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Abstract

Many economic variables are characterized by changes in their conditional
mean and volatility, and time-varying Vector Autoregressive Models are of-
ten used to handle such complexity. Unfortunately, as the number of series
grows, they present increasing estimation and interpretation issues. This pa-
per tries to address this problem by proposing a Multivariate Autoregressive
Index model that features time-varying mean and volatility. Technically, we
develop a new estimation methodology that mixes switching algorithms with
the forgetting factors strategy of Koop and Korobilis (2012). This substan-
tially reduces the computational burden and allows one to select or weigh the
number of common components, and other data features, in real-time without
additional computational costs. Using US macroeconomic data, we provide a
forecast exercise that shows the feasibility and usefulness of this model.

Keywords: Large Vector Autoregressive Models, Multivariate Autoregressive In-
dex Models, Time-Varying Parameter Models, Bayesian Vector Autoregressive Mod-
els.
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1 Introduction

The availability of real-time datasets and the economic instability have changed the

nature of economic models, calling for the development of new methodologies that

capture the ever-changing economic environment. One notable example is Cogley

and Sargent (2002) where they use a small time-varying parameter Vector Autore-

gressive model (TVP-VAR) to detect drifts in inflation-unemployment dynamics.

Other important contributions include Cogley et al. (2005), Cogley and Sargent

(2005), Primiceri (2005) and d’Agostino et al. (2013). These models capture a wide

range of structural instabilities and consistently outperform standard homoskedastic

approaches in terms of forecast accuracy. However, their practical applications are

primarily limited to small-scale systems that involve only a few variables.

The influential paper of Bańbura et al. (2010) shows that large VARs improve

forecast accuracy and provide a more sensible impulse-response analysis. This has

sparked interest in TVP-VARs for large datasets, as shown by Carriero et al. (2009),

Koop (2013), Bańbura et al. (2013), Carriero et al. (2011), Ellahie and Ricco (2017),

and Morley and Wong (2020).

Several papers develop large constant coefficient VARs with time-varying volatil-

ity (VAR-SV) see, among others, Carriero et al. (2016, 2022b) and Kastner and

Huber (2020). In particular, Chan and Eisenstat (2018) show that the VAR-SV

forecasts are better than the regime-switching VARs. Other papers develop large

VARs with time-varying coefficients and volatility (TVP-VAR-SV), see, among oth-
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ers, Koop and Korobilis (2013) and Kapetanios et al. (2019). In both cases, large

VARs feature a huge amount of parameters to be estimated and require dimension

reduction approaches, examples are Chan et al. (2020b) where they use a factor-like

structure to estimate a TVP-VAR with many variables and Chan et al. (2020a) where

they propose a composite likelihood for large VARs to efficiently estimate the param-

eters. Chan (2023), in order to avoid overparameterization problems, introduced a

large hybrid TVP-VAR in which only a few equations have time-varying coefficients,

while the coefficients are constant in others. This approach requires the definition of

a structural form parametrization that raises the issue of variable ordering that the

authors partially solve with a data-driven approach.

The estimation of the aforementioned approaches is mainly based on Markov

chain Monte Carlo (MCMC) methods. As the number of variables increases, this

slows the estimation because thousands of latent states and parameters have to be

simulated. Motivated by this issue, Koop and Korobilis (2013) developed a computa-

tionally efficient methodology to estimate large TVP-VAR-SV, using the forgetting

factor approach for the time-varying mean parameters and the exponential weighted

moving average (EWMA) for the time-varying error covariance matrix. Forgetting

factors, also known as discount factors, have a long history in state space models, see

Raftery et al. (2010). They do not require the use of MCMC methods and are useful

in economic and financial applications, see Dangl and Halling (2012) and Grassi et al.

(2017).
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Recently, Koop and Korobilis (2014) extended the methodology to time-varying

parameter factor augmented VAR with time-varying volatility (TVP-FAVAR-SV).

Although TVP-VAR-SV are generally easier to handle than TVP-FAVAR-SV in

terms of online estimation, it remains an open question whether a small number of

common components can efficiently summarize the data for forecasting or economic

analysis.

The paper proposes a new model that bridges TVP-VAR-SV and TVP-FAVAR-

SV with a new estimation strategy based on Koop and Korobilis (2013) to avoid

MCMC. Specifically, to reduce the dimensionality, we draw from the recent develop-

ments in Multivariate Autoregressive Index (MAI) models, see Carriero et al. (2016),

Cubadda et al. (2017), Cubadda and Guardabascio (2019), Carriero et al. (2020),

Cubadda and Hecq (2022a), and Cubadda and Mazzali (2023) among others. The

MAI model, originally introduced by Reinsel (1983), is a bridge between reduced rank

VARs (Cubadda and Hecq, 2022b) and the dynamic factor model (DFM) (Stock and

Watson, 2016, and Lippi, 2019). On the one hand, it reduces dimension by imposing

a sort of reduced rank structure to the VAR; on the other hand, it allows the identi-

fication of a few linear combinations of the variables that are labeled indexes, whose

lags are entirely responsible for the dynamics of the system.

Although the mathematical formulation of the MAI is similar to that of the DFM,

an advantage of the former for classical inference is that it does not require that the

dimension of the system diverges to infinity to achieve identification,1 therefore, MAI

1We remark that this condition is not necessary for Bayesian inference on DFMs.
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can also be applied to small or medium VARs. In addition, the factor structure can

be tested for and not simply imposed as in the DFM, and the estimation error of

the indexes is explicitly taken into account, see Cubadda and Guardabascio (2019)

for further details.

The contribution of the paper is twofold. The first is to propose a MAI with

time-varying mean and volatility (TVP-MAI-SV). As Carriero et al. (2016) and Car-

riero et al. (2020) show, the MAI estimation is computationally intensive due to

nonlinearity in the parameters. To overcome this problem, the second contribution

of the paper is to develop approximate estimation methods for TVP-MAI-SV which

do not involve the use of MCMC and simplify the estimation of nonlinear parame-

ters using a switching algorithm (Cubadda et al., 2017) with forgetting factors (Koop

and Korobilis, 2014). This substantially reduces the computational burden and al-

lows one to select or weight, in real-time, the number of common components and

other features of the data using Dynamic Model Selection (DMS) or Dynamic Model

Averaging (DMA) without further computational cost.

The empirical application uses 25 US quarterly time series for forecasting three

key macroeconomic variables: real gross domestic product (GDP), consumer price

index (CPI) and effective federal funds rate (FFR). Point and density forecast evalua-

tion show that the TVP-MAI-SV model has very promising out-of-sample properties

compared to a set of univariate and multivariate competitors.

The remainder of this paper proceeds as follows. Section 2 presents the MAI
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model and introduces the new TVP-MAI-SV. Section 3 discusses the new estimation

approach. Section 4 contains the empirical application. Finally, Section 5 draws

some conclusions. All the derivations are reported in Appendices A and B.

2 From the MAI model to the TVP-MAI-SV

Let yt ≡ (y1,t, . . . , yN,t)
′ denote the N -vector of the time series of interest. In the

fixed parameter framework, variables yt are assumed to be generated by a VAR of

order p (VAR(p)):

yt = Φ(L)yt−1 + εt, t = 1, 2, . . . , T, (1)

where Φ(L) =
∑p−1

h=0 ΦhL
h, and εt are i.i.d. innovations with E(εt) = 0, E(εtε

′
t) = H

(positive definite).

To reduce the number of model parameters in equation (1), Reinsel (1983) im-

posed the following set of restrictions on the mean parameters of a stationary VAR:

Φ(L) = β(L)ω′, (2)

where ω is full-rank N × q matrix with q < N, β(L) =
∑p−1

h=0 βhL
h, and βh is a

N × q matrix for h = 1, . . . , p.

The rationale underlying assumption in equation (2) is that the unrestricted VAR

foreseesN linearly independent mechanisms by which past information is transmitted

to the system. However, since it is generally believed that few common shocks
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generate most macroeconomic fluctuations, it is reasonable to assume that there are

a reduced number of channels through which variables are influenced by their past.

In words, this is exactly what equation (2) implies (see Carriero et al., 2016 and

Cubadda and Guardabascio, 2019 for more details).

