995 0.997 0.996 0.998 0.996

MGARCH α̂ς,ς 0.017∗ 0.029∗ 0.020∗∗ 0.019∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.019∗∗∗ 0.030∗∗∗ 0.014∗ 0.074∗∗∗ 0.021∗∗∗ 0.052∗∗∗ 0.025∗∗∗ 0.020∗ 0.023∗ 0.026

α̂λ,ς 0.016∗∗ 0.020∗∗∗ 0.010∗∗∗ 0.022∗∗∗ 0.011∗∗∗ 0.018∗∗∗ 0.020∗∗∗ 0.032∗∗∗ 0.010∗∗∗ 0.025∗∗∗ 0.014∗∗ 0.018∗∗∗ 0.020∗∗∗ 0.018∗∗ 0.011∗∗ 0.018

α̂φ,ς 0.013∗∗ 0.018∗∗∗ 0.015∗ 0.019∗∗ 0.016∗ 0.011 0.016∗∗∗ 0.025∗∗∗ 0.020∗∗∗ 0.018∗∗ 0.018 0.027 0.013∗∗∗ 0.015∗∗ 0.015∗ 0.017

α̂λ,λ 0.018∗∗∗ 0.038∗∗ 0.030∗∗∗ 0.029∗∗∗ 0.023∗∗∗ 0.019∗∗∗ 0.037∗∗∗ 0.039∗∗∗ 0.025∗∗∗ 0.050∗∗∗ 0.032∗∗∗ 0.042∗∗ 0.024∗∗∗ 0.042∗∗ 0.026∗∗ 0.032

α̂φ,λ 0.008 0.003 0.010∗ 0.013∗ 0.008 0.011 0.016∗∗ 0.011 0.010∗∗∗ 0.012 0.011 0.002 0.014 0.005 0.005 0.009

α̂φ,φ 0.027 0.054 0.043 0.054 0.049 0.011 0.034 0.062∗∗ 0.051 0.063∗ 0.031 0.055∗ 0.041 0.028 0.033 0.043

α̂ς,ς + β̂ς,ς 0.998∗∗∗ 0.993∗∗∗ 0.978∗∗∗ 0.999∗∗∗ 0.994∗∗∗ 1.000∗∗∗ 0.995∗∗∗ 0.998∗∗∗ 0.962∗∗∗ 0.854∗∗∗ 0.980∗∗∗ 0.892∗∗∗ 0.998∗∗∗ 0.991∗∗∗ 0.975∗∗∗ 0.974

α̂λ,ς + β̂λ,ς 0.995∗∗∗ 0.961∗∗∗ 0.967∗∗∗ 0.991∗∗∗ 0.983∗∗∗ 0.997∗∗∗ 0.973∗∗∗ 0.986∗∗∗ 0.966∗∗∗ 0.871∗∗∗ 0.968∗∗∗ 0.903∗∗∗ 0.991∗∗∗ 0.966∗∗∗ 0.967∗∗∗ 0.966

α̂φ,ς + β̂φ,ς 0.978∗∗∗ 0.945∗∗∗ 0.956∗∗∗ 0.955∗∗∗ 0.965∗∗∗ 0.994∗∗∗ 0.950∗∗∗ 0.958∗∗∗ 0.944∗∗∗ 0.850∗∗∗ 0.970∗∗∗ 0.896 0.967∗∗∗ 0.971∗∗∗ 0.952∗∗∗ 0.950

α̂λ,λ + β̂λ,λ 0.995∗∗∗ 0.958∗∗∗ 0.986∗∗∗ 0.987∗∗∗ 0.986∗∗∗ 0.995∗∗∗ 0.969∗∗∗ 0.980∗∗∗ 0.990∗∗∗ 0.968∗∗∗ 0.982∗∗∗ 0.974∗∗∗ 0.993∗∗∗ 0.968∗∗∗ 0.988∗∗∗ 0.981

α̂φ,λ + β̂φ,λ 0.971∗∗∗ 0.908∗∗∗ 0.950∗∗∗ 0.939∗∗∗ 0.948 0.990∗∗∗ 0.930∗∗∗ 0.931∗∗∗ 0.943∗∗∗ 0.914∗∗∗ 0.959∗∗∗ 0.917∗∗∗ 0.966∗∗∗ 0.939∗∗∗ 0.947∗∗∗ 0.944

α̂φ,φ + β̂φ,φ 0.977∗∗∗ 0.947∗∗∗ 0.967∗∗∗ 0.949∗∗∗ 0.967∗∗∗ 0.993∗∗∗ 0.982∗∗∗ 0.963∗∗∗ 0.954∗∗∗ 0.950∗∗∗ 0.977∗∗∗ 0.953∗∗∗ 0.977∗∗∗ 0.980∗∗∗ 0.955∗∗∗ 0.966

LBQ 4 6 1 8 5 6 5 4 3 2 6 12 7 6 4 5.267

ARCH 4 3 1 4 1 4 1 4 0 3 1 0 4 2 2 2.267

κ̂ 11.75 9.50 12.47 13.08 11.39 13.82 12.42 13.42 13.53 13.17 11.51 13.21 12.97 10.19 12.35 12.318

Table 1: MGARCH-VAR estimation results. Summary of the estimation results provided by the MGARCH-VAR model of eqs. (21–25)

fitted to the volatility and illiquidity sequences attached to 15 stock samples. Each sample includes ten stocks that deliver 21 volatility

and illiquidity sequences in total (10 stocks’ volatility sequences, ten stocks’ market illiquidity sequences, and the funding illiquidity

sequence). L̂ is the estimated VAR lag. ρ̂ is the spectral radius associated with the companion form of the VAR(L) representation of {Yd}.
α̂ and β̂ denote the estimated entries of the block MGARCH parameters A and B in equation (24). LBQ is the number of sequences of

GARCH-standardized residuals, which is significant at 1% level in the Ljung–Box Q-test of no serial correlation. The maximum LBQ

is 21, and the expected value under the null hypothesis is 0.21. ARCH is the number of sequences of GARCH-standardized residuals,

which is significant at 1% level in Engle’s test of no ARCH effects. The maximum of ARCH is 21, and the expected value under the null

hypothesis is 0.21. κ̂ is the estimated kurtosis parameter. Limited to α and α + β, the significance of the estimated parameters, adjusted

for the previous steps of estimation, is reported. The significance levels considered are 5%, 1%, and 1‰, denoted with “∗”, “∗∗”, and

“∗ ∗ ∗”, respectively. No superscript is reported in the case of insignificance at the 5% level.
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dataset to a smaller one made of N = 150 stocks and D = 2265 trading days. For each

day, we obtain transaction prices by sampling (via previous-tick interpolation) on an

equispaced deterministic partition at 10-second sampling frequency. This yields, for each

day, T = 2341 transaction prices for each stock. We begin with some descriptive results,

summarized in Figures 2-3.

0.01 0.013 0.016 0.019 0.022 0.025
0

0.5

1

1.5

2

2.5

0.01 0.013 0.016 0.019 0.022 0.025
RV

0

5

10

15

Figure 2: We report, for each stock in the data sample and as a function of the stocks’

realized volatilities (the square roots of the realized variances), the estimated half bid-ask

spread (empty triangles), the estimated funding cost (empty circles), and their ratio (black

stars). For each variable, we also show the corresponding regression line. The slope is

not significantly different from zero only in the case of the funding cost to bid-ask spread

ratio. The left vertical axis shows the range of the first two variables (in basis points),

while the right vertical axis shows the range of the funding cost to bid-ask spread ratio,

which is a pure number.