Notice that the assumption in equation (2) is equivalent to postulating the fol-

lowing structure for series yt:

yt = β(L)ft−1 + εt, (3)

where ft = ω′yt. Reinsel (1983) defines the q-dimensional series ft = (f1,t, . . . , fq,t)

as index variables and labels equation (3) as the MAI model.

An interesting property of MAI is that the indexes themselves have a VAR(p)

representation. Indeed, if we premultiply by ω′ both sides of equation (3) we get:

ft = α(L)ft−1 + ǫt,

where α(L) = ω′β(L) and ǫt = ω′εt. This feature is in sharp contrast with reduced

rank VAR models, where linear combinations of the variables generally do not admit

a finite-order VAR representation, see Cubadda et al. (2009), and highlights the

analogy between the role of indexes in the MAI and factors in the DFMs.

Moreover, using the decomposition of the identity matrix as in Centoni and

7



Cubadda (2003)

Hω(ω′Hω)−1ω′ + ω⊥(ω
′
⊥H

−1ω⊥)
−1ω′

⊥H
−1 = IN ,

where ω⊥ is a full-rank (n − q) × n matrix such that ω′
⊥ω = 0, we can decompose

variables yt as:

yt = χt + ιt,

where χt = Hω(ω′Hω)−1ft, ιt = ω⊥(ω
′
⊥H

−1ω⊥)
−1ut, and ut = ω′

⊥H
−1yt.

Since it is easy to see that the innovations of ft and ut are uncorrelated, the

components χt and ιt are in turn uncorrelated at all lags and leads. Therefore, the

component χt has an analogous interpretation as the common component in DFMs.

Recently, there has been renewed interest in MAI, Carriero et al. (2016) derived

classical and Bayesian estimation of large MAIs and applied this model to structural

analysis, Cubadda et al. (2017) proposed a multivariate realized volatility model

with an index structure, Cubadda and Guardabascio (2019) extended the model

by allowing individual AR structures, Carriero et al. (2020) studied a MAI with

stochastic volatility and provided MCMC estimation, Cubadda and Hecq (2022a)

combined the MAI with reduced rank regression to achieve a dimension reduction in

large VARs, while Cubadda and Mazzali (2023) endowed the cointegrated VAR with

an index structure.

We extend the traditional MAI model, allowing variation in both the mean and
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variance equation, the TVP-MAI-SV takes the form:

yt =
p
∑

h=1

βh,tft−h + εt, (4)

where εt ∼ N (0,Ht), and βh,t is an N × q matrix of time-varying coefficients that

evolve as random walks.

Notice that, similarly as in the TVP-FAVAR literature, it is assumed that the

index loadings vary over time, while the index weights ω remain stable. Furthermore,

εt has a time-varying covariance matrix Ht.

The model given in equation (4) is difficult to estimate with existing methods due

to ω restrictions that enter the model nonlinearly. To address this issue, Carriero

et al. (2016) and Carriero et al. (2020) propose to include a random walk Metropolis

step in the Gibbs sampling algorithm. This step aims to target the posterior kernel of

each element of ω and provides accurate results. However, it comes with a significant

computational burden. To address this issue and reduce computational time, we

develop a novel hybrid algorithm, which will be detailed in the following Section.

3 Estimation

The estimation of the model in equation (4) is based on a fast two-step algorithm that

significantly reduces the computational burden. Subsection 3.1 presents the state

space representation of TVP-MAI-SV and briefly explains the related estimation
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issues. Subsection 3.2 presents the new hybrid switching algorithm used to estimate

TVP-MAI-SV. Subsection 3.3 describes the model selection. All the derivations are

reported in Appendix A.

3.1 Bayesian Estimation

The model in equation (4) can be written in state space form as follows:

yt = Ztβt + εt, εt ∼ N (0,Ht),

βt = βt−1 + ηt, ηt ∼ N (0,Qt),

(5)

where Zt = [f ′t−1, . . . , f
′
t−p]

′ ⊗ IN , which depends on the unknown matrix ω, and

βt = Vec
(

[

β′
1,t, . . . , β

′
p,t

]′
)

is a Nqp vector containing the time-varying coefficients

(states), which are assumed to follow a multivariate random walk dynamics. Finally,

the errors εt and βt are assumed to be mutually independent at all leads and lags,

and Ht features time-varying volatility.

The model in equation (5) is usually estimated with a classical or Bayesian ap-

proach. In the first case, the likelihood is calculated with the Kalman filter (KF)

see Durbin and Koopman (2012), and the time-varying parameters are filtered as

latent state variables once Ht and Qt are estimated. In the second case, simulation

methods such as MCMC require the specification of Ht and Qt together with the

initial condition (β0|0) of the model parameters, see Koop (2003). Although Bayesian

algorithms are reliable in this context, as discussed in Carriero et al. (2018), they be-
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come computationally intensive as the number of parameters increases and unfeasible

when many models have to be estimated.

To solve this problem, we propose a new hybrid algorithm to estimate both static

(ω) and dynamic (βt) parameters of equation (5).

3.2 Hybrid algorithm for TVP-MAI-SV

Following Koop and Korobilis (2014) and Cubadda et al. (2017) we combine the

discount factor methodology with the switching algorithm to estimate the time-

varying index loadings (βt) and the index weights (ω). The model also features

time-varying volatility (Ht), estimated using two versions of the EWMA filter. The

estimation starts from the same algorithm described in Cubadda et al. (2017) and

introduces the time-varying parameters as follows:

Given an initial estimate of ω0 and H0:

1) Run an approximation of the KF (using forgetting factors) for model in equa-

tion (5) to estimate the latent states β̂t, see Appendix A for details;

2) Given the previous values of βt and ω, estimate the measurement error covari-

ance matrix (Ht) using either the classical EWMA formula:

Ĥt = κĤt−1 + (1− κ)ε̂tε̂
′

t,

where ε̂t is produced by the KF, or its Dynamic Conditional Correlation variant

11



(DCC-EWMA) suggested by Johansson et al. (2023) given by:

Ĥt = D̂tR̂tD̂t,

with two discount factors: κ1 for variances (D̂t) and κ2 for correlation (R̂t),

see Appendix A for details. In both cases, the decay factor(s) must be selected,

we discuss this issue in Section 4.

3) Premultiply by Ĥ
−1/2
t and apply the Vec(·) operator to both sides of equation

(4), under the property Vec(ABC) = (C′ ⊗ A)Vec(B), we get:

Vec
(

Ĥ
−1/2
t yt

)

=
p
∑

h=1

(

y′
t−h ⊗ Ĥ

−1/2
t β̂h,t

)

Vec (ω′) + Vec
(

Ĥ
−1/2
t εt

)

. (6)

Given β̂t and Ĥt, estimate Vec(ω′) with OLS in equation (6).2

4) Repeat steps 1), 2), and 3) until numerical convergence occurs.

A few comments are in order. The above algorithm offers several advantages over the

available alternatives: it is computationally simple and fast avoiding the bottleneck

2As correctly noted by a referee, more parameters than the free ones in ω are estimated in step
3). This approach is valid when the goal is forecasting, but not if the interest lies in estimation
of the model parameters. Following Cubadda et al. (2017), this issue can be solved by using the
normalization ω′ = [Iq,̟

′], where ̟ is a (N−q)×q matrix, partitioning the variables conformably
as yt = [y′

1,t,y
′

2,t]
′, and replacing Equation (6) with the following:

Vec

[

Ĥ
−1/2
t

(

yt −

p
∑

h=1

β̂h,ty
′

1,t−h

)]

=

(

p
∑

h=1

y′

2,t−h ⊗ Ĥ
−1/2
t β̂h,t

)

Vec (̟′) + Vec
(

Ĥ
−1/2
t εt

)

,

from which one can estimate by OLS the ̟ coefficients.

12



in the estimation of ω due to its nonlinearity, see Carriero et al. (2016); it does not

need a normalization condition for the parameters ω and over-identifying restrictions

can be easily imposed on ω.

To speed up numerical convergence, it is important to make the appropriate

choices regarding the various hyperparameters and initial conditions. As in Koop

and Korobilis (2014), we choose fairly non-informative priors. The initial conditions

for the time-varying parameters (βt) and the time-varying covariance (Ht) are set

as follows: β0 ∼ N (0Nqp×1, 4INqp) , Ĥ0 = IN for both the EWMA formulations. The

initial conditions for ω are obtained from the eigenvectors that are associated with

the first q principal components of the series yt.