Figure 2 shows, for each stock in the dataset and as a function of the stocks’ realized

volatilities, the estimated half bid-ask spread (in the plot indicated as s), the estimated

funding cost (marked as f ) and their ratio f/s. While both s and f appear to be highly

dependent on the stock’s realized volatility (as witnessed by the slope of the regression

each characteristic. We flag all the daily entries of the three matrices with a total log-volume smaller than

12.5, a total number of transactions smaller than 500, or a maximum time length of no trading larger than

ten minutes. After removing all flagged days, we keep only stocks with daily returns over at least 97% of

the sample.
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line, which turns out to be statistically different from zero), their ratio is not, with a regres-

sion line statistically indistinguishable from a horizontal line. This empirical evidence

supports the approximation imposed by equation (19), which translates the assumption

of a common, across-stocks value of the funding cost to bid-ask spread ratio.

Figure 3 reports the daily average (across-stocks) market illiquidity and the daily

funding illiquidity estimates, along with the TED spread and the timeline of the Global Fi-

nancial Crisis started in 2007. Notably, the correlation of the estimated funding illiquidity

with the TED spread is 62%. Furthermore, compared with the TED spread, the estimated

funding illiquidity is more sensitive to macroeconomic announcements, such as the rise

of the U.S. unemployment rate in October 2009.
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Figure 3: We report, along with the timeline of the Global Financial Crisis started in 2007,

the daily estimated average (across-stocks) market illiquidity (light gray thin line), the

daily funding illiquidity (dark gray thick line), and the TED spread (dotted line). The

time series of average market illiquidity and funding illiquidity are reported as moving

averages over a window of eleven days of their daily estimates, normalized to have the

same mean and standard deviation of the TED spread.

Rather than fitting the MGARCH-VAR model once and for all to the 150 stocks, we
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split the dataset into 15 samples of N = 10 stocks each. In this way, the stability of

the estimation output across different stock samples is assessable. Stocks’ heterogeneity

within each sample is ensured by drawing the ten stocks from a different volatility decile

each. Sampling is done without repetition so that all available 150 stocks are selected.

Table 1 reports the MGARCH-VAR estimates from the 15 samples. The estimation

output is overall stable across samples. The estimated VAR lag L̂ (defined in equation (21)

of Assumption 4.1) is equal to 5.267 days on average (about one week of daily sessions).

The spectral radius, ρ̂, associated with the companion form of the VAR equation, is close

to one, suggesting that the volatility and illiquidity processes are both highly persistent.

Also, the persistence of the variance-covariance processes, estimated by α̂ + β̂, is close to

one.

As a first specification test, denoted with LBQ, we compute the number of sequences of

GARCH-standardized residuals, which is significant at 1% level in the Ljung–Box Q-test

of no serial correlation. For a sample of M = 21 sequences, the maximum LBQ is 21.

Under the null hypothesis, the expected value is 21 · 0.01 = 0.21. We get 5.6 rejections on

average, a significant value that we still consider acceptable given the common lag across

the univariate sequences.

As a second specification test, denoted with ARCH, we compute the number of se-

quences of GARCH-standardized residuals which is significant at 1% level in Engle’s test

of no ARCH effects7. Rejecting the null hypothesis of no ARCH effects would provide

evidence of misspecified conditional second-moment dynamics. Similarly to LBQ, the

maximum value of the test statistic is 21, and the expected value under the null hypothe-

sis is 0.21. We get about two rejections on average, an acceptable outcome.

7 New empirical insights on volatility and illiquidity dy-

namics

The mutual interaction between market and funding illiquidity is expected to be multi-

faceted and non-trivial. Our framework is designed to provide daily realized measures of

these market features. Still, it works in the spirit of “let the data speak” concerning their

reciprocal interaction as daily time series. Consequently, we take insights from the extant

theoretical literature to guide our empirical investigation on the mutual influence between

7The lag parameter in both LBQ and ARCH test is set to the integer part of log(2265), where 2265 is the

length of the sequence.
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market and funding illiquidity. In particular, following the results of Brunnermeier and

Pedersen (2009), we test four conjectures on the dataset described at the beginning of

Section 6. These are formulated as claims on the impact that market and funding illiq-

uidity should have on each other. Before entering technical details, we formulate the four

conjectures in the following list.

(i) Volatility and illiquidity co-movements. Stocks’ fundamental volatilities, stocks’ market

illiquidities, and funding illiquidity co-move.

(ii) Asymmetric co-movements. Volatility and illiquidity co-movements are stronger when

funding liquidity tightens.

(iii) Quality-and-liquidity. Stocks with lower volatility are characterized by higher market

liquidity.

(iv) Flight-to-quality. When funding liquidity is low on average, high-volatility stocks

are more sensitive to changes in funding liquidity than low-volatility stocks.

Given their general formulation, testing these four conjectures is far from obvious. The

test should consist of a statistical procedure capable of providing reliable evidence in favor

or against the claim that is put forward. Here, we proceed in this way.

Let us denote withM � { f (Y)(Y;θ);θ ∈ Θ} the MGARCH-VAR model, introduced in

Section 4, for the vector time series {Yd}, defined in equation (20), where we have used

the notation Y � YD = {YD,YD−1, . . . ,Y1}, θ � {L,C,W,A,B, κ}, and C � {c0,C1, . . . ,CL}.
The null hypothesis,H0, is that the density of Y is inM (correctly specified model). The

alternative hypothesis,H1, is that the density ofY is not inM (misspecified model).

To each of the four conjectures, we associate a statistic, say τ, that represents the

market feature put forward by the conjecture itself. As an example, concerning the claim

of the Volatility and illiquidity co-movements conjecture, the statistic τ ought to be any

observable deemed to represent co-movements between volatility and illiquidity (market

and funding). More generally, regardless of the claim being tested, the statistic τ must be

a function of the whole path {YD, . . . ,Y1}, i.e. τ � τ(Y). In all of our applications, we use

a real-valued statistic; that is, we assume that τ ∈ R (in other words, we do not consider

vector-valued statistics).

UnderH0, the cumulative distribution function (CDF) of τ is denoted with

F(τ)
0

(u) �

∫

Y:τ(Y)≤u

f (Y)(Y;θ0)dY, u ∈ R, (27)
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where θ0 is the true parameter value.

Testing H0 against H1, via τ as a test statistic, requires to know Y and the functional

form of the distribution u→ F(τ)
0

(u). Since they are both unknown (except for a few cases

in which the distribution of τ can be computed analytically), we replaceYwith its realized

counterpart Ŷ �
{

ŶD, ŶD−1, . . . , Ŷ1

}

, obtained from equation (26), while we estimate the

distribution F(τ)
0

via parametric bootstrap8 (Efron and Tibshirani, 1993; MacKinnon, 2009).

In what follows, we use the notation τ̂ � τ
(

Ŷ
)

to denote the statistic τ computed from Ŷ.

If the observed statistic τ̂ is compatible (in a statistical sense) with the distribution

under the null, i.e., ifH0 is not rejected, then we conclude that the volatility and illiquidity

dynamics is of MGARCH-VAR type. Conditionally on this finding, we test the statistical

significance of the bootstrap expected value of the statistic τ under the null. Should the

expected value be statistically different from zero, we could have evidence in favor or

against the conjecture, depending on the statistic and its sign. Later in the text, we go into

more detail about this feature.

Should, instead, H0 be rejected, we interpret this event as empirical evidence of the

presence of extra volatility and illiquidity dynamic, i.e., in addition to the volatility and

illiquidity dynamic captured by the MGARCH-VAR model. Again, depending on the

statistic and its sign, this rejection could be in favor or against the conjecture under study,

as will be apparent from the following four sections.

7.1 Volatility and illiquidity co-movements

Let
(

i, j
)

be a couple of given indexes, each from 1 to M, where M is the number of

elements of the vectors
{

Ŷd

}

defined in (26). Let Ŵ(i, j) be the estimated sample second

moment of the residuals
(

Û(i)

d
, Û

( j)

d

)

of the MGARCH-VAR model in equation (21). Let

HAC[ · ] denote heteroskedasticity and autocorrelation robust standard errors9 and let

ti, j � Ŵ(i, j)
/

HAC
[

Ŵ(i, j)
]

. Consider the statistic

CM �

∑

i< j=2,...,M

1(ti, j > 2.33) −
∑

i< j=2,...,M

1(ti, j < −2.33). (28)

8The parametric bootstrap requires to draw K sequences from the DGP of the MGARCH-VAR model,

indexed by the estimated parameters. From each simulated sequence, a replicate of the statistic τ, denoted

with τ̃ j, for j = 1, . . . ,K, is computed. The empirical CDF of the collection {τ̃ j}, denoted with F̂, is then taken

as the estimate of the true distribution F(τ)
0

, defined in equation (27). Under appropriate conditions and

under the nullH0, it can be proved that F̂ is a consistent estimator of F(τ)
0

.
9In this paper we adopt the formula proposed by Newey and West (1987).
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The CM statistic represents thus the number of sample covariances of {Ûd} that are signif-

icant at 1% level in a right-tailed t-test, in excess with respect to the number of sample

covariances of {Ûd}, significant at 1% level in a left-tailed t-test. The rationale behind the

quantity in (28) is simple: assuming a diagonal W (i.e., in the absence of co-movements in

the MGARCH-VAR residuals), in the limit D −→ ∞, the distribution of CM is centered at

zero. Hence, we interpret statistically positive (resp. negative) values of CM as a signal

of positive (resp. negative) co-movements in the VAR residuals10. Accordingly, being CM

a measure of volatility and illiquidity co-movements, we select it as a statistic associated

with the first conjecture.

Concerning the 15 samples of 10 stocks each, the test results are reported in Table 2.

Consider, for instance, sample 12. The value of the CM statistic is 196, which is

insignificant, at 5% level, underH0. This does not mean we do not find evidence favoring

the first conjecture. In fact, for sample 12, the bootstrap expected value under H0 for

the statistic CM is equal to 187.2 and, most importantly, is significant at 1‰. Therefore,

conditionally on the assumption of a correctly specified model, the hypothesis of zero

MGARCH-VAR co-movements is rejected at 1‰ in favor of strictly positive co-movement.

In some other cases, the statistic is more sensitive. Consider, for this purpose, sample

1. In this case, the CM shows a value of 160, which turns out to be significant at 1%.

Similarly, its expected value under the null H0 is 112.8, which is significant at 1‰. As

anticipated in the previous section, we view this finding as supporting the existence of

extra positive co-movements, i.e., in addition to the positive co-movements captured by

the MGARCH-VAR model. This empirical result is stable across all samples, except for

sample 9 and sample 15, for which the null hypothesis of MGARCH-VAR dynamics is not

rejected.

It’s worth investigating the dynamics of co-movements more thoroughly. Following

indications from the theoretical and empirical literature11, we look for the presence of

10Our measure of co-movements, CM, is inspired by Proposition 6-(i) of Brunnermeier and Pedersen

(2009). Here, co-movements are defined in terms of conditional covariances of {Yd}. Within our MGARCH-

VAR framework, the conditional covariances of {Yd} coincide with the conditional covariances of the VAR

residuals. The conditional covariances of the VAR residuals are the main ingredient for the computation of

CM. Of course, other measures of co-movements would serve the purpose.
11The equilibrium model of Brunnermeier and Pedersen (2009) is characterized by commonality in

liquidities. Chordia et al. (2000) and Karolyi et al. (2012) provide an empirical study of the commonality in

liquidities.
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co-movements in illiquidity. For this purpose, we partition the matrix Ŵ as

Ŵ =

























Ŵς,ςIN,N Ŵς,λIN,N Ŵς,φIN,1

Ŵλ,ςIN,N Ŵλ,λIN,N Ŵλ,φIN,1

Ŵφ,ςI1,N Ŵφ,λI1,N Ŵφ,φI1,1

,

























with obvious notation. From the blocks in Ŵ we compute test statistics, analogous to

CM, denoted with CMς,ς, CMλ,ς, CMφ,ς, CMλ,λ, and CMφ,λ.12 The corresponding empirical

findings are reported in the rows from the second to the sixth of Table 2. We find evidence

of extra positive co-movements in stocks’ market illiquidities (see row CMλ,λ) and strong

evidence of extra positive co-movements in stocks’ fundamental volatilities (see row

CMς,ς). We notice that, even in the absence of extra positive co-movements, the MGARCH-

VAR co-movements are of a positive kind (see row CMφ,ς).

7.2 Asymmetric co-movements

We say that volatility and illiquidity co-movements are asymmetric if they are stronger

when the funding liquidity tightens13. A way to look for such a kind of asymmetry is to

regress the pairwise conditional correlations of
{

Ŷd

}

on the (log) funding illiquidity. To be

more specific, let us consider the regressions

ˆ̺
(i, j)

d
= a

(i, j)

0
+ a

(i, j)

1
log Φ̂d + ε

(i, j)

d
,

for i < j, where

ˆ̺
(i, j)

d
� Ĥ

(i, j)

d

/

√

Ĥ(i,i)

d
· Ĥ( j, j)

d
(29)

is the estimated conditional correlation of (Y(i)

d
,Y

( j)

d
) delivered by the MGARCH-VAR

estimation output. If a
(i, j)

1
is positive, the estimated co-movements in (Y(i)

d
,Y

( j)

d
) increase

with the funding illiquidity. Our across-stocks measure of asymmetric co-movements is

thus defined as

AC �

∑

i< j=2,...,M

1
(

ti, j > 2.33
)

−
∑

i< j=2,...,M

1
(

ti, j < −2.33
)

,

where now the t-statistics are defined as ti, j � â
(i, j)

1
/HAC[â

(i, j)

1
], with â

(i, j)

1
the OLS estimator of

a
(i, j)

1
. Positive (resp. negative) values of AC indicate positive (resp. negative) asymmetric

12For instance, in CMλ,ς =
∑

N+1≤i≤2N,1≤ j≤N 1(ti, j > 2.33) −∑N+1≤i≤2N,1≤ j≤N 1(ti, j < −2.33), only the pairwise

second moments between a stock market illiquidity and stock volatility are considered.
13See, e.g., Brunnermeier and Pedersen (2009), Proposition 6-(ii) and their Section 6.
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Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Range *