Finally, we point out that it is difficult with our hybrid approach to establish the

theoretical properties of the resulting estimator. However, this drawback is largely

compensated for by significant computational advantages compared to a more formal

inferential framework.

3.3 Dynamic model averaging and Dynamic model selection

for the TVP-MAI-SV

Time-varying parameter models are well suited to estimate the gradual evolution of

coefficients. However, they may not work well for sudden changes, and allowing for

switches between different models can accommodate more abrupt breaks. Indeed,

model switching is a potentially useful addition for TVP-MAI-SV. Equation (5) can
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be generalized to accommodate a set M̃ = {M1,M2, . . . ,MK} of possible models

based on a different combination of: number of indexes (q), value for the decay

factors (κ), number of lags (p), etc. Taking into account the M̃ possible models,

equation (5) can be rewritten as follows:

yt = Z
(k)
t β

(k)
t + ε

(k)
t , ε

(k)
t ∼ N

(

0,H
(k)
t

)

,

β
(k)
t = β

(k)
t−1 + η

(k)
t , η

(k)
t ∼ N

(

0,Q
(k)
t

)

,

(7)

where the index k denotes a specification of model (5) based on a selection of q, κ, p

and other parameters to be defined later.

Equation (7) shows that there are, potentially, many models to estimate at each

time point t. When faced with multiple models, it is common to use model selection

or model averaging techniques that have to be dynamic in our framework. More

specifically, in a model selection exercise, we allow the selected model to change over

time, performing DMS. Instead, in a model averaging exercise, we allow the weights

used in averaging the models to change over time, leading to DMA. In this paper,

we do both using the same approach of Raftery et al. (2010), see Appendix A.

In DMS and DMA the main objective is to calculate πt|t−1,k, which is the prob-

ability that the model Mk should be used for the forecast at time t, given the

information up to time t − 1. Once πt|t−1,k is obtained, it can be used to perform

model averaging or model selection.

DMS arises if, at each time point, the model with the highest value for πt|t−1,k is
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used to forecast. Note that πt|t−1,k will vary over time, and hence the selected model

may change over time. DMA arises if the model averaging is performed in period t

using πt|t−1,k ∀k as weights. Raftery et al. (2010) developed a fast recursive algorithm

to compute πt|t−1,k given an initial condition (π0|0,k) and a forgetting factor (α):

πt|t−1,k =
πα
t−1|t−1,k

∑K
j=k π

α
t−1|t−1,k

,

and a model updating equation:

πt|t,k =
πt|t−1,kfk(yt|y1:t−1)

∑K
k=1 πt|t−1,kfk(yt|y1:t−1)

,

where fk(yt|y1:t−1) is the predictive likelihood of model k (i.e. the predictive den-

sity for model k evaluated at yt) that is produced by the KF and has a standard

formula, see Frúhwirth-Schnatter (2006). The forgetting factor 0 < α ≤ 1 adjusts

the frequency of switches between models over time. Low values of α correspond

to a rapid switch, and high values give the opposite, when α = 1 we get the tradi-

tional Bayesian Model Averaging (BMA). Finally, the initial condition is set to equal

probability π0|0,k = 1/K, ∀k.
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4 Forecasting Results

We investigate the performance of TVP-MAI-SV in forecasting US macroeconomic

variables. Subsection 4.1 presents the dataset considered in the study, while Subsec-

tion 4.2 discusses the forecast exercise.

4.1 Data description

The dataset used in the forecast exercise is made up of 25 major quarterly US

macroeconomic variables sourced from the Fred Database that run from 1959:Q1 to

2023:Q2. All variables, transformed as suggested in McCracken and Ng (2020), are

listed in table 1.

4.2 Forecasting exercise

This section provides the out-of-sample performance of the TVP-MAI-SV against

a set of competitors. We focus on three main variables: CPI, GDP, and FFR.

The forecasting exercise is performed using an expanding window with an initial

estimation sample that runs from 1960:Q1 to 1971:Q4. The model is then recursively

estimated in a forecast window that starts from 1972:Q1 to 2023:Q2 for a total of

183 quarterly vintages. The forecast window covers the two oil shocks of 1973 and

1979, the 2001 Dot-com bubble, the 2008 Great Recession, and the 2020 Covid-19

pandemic.

TVP-MAI-SV is featured by several parameters that are dynamically selected
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Table 1: Data Description. The Table reports: the Mnemonic Code (Code), the Variable name
(Variables), and the transformation used (Transformation) accordingly to McCracken and
Ng (2020).

Code Variables Transformation

PAYEMS Employees on nonfarm payroll Log-First-Difference
CES3000000008 Average hourly earnings Log-First-Difference
DSPIC96 Personal Income Log-Second-Difference
PCECC96 Real Consumption Log-First-Difference
INDPRO Industrial Production Index Log-First-Difference
MCUMFN Capacity Utilization Level
UNRATE Unemployment rate First Difference
HOUST Housing Starts Log-First-Difference
CPIAUCSL CPI all items Log-Second-Difference
WPSFD49207 Produce Price Index (finished goods) Log-First-Difference
PCECTPI Price deflator for personal cons. exp Log-Second-Difference
PPIACO PPI ex food and energy Log-Second-Difference
FEDFUNDS Federal funds effective First Difference
M1SL M1 money stock Log-First-Difference
M2SL M2 money stock Log-Second-Difference
TOTRESNS Total reserves of depository inst. Log-Second-Difference
NOBORRES Nonborrowed reserves of depository inst. Log-Second-Difference
S&P500 S&P common stock price index Log-First-Difference
GS10 Int. Rate on Tr. Bills, 10 Year Const. Mat. First Difference
EER Effective Exchange Rate Log-First-Difference
GDPC1 Gross Domestic Product Log-First-Difference
BORROW Total Borrowings from the Federal Reserve Log-Second-Difference
OILPRICEx Oil Price Log-First-Difference
Y033RC1Q027SBEAx Real Gross Private Domestic Investment Log-First-Difference
OPHPBS Labor Productivity per Hour - All Employees Log-First-Difference

using DMS or DMA: the number of indexes (q), the values of the forgetting factors

(λ and α) see Appendix A for details, the values of the decay factors (κ) and the

number of lags (p). For the selection process, we consider a set of q = {1, 2, 3, 4}

indexes and a range of values for the forgetting factor λ ∈ {0.97, 0.98, 0.99, 1} that

covers from rapid coefficient change to no change. Following the recent literature, we

dynamically selected α in the grid α = {0.50, 0.70, 0.80, 0.95, 0.99, 1} as suggested

in Beckmann et al. (2020). For the decay factors, we use the grid of values κ ∈

{0.96, 0.97, 0.98, 0.99, 1} for EWMA and κ1, κ2 ∈ {0.96, 0.97, 0.98, 0.99, 1} for DCC-

EWMA. Finally, the lag length (p) is set to 4.
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Imposing simple restrictions, the TVP-MAI-SV encompasses some multivariate

models:

• The original MAI of Reinsel (1983), estimated as in Cubadda et al. (2017)

when βt = βt−1 and Ht is time invariant (Qt = 0, κ = 1 and H sets to the

OLS estimate). This model is our benchmark;

• The MAI-SV similar to Carriero et al. (2018) when βt = βt−1 is time invariant

(Qt = 0) and Ht evolves over time;

• The TVP-MAI model without time-varying volatility when βt is time-varying

(Qt 6= 0) but Ht is time invariant and set to the OLS estimates (sample vari-

ance);

We also consider results from several other models:

• TVP-VAR with four lags, where the optimal Minnesota shrinkage coefficient

(γ) is set to 0.005, see Koop and Korobilis (2013);

• VAR of order 1 estimated with OLS;

• DFM with factors dynamically selected to explain 90% of the total variability;

• Random Walk process (RW);

• TVP-VAR-SV as in Koop and Korobilis (2013) with different specifications;

• TVP-FAVAR-SV as in Koop and Korobilis (2014) with different specifications;
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Table 2: The table reports all the models considered in the forecasting exercise including the bench-
mark (M11). The first column is the model label (Label). The second column provides a
description of each model (Full Description).

Label Full Description

M1 TVP-MAI-SV with DCC-EWMA. The number of indexes and the optimal value of λ, κ1 and κ2 are selected
using DMA as described in Koop and Korobilis (2013).

M2 TVP-MAI-SV with DCC-EWMA. Number of indexes and the optimal value of the λ, κ1 and κ2 are selected
using DMS as described in Koop and Korobilis (2013).

M3 TVP-MAI-SV with EWMA. The number of indexes and the optimal value of λ and κ are selected using DMA
as described in Koop and Korobilis (2013).

M4 TVP-MAI-SV with EWMA. The number of indexes and the optimal value of λ and κ are selected using DMS
as described in Koop and Korobilis (2013).

M5 MAI-SV, with fix βt(λ = 1) and DCC-EWMA. The number of indexes and the optimal value of κ1 and κ2 are
selected using DMA as described in Koop and Korobilis (2013).

M6 MAI-SV, with fix βt(λ = 1) and DCC-EWMA. The number of indexes and the optimal value of κ1 and κ2 are
selected using DMS as outlined in Koop and Korobilis (2013).

M7 MAI-SV, with fix βt(λ = 1) and EWMA. The number of indexes and the optimal value of κ are selected using
DMA as described in Koop and Korobilis (2013).

M8 MAI-SV, with fix βt(λ = 1) and EWMA. The number of indexes and the optimal value of κ are selected using
DMS as outlined in Koop and Korobilis (2013).

M9 TVP-MAI, with fix H (κ = 1). The number of indexes and the optimal value of λ are selected using DMA as
described in Koop and Korobilis (2013).

M10 TVP-MAI, with fix H (κ = 1). The number of indexes and the optimal value of λ are selected using DMS as
outlined in Koop and Korobilis (2013).

M11 MAI. The number of indexes is selected using DMA as described in Koop and Korobilis (2013).
Benchmark model.

M12 MAI. The number of indexes is selected using DMS as outlined in Koop and Korobilis (2013).

M13 Random Walk.

M14 Vector Autoregressive(1) estimated using the OLS.

M15 Dynamic Factor Model

M16 TVP-VAR-SV with 4 lags and time-varying volatility. The optimal value of the shrinkage parameter is selected.
using DMS as described in Koop and Korobilis (2013). In this model λ = 0.99, κ = 0.98 and α = 0.99.

M17 TVP-VAR-SV with 4 lags and time-varying volatility. The optimal value of the shrinkage parameter is selected
using DMS as described in Koop and Korobilis (2013). In this model λ is dynamically selected, κ = 0.98
and α = 0.99.

M18 FAVAR with 4 lags and 4 factors as in Koop and Korobilis (2014).

M19 TVP-FAVAR with 4 lags and 4 factors as in Koop and Korobilis (2014). In this model λ1 = 1, λ2 = 1,
κ1 = 0.99 and κ2 = 0.96.

M20 TVP-FAVAR-SV with 4 lags and 4 factors as in Koop and Korobilis (2014). In this model λ1 = 0.99,
λ2 = 0.99, κ1 = 0.96 and κ2 = 0.96.

M21 AR+PC, autoregressive model with four lags plus a factor estimated using principal components.

• AR+PC as autoregressive model with four lags plus a factor estimated using

principal components;

The full set of competitive models considered is reported in Table 2.
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We evaluate the accuracy of our model in terms of point and density forecasts

following Chan et al. (2020a). Let ŷ
(k)
t denotes the forecast made by model k for the

variables of interest and y∗t their realizations, then the root mean squared forecast

error (RMSFE) and the mean absolute forecast error (MAFE) are:

RMSFE
(k)
j,h =

√

√

√

√

∑T−h
t=t0

(

y∗j,t+h − ŷ
(k)
j,t+h

)2

T − h− t0 + 1
,

MAFE
(k)
j,h =

∑T−h
t=t0

∣

∣

∣
y∗j,t+h − ŷ

(k)
j,t+h

∣

∣

∣

T − h− t0 + 1
.

(8)

where k is the model, h = {1, . . . , H} are the forecast steps ahead and j = {1, . . . , J}

are the target variables. To evaluate density forecasts, we use the average log-

predictive likelihood (ALPL) as described in Korobilis (2021) and Chan et al. (2020a)

as the broadest measure of density accuracy, see also Geweke (2005).3

Tables 3 to 5 report for GDP, CPI, and FFR, the RMSFE and MAFE, relative to

the benchmark model, for h = {1, . . . , 8} steps ahead. Numbers smaller (larger) than

1 indicate forecasts that are more (less) accurate than the benchmark. The tables

also report the ALPL as a spread from the ALPL of the benchmark model. Positive

(negative) values signify better (worst) performance relative to the benchmark.

With three different variables, eight different forecast horizons, and three differ-

ent forecast metrics, virtually every model performs well in some cases, but several

3Notice that the Diebold-Mariano test (Diebold, 2015) is not suitable to test the accuracy of the
Bayesian model.
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Table 3: Results for GDP, 25 series, Covid case.

Point and density forecast results for GDP. Root Mean Squared Forecast Error (RMSFE) upper panel. Median Absolute
Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results are relative
to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-MAFE lower
(higher) than 1 indicate better (worse) performance than the benchmark. ALPL higher (lower) than 1 indicates better
(worse) performance. The model description is reported in Table 2. Values in the table are capped at 3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 1.043 1.054 1.051 1.055 1.051 1.058 1.052 1.054 1.275 1.289 1.002 1.373 1.557 0.958 1.190 1.191 1.037 1.099 1.147 1.424
2 1.027 1.037 1.020 1.020 1.030 1.037 1.022 1.026 1.374 1.423 1.003 1.385 1.328 1.146 1.016 1.020 1.177 1.048 1.066 3.000
3 0.993 0.996 0.990 0.993 0.996 0.997 0.993 0.994 2.016 2.169 1.002 1.350 1.159 1.019 0.980 0.972 1.100 1.008 1.030 1.095
4 0.999 1.000 0.994 0.995 1.001 1.001 0.994 0.994 3.000 3.000 1.001 1.384 1.056 1.016 0.988 0.981 1.069 1.003 1.022 0.998
5 1.000 1.003 0.999 1.000 1.005 1.003 1.001 1.001 3.000 3.000 0.998 1.365 1.014 1.027 0.990 0.991 1.025 1.002 1.005 1.005
6 1.003 1.002 1.003 1.003 1.004 1.003 1.002 1.002 3.000 3.000 1.003 1.427 1.032 1.026 0.989 0.989 1.025 1.002 1.010 1.007
7 0.998 0.997 0.998 0.997 0.997 0.997 0.997 0.997 3.000 3.000 1.004 1.403 1.062 1.008 0.989 0.989 1.011 1.000 0.999 1.001
8 0.999 0.999 0.998 0.998 0.999 0.999 0.999 0.999 3.000 3.000 1.001 1.404 1.070 0.994 0.992 0.992 1.002 1.002 0.999 1.003

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.975 1.001 1.005 1.014 0.990 1.002 1.011 1.011 1.089 1.121 1.003 1.230 1.142 0.995 1.366 1.314 1.164 0.990 1.005 1.147
2 1.004 1.017 0.998 1.000 1.010 1.013 0.997 1.005 1.144 1.141 1.009 1.284 1.189 1.131 0.982 0.989 1.184 0.975 0.991 2.689
3 0.966 0.981 0.969 0.979 0.976 0.982 0.974 0.978 1.269 1.299 1.004 1.374 1.100 0.983 0.950 0.936 1.148 0.977 1.006 1.036
4 0.980 0.984 0.970 0.975 0.988 0.989 0.974 0.974 1.515 1.572 1.002 1.451 1.074 1.009 0.973 0.961 1.117 1.012 1.043 0.992
5 0.999 1.004 0.995 0.995 1.003 1.001 0.996 0.997 2.047 2.163 1.006 1.439 1.057 1.039 0.996 0.989 1.082 1.001 1.015 1.009
6 0.995 0.995 0.996 0.995 0.996 0.995 0.995 0.994 3.000 3.000 1.006 1.468 1.085 1.015 0.984 0.984 1.067 0.997 1.014 1.004
7 0.988 0.988 0.987 0.987 0.987 0.988 0.987 0.987 3.000 3.000 1.007 1.509 1.071 1.003 1.000 0.992 1.033 0.985 0.985 0.991
8 0.990 0.988 0.990 0.989 0.989 0.989 0.990 0.990 3.000 3.000 1.003 1.553 1.092 0.986 1.016 1.010 1.010 0.998 0.995 0.996