CM 160∗∗
112.8∗∗∗ 154∗

126.7∗∗∗ 184∗
167.1∗∗∗ 195∗∗

148.7∗∗∗ 190∗
171.9∗∗∗ 164∗

101.2∗∗∗ 195∗∗
173.5∗∗∗ 165∗

130.6∗∗∗ 187
172.0∗∗∗ 197∗

185.2∗∗∗ 182∗
163.0∗∗∗ 196

187.2∗∗∗ 173∗
135.3∗∗∗ 147∗

128.5∗∗∗ 190
176.0∗∗∗ ±210 12

CMς,ς 45∗∗∗
31.6∗∗∗ 42∗

32.1∗∗∗ 45∗∗∗
44.6∗∗∗ 45∗∗∗

31.8∗∗∗ 45∗∗∗
44.2∗∗∗ 44∗

21.4∗∗∗ 45∗∗∗
41.7∗∗∗ 44∗29.6∗∗∗ 45∗∗∗

45.0∗∗∗ 45∗∗∗
45.0∗∗∗ 45∗∗∗

44.1∗∗∗ 45∗∗∗
45.0∗∗∗ 44

34.4∗∗∗ 4238.2∗∗∗ 45∗∗∗
44.9∗∗∗ ±45 13

CMλ,ς 61
41.9∗∗∗ 51

46.2∗∗∗ 8779.9∗∗∗ 92∗∗
68.4∗∗∗ 8878.9∗∗∗ 66

41.8∗∗∗ 90∗77.9∗∗∗ 77∗
61.3∗∗∗ 89

84.2∗∗∗ 98∗92.0∗∗∗ 8272.8∗∗∗ 93
91.3∗∗∗ 79

61.9∗∗∗ 5950.6∗∗∗ 9286.2∗∗∗ ±100 4

CMφ,ς 75.8∗∗∗ 85.7∗∗∗ 33.6∗∗∗ 55.6∗∗∗ 55.2∗∗∗ 65.6∗∗∗ 66.0∗∗∗ 3
4.1∗∗∗ 76.5∗∗∗ 3

4.8∗∗∗ 65.6∗∗∗ 76.2∗∗∗ 65.8∗∗∗ 7
5.1∗∗∗ 45.2∗∗∗ ±10 0

CMλ,λ 37∗
24.0∗∗∗ 43∗∗33.2∗∗∗ 42∗∗

31.5∗∗∗ 44∗∗
34.2∗∗∗ 43∗∗

34.7∗∗∗ 39∗∗
24.3∗∗∗ 44∗38.2∗∗∗ 3127.0∗∗∗ 38∗

28.1∗∗∗ 42∗35.0∗∗∗ 39∗
31.2∗∗∗ 42∗35.8∗∗∗ 35

24.7∗∗∗ 3025.6∗∗∗ 42∗∗
31.6∗∗∗ ±45 12

CMφ,λ 10∗∗∗9.5∗∗∗ 10∗∗∗9.5∗∗∗ 7
7.4∗∗∗ 98.8∗∗∗ 98.9∗∗∗ 9

8.1∗∗∗ 10∗∗∗9.7∗∗∗ 10∗∗∗8.7∗∗∗ 88.2∗∗∗ 9∗8.5∗∗∗ 10∗∗∗9.3∗∗∗ 98.9∗∗∗ 98.6∗∗∗ 99.0∗∗∗ 7
8.1∗∗∗ ±10 6

AC 81∗∗∗−0.1
123∗∗∗−0.0 62∗0.0 89∗∗−0.4

117∗∗∗
0.1

44
0.1

127∗∗∗−0.0 80∗∗−0.1
57∗−0.0 43∗∗

0.1
132∗∗∗−0.1

37∗
0.1

104∗∗∗0.3 54∗∗
0.1

93∗∗∗−0.0 ±210 14

ACς,ς 28∗∗−0.1
36∗∗∗−0.0 39∗∗∗0.0 27∗−0.2 36∗∗∗0.0 70.0 42∗∗∗

0.1
23∗0.0 41∗∗∗

0.1
44∗∗∗

0.1
44∗∗∗

0.1
35∗∗∗0.0 32∗∗0.0 21∗−0.0 43∗∗∗−0.1

±45 14

ACλ,ς 31∗0.0 54∗∗∗0.0 −5
0.1

27−0.2 46∗∗0.0 12
0.1

38∗∗−0.1
32∗−0.1

−3−0.1
−28∗∗0.0 45∗∗∗−0.0 −22∗−0.0 50∗∗0.2 7

0.1
130.0 ±100 9

ACφ,ς 8∗∗0.0 9∗∗∗−0.0 9∗∗∗−0.0 7∗∗−0.0 9∗∗∗−0.0 7∗0.0 9∗∗∗−0.0 7∗∗−0.0 10∗∗∗−0.0 10∗∗∗−0.0 9∗∗∗−0.0 10∗∗∗0.0 9∗∗∗0.0 6∗
0.1∗ 9∗∗0.0 ±10 15

ACλ,λ 16∗−0.1
20∗∗∗0.0 20∗∗−0.1

27∗∗∗0.0 25∗∗∗−0.0 17∗−0.0 29∗∗∗−0.1
14∗

0.1
70.0 15∗0.0 31∗∗∗−0.1

15∗∗
0.1

13
0.1

15∗∗−0.0 30∗∗∗−0.1
±45 13

ACφ,λ −20.0 4−0.1
−10.0 10.0 10.0 10.0 9∗∗∗0.0 4−0.0 20.0 2−0.0 30.0 −1−0.0 0−0.0 50.0 −2

0.1∗ ±10 1

QL1 0.45∗
0.34∗∗∗ 0.48∗∗∗0.33∗∗∗ 0.60∗∗0.55∗∗∗ 0.51∗∗∗

0.34∗∗∗ 0.70
0.71∗∗∗ 0.46∗

0.34∗∗∗ 0.67∗
0.61∗∗∗ 0.35∗∗∗0.23∗∗∗ 0.530.56∗∗∗ 0.610.62∗∗∗ 0.53∗

0.44∗∗∗ 0.670.65∗∗∗ 0.48
0.43∗∗∗ 0.27

0.17∗∗∗ 0.42
0.41∗∗∗ ±1 8

QL2 6∗∗6.0∗∗∗ 86.7∗∗∗ 9
8.4∗∗∗ 8∗7.9∗∗∗ 10∗∗∗

10.0∗∗∗ 87.7∗∗∗ 10∗∗∗9.6∗∗∗ 77.0∗∗∗ 10∗∗∗9.9∗∗∗ 10∗∗∗
10.0∗∗∗ 10∗∗∗9.2∗∗∗ 10∗∗∗

10.0∗∗∗ 8∗8.0∗∗∗ 65.3∗∗∗ 10∗∗∗9.8∗∗∗ ±10 10

FQ1 −0.26−0.24∗∗∗ −0.10−0.08∗∗∗ 0.020.02∗∗∗ −0.14∗−0.07∗∗∗ −0.24−0.17∗∗∗ −0.17−0.10∗∗∗ 0.09
0.11∗∗∗ −0.34∗−0.27∗∗∗ −0.39−0.36∗∗∗ −0.29−0.26∗∗∗ −0.34∗∗−0.25∗∗∗ −0.16−0.15∗∗∗ 0.02

0.10∗∗∗ −0.12∗∗∗−0.04∗∗∗ −0.28−0.24∗∗∗ ±1 4

FQ2 5∗∗−0.2∗∗∗ 8∗∗∗−0.8∗∗∗ 9∗∗∗−0.1∗∗∗ 5∗−0.3∗∗∗ 4∗−0.6∗∗∗ 8∗∗∗−0.5∗∗∗ 4∗−0.6∗∗∗ 8∗∗∗−0.5∗∗∗ 4∗∗−0.2∗∗∗ 8∗∗∗−0.5∗∗∗ 5∗∗−0.4∗∗∗ 8∗∗−0.6∗∗∗ 7∗∗−0.5∗∗∗ 6∗∗∗−0.4∗∗∗ 5∗∗−0.3∗∗∗ ±10 15

Table 2: Test results. For each test in row, and each sample in column, the observed test statistic, τ̂, and the mean of the

bootstrap replicates, τ̃, are reported, arranged as τ̂
sgnf

τ̃
sgnf . For τ̂, superscript “sgnf ” denotes significance in the bootstrap test.

For τ̃, superscript “sgnf ” denotes significance of the attached t-statistic in the bootstrap experiment. The levels considered

are 5%, 1%, and 1‰, denoted with “∗”, “∗∗”, and “∗∗∗”, respectively. No superscript is reported in the case of insignificance at

the 5% level. The second-last column reports the range of the test statistics. The last column reports the number of significant

samples in the bootstrap test. Consider, for instance, the result of CM on sample 1, written as 160∗∗
112.8∗∗∗ . The observed CM

equals 160, which is significant in the bootstrap test at the 1% level. The bootstrap mean of CM is 112.8, which is significant

in the bootstrap experiment at 1‰ level. The range of CM is ±210, and the number of samples that are significant in the

bootstrap test is 12.
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co-movements in the components of
{

Ŷd

}

. The theoretical predictions are typically in favor

of positive asymmetry.