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.225 0.239 0.231 0.233 0.220 0.236 0.225 0.228 -0.000 -0.000 0.000 -0.051 -0.007 -0.023 0.286 0.247
2 0.179 0.196 0.209 0.215 0.175 0.192 0.209 0.214 -0.003 -0.002 0.000 -0.166 -0.117 -0.001 0.288 0.279
3 0.155 0.170 0.196 0.205 0.153 0.168 0.203 0.208 -0.001 0.000 0.001 -0.159 -0.110 0.011 0.249 0.254
4 0.156 0.171 0.195 0.203 0.156 0.170 0.204 0.208 -0.002 -0.001 0.001 -0.153 -0.105 0.017 0.246 0.237
5 0.165 0.181 0.205 0.213 0.166 0.180 0.213 0.218 0.002 0.003 0.001 -0.142 -0.094 0.029 0.257 0.288
6 0.166 0.181 0.206 0.215 0.166 0.180 0.215 0.220 0.002 0.003 0.001 -0.140 -0.092 0.031 0.250 0.250
7 0.166 0.181 0.207 0.216 0.166 0.180 0.216 0.221 0.002 0.004 0.001 -0.139 -0.091 0.032 0.260 0.251
8 0.167 0.181 0.208 0.217 0.166 0.180 0.217 0.222 0.003 0.004 0.001 -0.138 -0.090 0.033 0.276 0.253
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Table 4: Results for CPI, 25 series, Covid case.

Point and density forecast results for CPI Inflation. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicate better (worse) performance than the benchmark. ALPL higher (lower) than 1
indicates better (worse) performance. The description of the model is reported in Table 2. Values in the table are capped
at 3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.968 0.982 1.013 1.015 0.978 0.979 1.017 1.018 1.539 1.590 1.002 1.559 1.202 1.413 0.979 0.978 0.954 0.968 0.965 0.997
2 0.994 0.993 0.995 0.992 0.990 0.991 0.992 0.992 2.365 2.526 1.007 1.547 1.265 1.179 0.989 0.990 0.993 0.967 0.976 3.000
3 0.971 0.972 0.974 0.973 0.968 0.968 0.973 0.974 3.000 3.000 1.006 1.232 1.168 1.110 0.969 0.971 0.979 0.954 0.958 1.271
4 0.970 0.973 0.976 0.976 0.970 0.970 0.976 0.976 3.000 3.000 1.002 1.475 1.074 1.316 0.973 0.976 0.981 0.977 0.983 0.979
5 0.987 0.987 0.988 0.988 0.986 0.987 0.987 0.987 3.000 3.000 1.003 1.375 1.027 1.130 0.985 0.985 0.992 0.992 0.993 0.997
6 1.003 1.002 1.004 1.005 1.003 1.002 1.005 1.005 3.000 3.000 1.001 1.342 1.010 1.007 1.000 1.000 1.012 1.007 1.010 1.006
7 0.991 0.991 0.992 0.993 0.991 0.991 0.992 0.992 3.000 3.000 1.001 1.402 0.990 1.029 0.986 0.986 0.997 0.989 0.990 0.995
8 0.994 0.996 0.994 0.994 0.994 0.994 0.994 0.994 3.000 3.000 0.999 1.465 0.997 1.044 0.985 0.985 0.998 0.988 0.990 0.998

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.942 0.953 0.973 0.973 0.953 0.958 0.977 0.979 1.130 1.145 1.008 1.539 1.036 1.108 0.955 0.958 0.906 0.922 0.919 0.910
2 0.968 0.968 0.975 0.972 0.964 0.965 0.971 0.972 1.262 1.280 1.013 1.559 1.095 1.063 0.965 0.970 0.970 0.951 0.964 3.000
3 0.971 0.971 0.972 0.969 0.966 0.967 0.970 0.972 1.535 1.582 1.013 1.255 1.097 1.046 0.965 0.970 0.989 0.963 0.971 1.112
4 0.956 0.961 0.964 0.963 0.957 0.957 0.964 0.964 2.044 2.146 1.006 1.510 1.033 1.068 0.969 0.974 0.988 0.968 0.978 0.980
5 0.981 0.982 0.980 0.980 0.980 0.980 0.980 0.980 3.000 3.000 1.001 1.518 1.042 1.044 0.985 0.985 1.000 0.985 0.990 1.001
6 0.999 0.996 1.002 1.002 1.000 0.999 1.002 1.002 3.000 3.000 1.003 1.402 1.018 0.999 1.000 1.000 1.016 1.007 1.007 1.002
7 0.989 0.988 0.992 0.992 0.989 0.989 0.991 0.991 3.000 3.000 1.004 1.417 0.999 1.017 0.985 0.984 0.998 0.991 0.995 0.986
8 0.997 0.998 0.998 0.998 0.996 0.996 0.998 0.998 3.000 3.000 0.998 1.607 1.004 1.030 0.984 0.984 0.998 0.984 0.986 0.996

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 -0.044 -0.046 -0.090 -0.093 -0.052 -0.048 -0.095 -0.099 -0.000 -0.000 0.000 0.107 0.130 -0.009 -0.003 0.015
2 -0.005 -0.005 -0.047 -0.049 -0.011 -0.007 -0.051 -0.054 -0.002 -0.004 -0.001 0.165 0.181 0.050 0.055 0.073
3 0.003 0.003 -0.038 -0.041 -0.002 0.002 -0.042 -0.045 -0.009 -0.010 0.000 0.094 0.089 0.059 0.065 0.083
4 0.012 0.012 -0.028 -0.031 0.008 0.012 -0.032 -0.035 -0.010 -0.010 0.000 0.085 0.100 0.070 0.075 0.093
5 0.035 0.036 -0.005 -0.007 0.032 0.036 -0.008 -0.011 -0.014 -0.013 -0.000 0.111 0.125 0.095 0.101 0.119
6 0.037 0.038 -0.003 -0.005 0.034 0.039 -0.006 -0.008 -0.015 -0.014 0.000 0.101 0.128 0.098 0.121 0.121
7 0.039 0.040 -0.001 -0.003 0.037 0.041 -0.004 -0.006 -0.015 -0.014 0.000 0.115 0.130 0.100 0.106 0.124
8 0.040 0.041 -0.000 -0.002 0.038 0.042 -0.002 -0.005 -0.016 -0.015 -0.000 0.117 0.131 0.101 0.107 0.125
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Table 5: Results for FFR, 25 series, Covid case.

Point and density forecast results for Interest Rate. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicate better (worse) performance than the benchmark. ALPL higher (lower) than 1
indicates better (worse) performance. The description of the model is reported in Table 2. Values in the table are capped
at 3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.957 0.970 1.005 1.016 0.971 0.969 1.020 1.025 1.071 1.074 1.007 1.265 1.281 1.361 1.027 1.023 1.319 1.086 1.080 1.266
2 0.944 0.941 0.932 0.927 0.937 0.943 0.928 0.930 1.206 1.219 1.012 1.315 1.454 1.019 0.894 0.891 1.110 0.999 1.007 0.976
3 0.934 0.934 0.928 0.930 0.931 0.932 0.929 0.933 1.884 2.005 1.010 1.240 1.376 0.984 0.926 0.925 1.082 0.968 0.986 1.075
4 0.912 0.912 0.912 0.911 0.912 0.910 0.912 0.911 3.000 3.000 1.001 1.261 1.297 1.070 0.909 0.908 1.047 0.954 0.991 1.000
5 0.981 0.984 0.981 0.982 0.982 0.981 0.982 0.984 3.000 3.000 0.999 1.230 1.266 1.087 0.972 0.973 1.065 1.013 1.030 1.056
6 0.973 0.975 0.974 0.974 0.976 0.975 0.974 0.974 3.000 3.000 0.996 1.337 1.145 1.001 0.953 0.953 1.032 0.993 1.008 1.002
7 0.965 0.967 0.964 0.964 0.965 0.965 0.964 0.964 3.000 3.000 1.008 1.532 1.079 0.977 0.938 0.938 0.958 0.941 0.942 0.973
8 0.965 0.964 0.965 0.965 0.965 0.965 0.965 0.965 3.000 3.000 1.000 1.394 0.986 1.013 0.944 0.945 0.970 0.969 0.977 0.986

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.853 0.862 0.887 0.888 0.853 0.850 0.888 0.891 1.022 1.044 1.025 0.884 1.189 1.140 0.879 0.895 1.194 0.805 0.824 0.911
2 0.870 0.863 0.870 0.864 0.864 0.865 0.866 0.867 1.057 1.065 1.016 1.093 1.298 0.988 0.810 0.808 1.183 0.963 0.978 0.874
3 0.920 0.922 0.890 0.887 0.908 0.910 0.885 0.891 1.209 1.244 1.011 1.176 1.219 0.987 0.865 0.864 1.182 0.964 0.991 0.902
4 0.881 0.880 0.888 0.884 0.871 0.868 0.884 0.884 1.474 1.545 0.997 1.210 1.191 1.034 0.873 0.873 1.110 0.949 0.987 0.889
5 0.983 0.988 0.991 0.990 0.976 0.974 0.991 0.991 2.084 2.200 0.993 1.395 1.235 1.106 0.960 0.961 1.119 1.034 1.063 1.034
6 0.962 0.964 0.968 0.967 0.959 0.958 0.966 0.965 3.000 3.000 1.009 1.470 1.104 1.030 0.919 0.919 1.066 0.999 1.031 0.981
7 0.962 0.967 0.967 0.966 0.961 0.960 0.966 0.966 3.000 3.000 1.006 1.614 1.093 1.003 0.912 0.912 0.997 0.958 0.970 0.951
8 0.976 0.980 0.980 0.979 0.976 0.976 0.979 0.979 3.000 3.000 1.000 1.558 1.012 1.046 0.939 0.940 0.994 0.988 1.006 0.989

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.319 0.371 0.328 0.351 0.341 0.380 0.354 0.367 -0.004 -0.004 0.002 0.118 0.124 -0.008 0.301 0.342
2 0.242 0.299 0.276 0.308 0.278 0.318 0.323 0.335 0.004 0.005 -0.001 0.141 0.147 -0.012 0.281 0.293
3 0.204 0.256 0.245 0.275 0.242 0.278 0.292 0.302 0.001 -0.002 -0.001 0.132 0.136 -0.010 0.233 0.216
4 0.203 0.258 0.248 0.278 0.244 0.281 0.297 0.308 -0.000 -0.004 0.001 0.133 0.138 0.022 0.283 0.273
5 0.189 0.245 0.237 0.265 0.231 0.269 0.286 0.297 -0.002 -0.004 0.002 0.124 0.127 0.032 0.258 0.255
6 0.193 0.251 0.245 0.276 0.236 0.274 0.295 0.305 -0.002 -0.006 0.000 0.133 0.136 0.045 0.255 0.255
7 0.192 0.252 0.245 0.278 0.236 0.275 0.295 0.306 0.000 -0.000 0.001 0.132 0.135 0.054 0.272 0.247
8 0.192 0.252 0.244 0.278 0.236 0.275 0.295 0.307 0.003 0.002 0.002 0.124 0.127 0.058 0.273 0.252
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observations can be made. First, TVP-FAVAR-SV (M18, M19 and M20), MAI-SV

(M5, M6, M7 and M8) and TVP-MAI-SV (M1, M2, M3 and M4) generally out-

perform competitors. This result confirms that time-varying volatility is necessary

to improve forecast performance in a dataset subject to large shocks such as the

Covid-19 pandemic. Models that feature data reduction (e.g. TVP-MAI or DFM)

without time-varying volatility often degenerate or forecast poorly, which is in line

with the findings of Lenza and Primiceri (2022), Primiceri and Tambalotti (2020)

and Carriero et al. (2022a).

Looking at both RMSFE and MAFE as well as the ALPL, TVP-MAI-SV is one of

the best models for all the variables, outperforming its counterparts (MAI, TVP-MAI

and MAI-SV) for both short and long horizons. Moreover, TVP-MAI-SV with the

volatility estimated using DCC-EWMA always outperforms the EWMA counterpart.

This indicates that using two decay factors, one for the variances and one for the

correlations, could be helpful in forecasting.

Another point concerns the usefulness of adding time-varying parameters in the

MAI-SV. The tables show that the two models have comparable RMSFE and MAFE,

but TVP-MAI-SV always has a better ALPL.

In general, the results show that TVP-MAI-SV guarantees safe forecasts com-

pared to other competitors, such as TVP-VAR-SV (see Koop and Korobilis, 2013)

and more similar models such as TVP-FAVAR-SV, as described in Koop and Koro-

bilis (2014). In Appendix B we provide two robustness checks: the first considers a
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forecasting period that excludes Covid-19, the second a smaller dataset of 7 variables.

While in the first case, our model still outperforms the competitors, in the second it

performs well, but with a lower gain.

5 Conclusions

Many economic variables are characterized by changing means and volatilities, to

model these features, TVP-VAR-SV are commonly used. Although reliable with

a small or medium dataset, when the number of variables increases, this approach

becomes computationally unfeasible and provides imprecise estimation due to overpa-

rameterization. In this paper, we introduce TVP-MAI-SV, which can easily handle

large data sets that feature a time-varying mean and volatility. Furthermore, we

present a novel estimation methodology that significantly reduces the computational

burden. Interestingly, our approach allows for real-time selection of the number of

indexes and other data features using Dynamic Model Selection and Dynamic Model

Averaging without further computational cost.

In the empirical application, we use 25 US quarterly time series to forecast three

key macroeconomic variables, namely, the real gross domestic product, the consumer

price index, and the effective federal funds rate. To assess the reliability of our model,

we consider both point and density forecasts for the time window 1972:Q1-2023:Q2.

Our results suggest that, using both point and density forecasts, the TVP-MAI-SV

performs well compared to a set of multivariate and univariate competitors.
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Extending this methodology to reduce the dimensions in both the conditional

mean and the conditional variance in a single unifying idea, in the spirit of Chan

et al. (2020b), is a promising avenue for future research.
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Appendix A

Methodology

From a technical point of view, handling a large number of models is not only compu-

tationally cumbersome, but also memory intensive. Raftery et al. (2010) and Koop

and Korobilis (2012) recently proposed the forgetting factor methodology, which al-

lows online estimation of time-varying parameters plus Dynamic Model Averaging
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(DMA) and Dynamic Model Selection (DMS).

Following the discussion in Subsection 3.3, let us consider M̃ = {M1, . . . ,MK}

possible models at each time point t. The number of models is a combination of the

number of indexes, values of λ (see below), and values of κ. Taking into account

all possible combinations, the number of models will increase exponentially as the

number of indexes, values of λ and κ increase. The state space model takes the

following form:

yt = Z
(k)
t β

(k)
t + ε

(k)
t , ε

(k)
t ∼ N

(

0,H
(k)
t

)

,

β
(k)
t = β

(k)
t−1 + η

(k)
t , η

(k)
t ∼ N

(

0,Q
(k)
t

)

,

(9)

see Subsection 3.1 for details.

Concurrent estimation of these models can be computationally cumbersome and

even infeasible with the maximum likelihood or MCMC methods. To overcome this

problem, Raftery et al. (2010) introduces an approximate KF that avoids calculating

Qt using a hyperparameter λ. Koop and Korobilis (2012) applied this methodology

to forecast inflation and also added the estimation of a time-varying variance (Ht)

using an EWMA that requires a decay factor κ.