Moving to the test results in Table 2, we notice that, apart from sample 6, the null

hypothesis of MGARCH-VAR dynamics is always rejected. Since the observed AC is

always positive, the evidence is in favor of positively asymmetric co-movements. We also

notice that the bootstrap mean of AC is never significant in the bootstrap experiment. This

suggests that the co-movements generated by the MGARCH-VAR process are symmetric.

The equilibrium model of Brunnermeier and Pedersen (2009) is characterized by “com-

monality of fragility”, a prediction of positively asymmetric co-movements in stocks’ mar-

ket illiquidities14. In our framework, a test statistic specific for commonality of fragility

can be computed similarly to AC, as long as only the conditional correlations between

stocks’ market illiquidities are involved. The test statistic, denoted with ACλ,λ, reads

ACλ,λ �

∑

N<i< j=N+2,...,2N

1
(

ti, j > 2.33
)

−
∑

N<i< j=N+2,...,2N

1
(

ti, j < −2.33
)

.

In line with the prediction, the hypothesis of symmetric (MGARCH-VAR) co-movements

is rejected on 13 samples (see row ACλ,λ of Table (2)).

Also of interest are the tests denoted by ACς,ς, ACλ,ς, ACφ,ς, and ACφ,λ, with obvious

notation. As shown in Table 2, most tests are in favor of the prediction of positively

asymmetric co-movements. One exception is the test based on ACφ,λ, according to which,

apart from sample 7, the null hypothesis of symmetric (MGARCH-VAR) co-movements

is never rejected. We conclude that the level of funding illiquidity does not affect the

co-movements between funding illiquidity and stock market illiquidity.

7.3 Quality-and-liquidity

The quality-and-liquidity conjecture predicts that stocks with lower volatility should be

associated with higher market liquidity15. We test for quality and liquidity both at a

cross-sectional level and at a time series level.

At a cross-sectional level, we measure quality-and-liquidity with

QL1 �
1

D

∑

d=1,...,D

ˆ̺(QL)

d
,

14See Proposition 6-(ii) in Brunnermeier and Pedersen (2009).
15See, e.g., Brunnermeier and Pedersen (2009), Proposition 6-(iii).
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where ˆ̺(QL)

d
is the sample rank correlation between the estimated stocks’ fundamental

volatilities, (ς̂(1)

d
, . . . , ς̂(N)

d
), and the estimated stocks’ market illiquidities, (Λ̂(1)

d
, . . . , Λ̂(N)

d
).

Positive values of QL1 indicate cross-sectional quality-and-liquidity.

The tests based on QL1 return evidence of extra (with respect to the MGARCH-VAR

dynamics) cross-sectional quality-and-liquidity on eight samples (see Table 2). In the

remaining seven samples, the null hypothesis of MGARCH-VAR dynamics is not rejected.

In these samples, the bootstrap mean of QL1 is positive and highly significant, which shows

that the MGARCH-VAR model captures significant cross-sectional quality and liquidity.

At a time series level, we regard quality-and-liquidity as the propensity of stocks to

become less liquid when they become more volatile (a sort of dynamic quality-and-liquidity

effect). Given the regression model

log Λ̂(i)

d
= b(i)

0
+ b(i)

1
log ς̂(i)

d
+ ε(i)

QL,d
,

a measure of dynamic quality-and-liquidity for stock i is the slope of the regression, b(i)

1
. If

b(i)

1
> 0, there is dynamic quality-and-liquidity in stock i. Therefore, as an overall measure,

across stocks, of dynamic quality-and-liquidity we can compute

QL2 �

∑

i=1,...,N

1 (ti > 2.33) −
∑

i=1,...,N

1 (ti < −2.33) ,

with t-statistics defined as ti � b̂(i)

1
/HAC[b̂(i)

1
], where b̂(i)

1
is the OLS estimator of b(i)

1
. Large

values of QL2 indicate overall, across stocks, dynamic quality-and-liquidity16.

We find evidence of extra dynamic quality and liquidity on ten samples (see Table

2). The null hypothesis of MGARCH-VAR dynamics in the remaining five samples is not

rejected. In these samples, the bootstrap mean of QL2 is positive and highly significant,

which means that the MGARCH-VAR model captures significant dynamic quality and

liquidity.

7.4 Flight-to-quality

According to the predictions of the flight-to-quality conjecture, we expect that when fund-

ing liquidity is tight, high-volatility stocks are more sensitive to changes in the funding

liquidity than low-volatility stocks17.

16In Section 7.1 we tested for co-movements in the shocks to
{

Λ
(i)

d

}

and
{

ς
(i)

d

}

. The test based on QL2 can

be seen as a test of co-movements in the levels of
{

Λ
(i)

d

}

and
{

ς
(i)

d

}

.
17See, e.g., Brunnermeier and Pedersen (2009), Prop. 6-(iv), equation (30).
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As a measure of cross-sectional flight-to-quality we compute

FQ1 �
1

D

∑

d=1,...,D

ˆ̺(FQ)

d
,

where ˆ̺(FQ)

d
is the sample rank correlation between the estimated stocks’ fundamental

volatilities, (ς̂(1)

d
, . . . , ς̂(N)

d
), and the vector ( ˆ̺(N+1,M)

d
, . . . , ˆ̺(2N,M)

d
) of the estimated conditional

correlations of (log Λ̂(i)

d
, log Φ̂d), for i = 1, . . . ,N (see equation (29)). Positive values of FQ1

are associated with flight-to-quality.

Looking at the empirical results in Table 2, we notice that the null hypothesis of

MGARCH-VAR dynamics is not rejected on 11 samples. Surprisingly, the bootstrap mean

of FQ1 is overall negative and significant, thereby suggesting a sort of flight-from-quality

captured by the MGARCH-VAR model. The unexpected result is likely due to model

misspecification. The misspecification is not detected by FQ1, perhaps because of poor

power.

At a time series level, a measure of flight-to-quality for stock i is the interaction coeffi-

cient in the regression model

log Λ̂(i)

d
= c(i)

0
+ c(i)

1
log ς̂(i) + c(i)

2
log Φ̂d + c(i)

3

(

ς̂(i)

d
log Φ̂

d

)

+ ε(i)

FQ,d
.

If c(i)
3

is positive,
{

Λ̂(i)

d

}

is more sensitive to
{

Φ̂
d

}

in periods of high stock volatility than

in periods of low stock volatility (dynamic flight-to-quality). Across stocks, an overall

measure of dynamic flight-to-quality is then

FQ2 �

∑

i=1,...,N

1 (ti > 2.33) −
∑

i=1,...,N

1 (ti < −2.33) ,

with t-statistics defined as ti � ĉ(i)
3
/HAC[ĉ(i)

3
], where ĉ(i)

3
is the OLS estimator of c(i)

3
. Positive

values of FQ2 indicate dynamic flight-to-quality, whereas negative values are associated

with dynamic flight-from-quality.

In line with the prediction of flight-to-quality, the observed FQ2 is always positive

(see Table 2). Moreover, it is always significant against the null hypothesis of MGARCH-

VAR dynamics. We notice that the misspecified MGARCH-VAR model still captures

unexpected flight-from-quality, as the bootstrap mean of FQ2 is negative and significant.

However, differently from the test based on FQ1, the test based on FQ2 has power against

the misspecification as the MGARCH-VAR model is always rejected.
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8 Conclusions

Market and funding illiquidity are two essential features of financial markets, as they

are related to the inner functioning of the trading activity. Providing a clear definition

and estimation of them is challenging, as they are elusive and multifaceted. In this

paper, we give notions of daily realized market and funding (ill-)liquidity built from a

micro-founded structural model of price formation. Our modeling approach aligns with

previous contributions and extends across different directions, allowing uninformed and

partially informed traders, the latter facing idiosyncratic and systematic transaction costs.

Suitable parametric assumptions allow the likelihood of the model to be written explicitly

and, accordingly, to derive efficient estimators of the model parameters. Once estimated

with high-frequency intra-day transaction prices (the unique kind of data necessary to

carry out the estimation), the model provides daily estimates of stocks’ volatility, market,

and funding illiquidities. Using a large dataset of NYSE-listed stocks, we thus obtain esti-

mated daily time series of stocks’ volatilities, market illiquidities, and funding illiquidity,

the latter being assumed to be systemic, i.e., common across all stocks. We study the

reciprocal influence among these estimated time series by testing four conjectures, sum-

marized from previous theoretical literature results. In this respect, our empirical exercise

delivers robust statistical evidence in favor of four stylized facts: 1) stocks’ volatilities and

illiquidities (market and funding) show positive co-movements, 2) these co-movements

are asymmetric in the sense that they are stronger when funding liquidity dries-up, 3)

market illiquidity is higher for higher volatility stocks and 4) when funding liquidity

dries-up, high-volatility stocks are more sensitive to changes in funding liquidity than

low-volatility stocks.
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A Proofs

Proof of Theorem 3.1. For any t = 1, . . . ,T, the conditional expectations of gt satisfies: i)

E
{

gt

∣

∣

∣ gt−1 = −g
}

= −g T11 +0 T12 + g T13 = −gω + 0(1 − ω) + 0g = −ωg; ii) E
{

gt|gt−1 = 0
}

=

−g T21 +0 T22 +g T23 = −g(1 − ψ)/2 + 0ψ + g(1 − ψ)/2 = 0 = ω0, and iii) E
{

gt|gt−1 = g
}

=

−g T31 +0 T32 + g T33 = −g0+ 0(1−ω)+ωg = ωg. Hence, in general, we have E
{

gt

∣

∣

∣ gt−1

}

=

ωgt−1, which means that the process {ut}, with ut � gt − ωgt−1, is a martingale difference.

Since {νt} is a Gaussian white noise independent of
{

gt

}

, the processes {(ut, νt)} and
{

(ηt, ζt)
}

are martingale differences, which proves that E
{

ηt|Ēt−1

}

= E
{

ζt|Ēt−1

}

= 0. Then, to prove

that assumptions (3) and (5-6) hold, with (σ2
η, σ

2
ζ
) = (a, b), it remains to prove that

E
{

η2
t

}

= a, E
{

ζ2
t

}

= b, and E
{

ηtζt

}

= 0. (30)

Given the transition matrix of
{

gt

}

, and the distribution of g0, the process
{

gt

}

is strictly

stationary with stationary low as in (14) (See, e.g., Hamilton, 1994, Chapter 22.2). 18 The

stationary low is symmetric around zero, and, hence, E
{

gt

}

= 0. Therefore, applying (12)

and (14), the variance of
{

gt

}

coincides with the second moment of
{

gt

}

,

E
{

g2
t

}

= g2
P
{

g0 = −g
}

+ 0P
{

g0 = 0
}

+ g2
P
{

g0 = g
}

= ω2(a + b)/(1 − ω2).

On the other hand, since gt = ωgt−1 + ut is a stationary AR(1) process, it holds that

E
{

g2
t

}

= E
{

u2
t

}

/(1 − ω2) (Hamilton, 1994). It follows that E
{

u2
t

}

= ω2(a + b). Applying

E
{

ν2
t

}

� (ab)/(a+ b), the independence of {νt} and {ut} , and the definition of
{

(ηt, ζt)
}

in (10),

simple calculations yields (30), which completes the proof of the first part of the theorem.

As for the second part, recalling that ēt = ēt−1+ηt, and noticing that mt = mt−1+δ(ēt−mt−1)+

(1− δ)ζt = δēt−1 + δηt +ωmt−1 +ωζt,we can write ēt −mt = ω(ēt−1 −mt−1)+ω(ηt − ζt),where

ω(ηt−ζt) = ω(γηut+γζut) = ω(γη+γζ)ut = ω(1/ω)ut = ut.Hence, ēt−mt = ω(ēt−1−mt−1)+ut.

Since gt = ωgt−1 + ut, we have ēt −mt = gt. �

Proof of Theorem 3.2. From the definition of {st} given in Section 3.2, for t > 0 we have,

a.s.,

st = 0⇐⇒ pt = pt−1, st = −s⇐⇒ mt = pt + s and st = s⇐⇒ mt = pt − s. (31)

Hence, letting f (m)

t−1
(mt) denote the probability density function (PDF) of mt|Ft−1, we can

write ft−1(pt) as

ft−1

(

pt

)

= P {st = 0 | Ft−1} · 1
(

pt = pt−1

)

+ P {st = −s | Ft−1} · f (m)

t−1

(

pt + s
)

+P {st = s | Ft−1} · f (m)

t−1

(

pt − s
)

.

18The vector of the stationary probabilities coincides with the left eigenvector of T associated with the

unit eigenvalue.
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Recall that whenever a price change occurs, we have pt = mt + st, with st = ±s. Whence,

applying the law of total probability, for q = 0, 1, . . . and for tq < t ≤ tq+1 we can write

ft−1(pt) =
∑

st=0, (gt,stq ,gtq )∈G×S×G

Pt−1(st, gt, stq , gtq) · 1(pt = pt−1)+

∑

st=−s, (gt,stq ,gtq )∈G×S×G

Pt−1(st, gt, stq , gtq) · f (m)

t−1
(pt + s|gt, stq , gtq)+

∑

st=+s, (gt,stq ,gtq )∈G×S×G

Pt−1(st, gt, stq , gtq) · f (m)

t−1
(pt − s|gt, stq , gtq),

(32)

where f (m)

t−1
(mt|gt, stq , gtq) denotes the PDF of mt|(gt, stq , gtq ,Ft−1). Suppose, for a moment, that

the latter PDF satisfies

f (m)

t−1
(mt|gt, stq , gtq) = fG(mt;µ

(m)
t , λt), (33)

with µ(m)
t � ptq + ρgt − stq + ξgtq . Rewriting µt as µt = ptq + st + ρgt − stq + ξgtq = µ

(m)
t + st, and

applying (31), we could write

f (m)

t−1
(pt + s|gt, stq , gtq) = fG(pt;µt, λt), for st = −s, (34)

and

f (m)

t−1
(pt − s|gt, stq , gtq) = fG(pt;µt, λt), for st = s. (35)

Then, replacing f (m)

t−1
(pt+s|gt, stq , gtq) and f (m)

t−1
(pt−s|gt, stq , gtq) in (32) with fG(pt;µt, λt),would

prove the theorem. Hence, all we need to prove the theorem is that equation (33) holds.

This is done as follows.

Recalling that mt = mt−1 + δ(ēt −mt−1) + (1 − δ)ζt, where δ ∈ (0, 1), we write mt = mt−1 +

δ(ēt−mt+mt−mt−1)+(1−δ)ζt, that we rearrange as (1−δ)mt = (1−δ)mt−1+δ(ēt−mt)+(1−δ)ζt.

Dividing both sides by 1 − δ, and using the three equalities 1) ω = 1 − δ, 2) ζt = νt − γζut

and 3) ut = gt−ωgt−1, we can write mt = mt−1+ (δ/ω)gt+νt−γζ(gt−ωgt−1), or, equivalently,

mt = mt−1 + (δ/ω−γζ)gt + (γζω)gt−1 + νt.Having defined ρ = δ/ω−γζ and ξ = γζω, we can

write mt as mt = mt−1 + ρgt + ξgt−1 + νt. Then, by backward substitutions, we can write mt

as

mt = mtq + ρgt + ξgtq + (ρ + ξ)

t−1
∑

j=tq+1

g j +

t
∑

j=tq+1

ν j.