The main step in the KF recursions, for a given model k, is:

β
(k)
t−1|Yt−1 ∼ N

(

β̂
(k)

t−1|t−1,Σ
(k)
t−1|t−1

)

, (10)

where Yt−1 = (y1,y2, . . . ,yt−1), β̂
(k)

t−1|t−1 = E
(

β
(k)
t−1|Yt−1

)

and Σ
(k)
t−1|t−1 = Var

(

β
(k)
t−1|Yt−1

)

.
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At each time point t, the algorithm iterates between the prediction equation, the up-

dating equation, and the predictive density:

β
(k)
t |Yt−1 ∼ N

(

β̂
(k)

t|t−1,Σ
(k)
t|t−1

)

, (11)

β
(k)
t |Yt ∼ N

(

β̂
(k)

t|t ,Σ
(k)
t|t

)

, (12)

yt|Yt−1 ∼ N
(

Z
(k)
t β̂

(k)

t|t−1,H
(k)
t + Z

(k)
t Σ

(k)
t|t−1Z

(k)′
t

)

. (13)

The quantity Σ
(k)
t|t−1 depends on the error variances: Σ

(k)
t|t−1 = Σ

(k)
t−1|t−1+Q

(k)
t . Raftery

et al. (2010) proposed an approximation given by:

Σ
(k)
t|t−1 =

1

λ
Σ

(k)
t−1|t−1. (14)

Consequently, Q
(k)
t =

(

1
λ
− 1
)

Σ
(k)
t−1|t−1 with λ ∈ (0, 1]. The tuning parameter λ plays

a crucial role in the adjustment of the effective memory of the algorithm, leading

to a weighted estimate in which the data at i time points in the past have weight

λi. For example, in the case of quarterly macroeconomic data, λ = 0.99 implies

that observations five years ago received approximately 80% as much weight as the

last period of observation, which leads to a fairly stable model where the coefficients

change gradually. When λ = 1, we have the constant parameter case.

It is well known that both macroeconomic and financial time series are charac-

terized by heteroskedastic effects; therefore, Koop and Korobilis (2012) assume that
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H
(k)
t follows an EWMA such that:

Ĥ
(k)
t = κĤ

(k)
t + (1− κ) ε̂

(k)
t ε̂

(k)′
t

where ε̂
(k)
t = yt −Z

(k)
t β̂

(k)

t|t−1 is an output of the KF. The EWMA requires a value for

the decay factor κ.

To carry out the model selection dynamically, we use the following posterior

probabilities:

p (βt,Mt|Yt) =
K
∑

k=1

p
(

β
(k)
t |Mt = k,Yt

)

Pr (Mt = k|Yt) =

=
K
∑

k=1

p
(

β
(k)
t |Mt = k,Yt

)

πt|t,k. (15)

where πt|t,k = Pr (Mt = k|Yt) is estimated recursively using the prediction equation

(16) and updating equation (17):

πt|t−1,k =
K
∑

l=1

πt−1|t−1,lpkl, (16)

πt|t,k =
πt|t−1,kfk (yt|Yt−1)

∑K
l=1 πt|t−1,lfl (yt|Yt−1)

. (17)

where fk (yt|Yt−1) is the predictive density. We have to underline that the model

prediction equation (16) requires estimating theK×K elements of pkl, this is replaced
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by an approximation:

πt|t−1,k =
πα
t−1|t−1,k

∑K
l=1 π

α
t−1|t−1,l

. (18)

To interpret α, let us take:

πt|t−1,k ∝
[

πt−1|t−2,kpk (yt−1|Yt−2)
]α

=
t−1
∏

i=1

[fk (yt−i|Yt−i−1)]
αi

. (19)

where fk (yt−i|Yt−i−1) is the predictive density for the model k evaluated at yt−i with

i = 1, . . . , t− 1.

The forgetting factor α ∈ (0, 1] gives a measure of the decay rate of model per-

formance, the forecast performance recorded in i periods in the past has significance

equal to αi. Note that when α = 0 all models are equally probable for every t, the

weights of the models remain unchanged from the prior π0|0,k = 1/K. Finally, Koop

and Korobilis (2012) refer to the special case α = 1 as Bayesian Model Averaging

(BMA) which is very popular in macroeconomics and finance, see Koop and Potter

(2004).

From the recursive iteration, a prediction for every model k is obtained:

yt|Mt = k,Yt−1 ∼ N
(

Z
(k)
t β̂

(k)

t|t−1,H
(k)
t + Z

(k)
t Σ

(k)
t|t−1Z

(k)′

t

)

. (20)

DMA comes from a weighted average of all the models’ weights that are the condi-

tional probabilities P (Mt = k|Yt−1) = πt|t−1,k computed using the information up

to time t− 1 for k = 1, 2, . . . , K:
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yDMAt = E (yt|Yt−1) =
K
∑

k=1

πt|t−1,kZ
(k)
t β̂

(k)

t|t−1. (21)

DMS selects and uses, at time t the model with the highest predictive power to

make predictions about the dependent variable. The definition of a prior for π0|0,k

and β
(k)
0 is essential to implement DMA, DMS and BMA. A non-informative prior

is chosen for both the states and the weights. In particular, π0|0,k = 1/K and

β
(k)
0 ∼ N (0Nqp×1, 4INqp) ∀k. This means that at first, all models are equally likely.

DCC-EWMA

We describe here the DCC-EWMA estimator for the variance-covariance matrix

reported in Section 3.2. This approach follows from Johansson et al. (2023) and

has the great advantage of setting two forgetting factors, one for variances (κ1) and

one for correlation (κ2). This gives more flexibility in the estimation and improves

the forecast.

The typical DCC model is given by:

E (εtε
′
t) = Ht = DtRtDt, (22)

where: D2
t = diag[E(εt ⊙ εt)], ⊙ denotes element-wise multiplication, and Rt is the

correlation matrix of εt. The DCC-EWMA can be estimated as follows:
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a) Estimate the D2
t using a univariate EWMA with κ1:

D̂2
t = κ1D̂

2
t−1 + (1− κ1)diag (ε̂t ⊙ ε̂t) .

where diag(·) indicates a diagonal matrix in which the diagonal elements are

the vector in the argument.

b) Estimate the correlation matrix as follows:

- Standardize the ε̂t, ε̃t = D̂−1
t ε̂t;

- Calculate the EWMA version of the correlation:

R̃t = κ2R̃t−1 + (1− κ2)ε̃tε̃
′
t;

- Create the S̃2
t = diag(r̃11,t, . . . , r̃NN,t), where r̃ij,t is a generic element of

the R̃t.

- Calculate the R̂t = S̃−1
t R̃tS̃

−1
t that has the ones in the main diagonal.

c) Finally the estimation of Ht is done using the following formula:

Ĥt = D̂tR̂tD̂t.
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Appendix B: Robustness checks

To check the robustness of our model, we provide two exercises. In the first exercise,

we consider a different forecast window that excludes the Covid-19 period: 1972:Q1

to 2019:Q4. The results in tables 6 to 8 show that, as already pointed out in the main

text, models without time-varying volatility have worse performance. In particular,

MAI with time-varying volatility works well in both the short and long horizons and

shows good results in terms of RMSFE, MAFE, and ALPL.

In the second exercise, we used a smaller dataset of seven variables. Tables 9 to

14 suggest that our model still performs well, but with a lower gain.

33



Table 6: Results for GDP, NoCovid Case, 25 Series.

Point and density forecast results for GDP. Root Mean Squared Forecast Error (RMSFE) upper panel. Median Absolute
Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results are relative
to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-MAFE lower
(higher) than 1 indicates better (worse) performance than the benchmark. ALPL higher (lower) than 1 indicates better
(worse) performance. The model description is reported in Table 2. Values in the table are capped at 3.