Recalling that t is such that tq < t ≤ tq+1, from time tq + 1 to time t − 1 the transaction price

is constant, that is,

ptq+1 = ptq+2 = · · · = pt−2 = pt−1.
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This implies in turns that gtq+1 = gtq+2 = · · · = gt−2 = gt−1 = 0, which yields (ρ+ξ)
∑t−1

j=tq+1 g j =

0. Hence, we can write mt as

mt = mtq + ρgt + ξgtq +

t
∑

j=tq+1

ν j.

Recalling that ptq = mtq + stq , we can further write

mt = ptq − stq + ρgt + ξgtq +

t
∑

j=tq+1

ν j.

Now, conditionally on Ftq , the distribution of
∑t

j=tq+1 ν j is N(0, λt), with λt = (t − tq)σ
2
ν.

Moreover, {νt} is independent of {(gt, st

)} (see the definitions in Theorem 3.1). Therefore,

the distribution of mt given (gt, stq , gtq ,Ftq) is normal, with mean ptq + ρgt − stq + ξgtq and

variance λt, or

mt|(gt, stq , gtq ,Ftq) ∼ N(µ(m)
t , λt). (36)

Recall that, for t = tq + 1, tq + 2, . . . , tq+1 − 1, the price sequence is stale, i.e., it remains

constant. Accordingly, we can replace Ftq in (36) with Ft−1, getting

mt|(gt, stq , gtq ,Ft−1) ∼ N(µ(m)
t , λt),

which proves (33). �

B Forward recursion for the mixture weights

The mixture weights required for the computation of ft−1(pt) can be computed in closed

form via Bayesian forward recursion, as follows.

For q = 0, 1 . . . and for tq < t ≤ tq+1, we define the process {at} setting at � (st, gt, stq , gtq),

with the convention that a0 � (s0, g0, s−1, g−1) � (0, 0, 0, 0).19 By means of this notation,

ft−1(pt) can be written, more compactly, as

ft−1(pt) =
∑

at∈S×G×S×G

Pt−1(at) · ft−1(pt|at),

19For instance, assuming that, for a given q, we have tq−1 = 3, tq = 6, and tq+1 = 8, we get, for tq−1 < t ≤ tq

and tq < t ≤ tq+1,

t = 4 =⇒ a4 = (s4, g4, stq−1
, gtq−1

) = (s4, g4, s3, g3),

t = 5 =⇒ a5 = (s5, g5, stq−1
, gtq−1

) = (s5, g5, s3, g3),

t = 6 =⇒ a6 = (stq
, gtq

, stq−1
, gtq−1

) = (s6, g6, s3, g3),

t = 7 =⇒ a7 = (s7, g7, stq
, gtq

) = (s7, g7, s6, g6),

t = 8 =⇒ a8 = (s8, g8, stq
, gtq

) = (s8, g8, s6, g6).
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where ft−1(pt|at) � 1(pt = pt−1) for st = 0, and ft−1(pt|at) � 1(pt , pt−1) · fG(pt;µt, λt) for st = ±s.

The mixture weights are now denoted with Pt−1(at), for at ∈ S × G × S × G.

Assuming that the posterior distribution, Pt−1(at−1) � P(at−1|Ft−1), is known, and that

the transition distribution, Pt−1(at|at−1) � P(at|at−1,Ft−1) is known, the mixture weights are

computed via prediction step, as

Pt−1(at) =
∑

at−1∈A

Pt−1(at|at−1) · Pt−1(at−1).

The new posterior distribution is computed next via the filtering step, as

Pt(at) =
ft−1(pt|at) · Pt−1(at)

∑

ãt∈A ft−1(pt|ãt) · Pt−1(ãt)
. (37)

Since a0 is known, the initial posterior distribution, P0(a0), is known. Therefore, all we

need to run the entire forward recursion in closed form is a closed-form expression

of the transition distribution, Pt−1(at|at−1), for all t ≥ 1. This closed-form expression is

derived in two steps. First we derive a closed-form expression for Pt−1(st, gt|st−1, gt−1) �

P(st, gt|st−1, gt−1,Ft−1). Then, we write Pt−1(at|at−1) in terms of the closed form of Pt−1(st, gt|st−1, gt−1).

As for the closed form of Pt−1(st, gt|st−1, gt−1), let us write

Pt−1(st, gt|st−1, gt−1) = Pt−1(st|gt, st−1, gt−1) · Pt−1(gt|st−1, gt−1).

The probabilities distributions on the right hand side, Pt−1(st|gt, st−1, gt−1) and Pt−1(gt|st−1, gt−1),

can be written in closed form as follows.

From assumptions (7–8), it follows that the distribution of st given (gt, st−1, gt−1,Ft−1),

turns out to be affected only by gt. Therefore, Pt−1(st|gt, st−1, gt−1) can equivalently be

written as P(st|gt). Applying assumptions (7–8), we get P(st|gt) in closed form as in the

following scheme,

P(st|gt) =

st = −s st = 0 st = s

(1 + π)/2 0 (1 − π)/2 gt = −g

(1 − π)/2 π (1 − π)/2 gt = 0

(1 − π)/2 0 (1 + π)/2 gt = g

.

Concerning the closed form of Pt−1(gt|st−1, gt−1), we notice that the distribution of gt given

(st−1, gt−1,Ft−1), is unaffected by conditioning on (st−1,Ft−1). Therefore, Pt−1(gt|st−1, gt−1) can

equivalently be written as P(gt|gt−1), where P(gt|gt−1) is the transition distribution of gt

given in (13). We can finally write Pt−1(st, gt|st−1, gt−1) as

Pt−1(st, gt|st−1, gt−1) = P(st|gt) · P(gt|gt−1) = P(st|gt−1), (38)
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where P(st|gt) and P(gt|gt−1) have the closed form described above. Since Pt−1(st, gt|st−1, gt−1)

does not depend on t, we shall write P(st, gt|st−1, gt−1) in place of Pt−1(st, gt|st−1, gt−1). Notice

that
{

(st, gt)
}

is a Markov process20. We will make use of the Markov property of
{

(st, gt)
}

in a moment.

Having derived the closed-form expression of P(st, gt|st−1, gt−1), we now write Pt−1(at|at−1)

in terms of P(st, gt|st−1, gt−1). In doing this, it is convenient to write Pt−1(at|ãt−1) in place of

Pt−1(at|at−1), with ãt−1 � (s̃t−1, g̃t−1, s̃tq−1
, g̃tq−1

) ∈ S×G× S×G.We shall distinguish two cases,

depending on either t = tq + 1 or tq + 1 < t ≤ tq+1.

If t = tq + 1, we have at|ãt−1 = (stq+1, gtq+1, stq , gtq)
∣

∣

∣(s̃tq , g̃tq , s̃tq−1
, g̃tq−1

). For (stq , gtq) = (s̃tq , g̃tq),

we can write

Pt−1(at|ãt−1) = Ptq(stq+1, gtq+1, stq , gtq |s̃tq , g̃tq , s̃tq−1
, g̃tq−1

) = Ptq(stq+1, gtq+1|s̃tq , g̃tq , s̃tq−1
, g̃tq−1

).

By the Markov property of
{

(st, gt)
}

, the distribution of (stq+1, gtq+1)|(s̃tq , g̃tq , s̃tq−1
, g̃tq−1

,Ftq)

turns out to be unaffected by the conditioning event (s̃tq−1
, g̃tq−1

,Ftq). Therefore, we can

write

Pt−1(at|ãt−1) = P(stq+1, gtq+1|s̃tq , g̃tq) = P(stq+1|g̃tq), (39)

where we applied equation (38). For (stq , gtq) , (s̃tq , g̃tq), which implies a contradiction, the

transition from ãt−1 to at is not possible, yielding Pt−1(at|ãt−1) = 0.

If tq+1 < t ≤ tq+1, we have at|ãt−1 = (st, gt, stq , gtq)
∣

∣

∣(s̃t−1, g̃t−1, s̃tq , g̃tq). For (stq , gtq) = (s̃tq , g̃tq),

we can write

Pt−1(at|ãt−1) = Pt−1(st, gt, stq , gtq |s̃t−1, g̃t−1, s̃tq , g̃tq) = Pt−1(st, gt|s̃t−1, g̃t−1, s̃tq , g̃tq).

Noticing that tq < t − 1, by the Markov property of
{

(st, gt)
}

it follows that the distribution

of (st, gt)|(s̃t−1, g̃t−1, s̃tq , g̃tq ,Ft−1) turns out to be unaffected by conditioning on (s̃tq , g̃tq ,Ft−1).

Therefore, we can write

Pt−1(at|ãt−1) = P(st, gt|s̃t−1, g̃t−1) = P(st|g̃t−1), (40)

where we applied equation (38). For (stq , gtq) , (s̃tq , g̃tq), which implies a contradiction, the

transition from ãt−1 to at is not possible, yielding Pt−1(at|ãt−1) = 0.

In summary, if (stq , gtq) = (s̃tq , g̃tq), we can write Pt−1(at|ãt−1) in terms of the closed form

of P(st, gt|st−1, gt−1) given in equation (38). This is done by applying either (39) or (40),

depending on whether t = tq + 1 or tq + 1 < t ≤ tq+1. If (stq , gtq) , (s̃tq , g̃tq), we have

Pt−1(at|ãt−1) = 0.

20Some states of S×G are inaccessible by
{

(st, gt)
}

. In particular, recalling assumptions (7–8), for t > 0 we

have that P(st, gt|st−1, gt−1) = 0 for all (st−1, gt−1) ∈ S × G, if and only if st = 0 ∧ gt , 0.
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C Estimator of E
{

ē(i)

d,t

∣

∣

∣

∣

FT

}

Recall that, for t = tq+1, we have pt = mt + st. Since, in general, it holds that ēt = mt + gt, if

t = tq+1 we can write ēt = mt + gt = pt − st + gt.
21 Whence, for t = tq+1, we have

E {ēt|FT} = E
{

pt − st + gt|FT

}

= pt − E {st|FT} + E
{

gt|FT

}

. (41)

The expectations, E {st|FT} and E
{

gt|FT

}

, can be computed from the fixed interval smooth-

ing distribution of
{

(st, gt)
}

, denoted with PT(st, gt). The latter is obtained recursively

as

PT(st, gt) = Pt(st, gt) ·
∑

st+1,gt+1

P(st+1, gt+1|st, gt) · PT(st+1, gt+1)
∑

s̃t,g̃t

P(st+1, gt+1|s̃t, g̃t) · Pt(s̃t, g̃t)
,

t = T − 1, t − 2, . . . , 1, where P(st+1, gt+1|st, gt) and Pt(st, gt) are the transition and filtering

distributions of
{

(st, gt)
}

(Kitagawa, 1987). The closed form of P(st+1, gt+1|st, gt) is given in

equation (38) of Appendix B. The closed form of Pt(st, gt) can be derived by marginalization

from the closed form of the filtering distribution of {at}, also derived in Appendix B.

For q = 0, 1, . . . and for tq < t ≤ tq+1, we approximate the smoothing mean, E {ēt|FT},
with the linear interpolant

êt � E
{

ētq |FT

}

+
E
{

ētq+1
|FT

}

− E
{

ētq |FT

}

tq+1 − tq
(t − tq),

where E
{

ētq |FT

}

and E
{

ētq+1
|FT

}

are the exact smoothing mean computed applying (41). If

t = tq+1,22 the approximation is exact, or êt = E {ēt|FT}.

D The estimation of the MGARCH-VAR model

The bivariate composite likelihood adopted here is defined as

L (L,C,W,A,B) �
∑

i< j=2,...,M

L(i, j)
(

L,C,W[i, j],A[i, j],B[i, j]

)

,

where

L(i, j)
(

L,C,W[i, j],A[i, j],B[i, j]

)

�

D
∑

d=1

−1

2

(

4π + log
∣

∣

∣H
[i, j]

d

∣

∣

∣ +U
[i, j]⊤
d

(

H
[i, j]

d

)−1
U

[i, j]

d

)

21To avoid clutter, we drop the stock index, (i), and the day index, d, from the notation.
22That is, whenever a price change occurs.
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is the bivariate Gaussian quasi-log-likelihood associated with the bivariate time series
{

U
[i, j]

d

∣

∣

∣ d = 1, . . . ,D
}

, with U
[i, j]

d
� (U(i)

d
,U

( j)

d
)⊤. Applying (22), the 2 × 2 conditional covari-

ance matrix H
[i, j]

d
satisfies

H
[i, j]

d
=W[i, j] ⊙ (I2,2 − A[i, j] − B[i, j]) + A[i, j] ⊙U

[i, j]

d−1
U

[i, j]⊤
d−1
+ B[i, j] ⊙H

[i, j]

d−1
,

where W[i, j], A[i, j], and B[i, j], denote the appropriate submatrices of W, A, and B.23

After replacing Yd with Ŷd, we fit the MGARCH-VAR parameters in 5 steps.

1. Compute the optimal value, L̂, via minimum-AIC under the convenience assumption

of iid Gaussian innovations24.

2. Compute Ĉ � {ĉ0, Ĉ1, . . . , ĈL̂} via OLS.

3. Compute Ŵ as the sample second moment of the OLS residuals, Ŵ � D−1
∑D

d=1 Û
d

Û⊤
d
.25

4. Compute
{

Â, B̂
}

as a maximizer of the composite likelihood,

{

Â, B̂
}

� argmax{A,B}L
(

L̂, Ĉ, Ŵ,A,B
)

,

subject to positive definiteness of A, B and Ŵ ⊙ (IM,M − A − B
)

.26

5. Compute κ̂ as the ML estimator of κ for fixed (L,C,W,A,B) = (L̂, Ĉ, Ŵ, Â, B̂). This

means to set

κ̂ � argmaxκ>2

D
∑

d=1

{

log
Γ[(M + κ)/2]

Γ[κ/2](κπ)M/2
− 1

2
log |Ŝd| −

M + κ

2
log
(

1 +
1

κ
Û⊤d Ŝ−1

d Ûd

)

}

,

with Ŝd � Ĥd(κ − 2)/κ and Ĥd � Ŵ ⊙ (IM,M − Â − B̂) + Â ⊙ [Û
d−1

Û⊤
d−1

] + B̂ ⊙ Ĥd−1.

Under standard regularity conditions, each step is consistent conditionally on the estima-

tion output of the previous steps. The OLS estimator of the VAR coefficients computed at

step 2 is consistent even if the optimal lag is overestimated.

23The dependence of L(i, j) on (L,C) arises through Ud = Yd − c0 − C1Yd−1 − C2Yd−2 − · · · − CLYd−L.
24This entails to minimize, over L = 0, 1, . . . , the objective function log |D−1

∑D
d=1 Û

d
Û⊤

d
|+ (M+LM2)(2/D),

where
{

Ûd

}

is the time series of the OLS residuals from the VAR(L) model, and (M + LM2) is the number of

parameters in the VAR model.
25This step is the so-called variance targeting introduced by Engle and Mezrich (1996).
26The required positive definite constraint is not of immediate implementation in the empirical cal-

culations. Here, it is imposed via reparameterizations and penalizations of the objective function. A

sophisticated approach, based on a Bregman-proximal trust-region method, is proposed in Bauwens et al.

(2016).
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