Root Mean Square Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.962 0.987 0.981 0.992 0.969 0.987 0.993 0.990 1.063 1.104 1.003 1.134 1.112 1.063 1.393 1.369 1.310 0.956 0.959 1.044
2 1.050 1.072 1.044 1.045 1.053 1.071 1.043 1.051 1.526 1.614 1.009 1.239 1.143 1.177 1.009 1.021 1.251 0.943 0.946 4.009
3 0.984 0.989 0.980 0.988 0.991 0.994 0.984 0.988 2.671 2.894 1.005 1.238 1.122 0.953 0.958 0.955 1.172 0.996 1.013 1.016
4 1.003 1.007 0.990 0.992 1.010 1.010 0.992 0.992 3.000 3.000 1.000 1.313 1.115 1.021 0.986 0.980 1.124 1.010 1.019 0.995
5 1.010 1.013 1.006 1.006 1.016 1.011 1.007 1.008 3.000 3.000 0.994 1.368 1.031 1.028 1.004 1.002 1.066 1.017 1.019 1.015
6 1.002 1.002 0.999 0.999 1.003 1.003 0.997 0.996 3.000 3.000 1.006 1.350 1.056 0.992 0.978 0.978 1.053 1.000 1.000 1.003
7 0.997 0.997 0.997 0.998 0.997 0.998 0.998 0.998 3.000 3.000 1.009 1.406 1.074 1.026 0.983 0.982 1.021 0.996 0.998 1.006
8 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 3.000 3.000 1.003 1.480 1.135 0.983 0.990 0.989 1.012 0.998 0.999 1.011

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.948 0.975 0.970 0.981 0.959 0.973 0.979 0.977 1.009 1.049 1.000 1.154 1.036 0.999 1.433 1.380 1.246 0.932 0.937 1.030
2 1.016 1.031 1.007 1.010 1.021 1.024 1.008 1.017 1.080 1.085 1.011 1.197 1.090 1.109 1.014 1.019 1.202 0.922 0.932 2.633
3 0.953 0.972 0.955 0.967 0.966 0.973 0.962 0.967 1.224 1.252 1.005 1.272 1.035 0.924 0.951 0.938 1.139 0.951 0.968 0.959
4 0.973 0.980 0.957 0.962 0.985 0.986 0.961 0.961 1.567 1.623 1.000 1.352 1.075 0.988 0.980 0.968 1.118 0.995 1.014 0.973
5 1.011 1.018 1.003 1.003 1.015 1.013 1.004 1.004 2.299 2.423 1.007 1.380 1.071 1.018 1.025 1.017 1.111 1.015 1.023 1.013
6 0.992 0.993 0.988 0.987 0.994 0.993 0.986 0.986 3.000 3.000 1.006 1.374 1.083 0.982 0.982 0.982 1.079 0.991 0.996 0.993
7 0.985 0.987 0.984 0.984 0.986 0.987 0.984 0.984 3.000 3.000 1.008 1.448 1.066 1.011 0.994 0.985 1.039 0.980 0.981 0.991
8 0.988 0.987 0.988 0.988 0.988 0.988 0.989 0.989 3.000 3.000 1.004 1.515 1.097 0.976 1.013 1.006 1.016 0.992 0.993 0.997

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.232 0.245 0.235 0.237 0.227 0.243 0.229 0.232 -0.000 -0.000 0.000 -0.058 -0.007 -0.024 0.286 0.289
2 0.190 0.206 0.216 0.222 0.186 0.203 0.216 0.220 0.002 0.003 0.000 -0.169 -0.119 -0.002 0.257 0.280
3 0.168 0.182 0.205 0.214 0.166 0.180 0.211 0.215 0.004 0.006 0.001 -0.162 -0.111 0.010 0.251 0.241
4 0.169 0.184 0.204 0.212 0.169 0.183 0.210 0.215 0.004 0.005 0.001 -0.156 -0.106 0.016 0.256 0.249
5 0.179 0.194 0.214 0.222 0.179 0.193 0.221 0.225 0.009 0.010 0.002 -0.145 -0.094 0.028 0.307 0.300
6 0.180 0.194 0.216 0.224 0.179 0.193 0.222 0.227 0.009 0.010 0.002 -0.143 -0.093 0.030 0.302 0.302
7 0.180 0.194 0.217 0.225 0.179 0.193 0.223 0.228 0.010 0.011 0.002 -0.141 -0.091 0.031 0.298 0.276
8 0.181 0.194 0.218 0.226 0.179 0.193 0.224 0.229 0.010 0.011 0.002 -0.140 -0.090 0.033 0.276 0.244
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Table 7: Results for CPI, NoCovid Case, 25 Series.

Point and density forecast results for CPI Inflation. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicates better (worse) performance than the benchmark. ALPL higher (lower) than 1
indicates better (worse) performance. The description of the model is reported in Table 2. Values in the table are capped
at 3.

Root Mean Square Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.950 0.965 0.960 0.960 0.957 0.959 0.962 0.964 1.578 1.642 1.002 1.543 1.214 1.110 0.981 0.984 0.985 0.940 0.947 0.904
2 1.015 1.016 1.010 1.007 1.013 1.014 1.007 1.007 2.544 2.728 1.000 1.610 1.250 1.076 1.020 1.021 1.009 0.987 0.994 3.000
3 0.975 0.976 0.977 0.975 0.973 0.974 0.976 0.977 3.000 3.000 1.008 1.259 1.170 0.986 0.984 0.985 0.993 0.964 0.971 1.113
4 0.965 0.968 0.970 0.969 0.966 0.965 0.969 0.969 3.000 3.000 1.001 1.451 1.075 0.991 0.974 0.977 0.980 0.962 0.964 0.986
5 0.990 0.991 0.991 0.991 0.990 0.990 0.991 0.991 3.000 3.000 1.001 1.405 1.037 0.991 0.997 0.997 0.991 0.997 1.000 0.999
6 1.004 1.004 1.006 1.006 1.004 1.004 1.006 1.006 3.000 3.000 1.001 1.322 1.016 1.005 1.010 1.010 1.018 1.010 1.013 1.007
7 0.989 0.989 0.990 0.990 0.989 0.989 0.990 0.990 3.000 3.000 1.001 1.409 0.987 0.991 0.990 0.990 0.996 0.987 0.987 0.993
8 0.990 0.992 0.990 0.990 0.990 0.990 0.990 0.990 3.000 3.000 0.999 1.455 0.994 0.987 0.987 0.987 0.995 0.984 0.987 0.995

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.930 0.942 0.936 0.934 0.939 0.944 0.939 0.941 1.133 1.152 1.008 1.530 1.047 1.020 0.963 0.973 0.938 0.921 0.928 0.872
2 0.987 0.988 0.986 0.983 0.985 0.986 0.982 0.983 1.292 1.320 1.010 1.628 1.079 1.023 1.001 1.005 0.980 0.967 0.976 3.000
3 0.975 0.976 0.975 0.972 0.973 0.974 0.974 0.975 1.591 1.643 1.016 1.275 1.098 1.001 0.988 0.993 1.009 0.980 0.989 1.079
4 0.956 0.961 0.963 0.962 0.957 0.958 0.963 0.963 2.152 2.266 1.005 1.486 1.036 0.987 0.979 0.984 0.989 0.955 0.961 0.997
5 0.992 0.993 0.991 0.992 0.991 0.991 0.992 0.991 3.000 3.000 0.999 1.565 1.058 0.989 1.010 1.009 1.002 0.997 1.005 1.009
6 1.001 0.998 1.003 1.003 1.002 1.001 1.003 1.003 3.000 3.000 1.003 1.373 1.027 0.998 1.015 1.015 1.024 1.010 1.010 1.001
7 0.984 0.984 0.987 0.987 0.985 0.985 0.986 0.986 3.000 3.000 1.003 1.402 0.994 0.987 0.990 0.989 0.997 0.988 0.991 0.983
8 0.993 0.994 0.993 0.994 0.992 0.992 0.993 0.993 3.000 3.000 0.999 1.617 1.002 0.990 0.984 0.984 0.994 0.981 0.983 0.990

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 -0.035 -0.037 -0.082 -0.085 -0.042 -0.039 -0.087 -0.092 -0.000 -0.000 0.000 0.024 0.029 -0.009 0.004 0.022
2 0.006 0.006 -0.035 -0.038 0.001 0.005 -0.039 -0.043 -0.003 -0.005 -0.001 0.084 0.083 0.052 0.065 0.083
3 0.013 0.013 -0.028 -0.031 0.009 0.013 -0.032 -0.036 -0.007 -0.008 0.000 0.093 0.090 0.060 0.073 0.091
4 0.023 0.022 -0.018 -0.021 0.019 0.023 -0.022 -0.025 -0.008 -0.008 0.000 0.035 0.040 0.071 0.084 0.102
5 0.047 0.048 0.007 0.005 0.045 0.049 0.004 0.001 -0.012 -0.012 0.000 0.101 0.104 0.098 0.092 0.082
6 0.049 0.050 0.009 0.007 0.047 0.051 0.007 0.003 -0.013 -0.013 0.000 0.103 0.090 0.071 0.132 0.132
7 0.051 0.052 0.011 0.009 0.050 0.054 0.009 0.006 -0.013 -0.013 0.000 0.116 0.133 0.103 0.117 0.134
8 0.052 0.053 0.012 0.010 0.051 0.055 0.010 0.007 -0.014 -0.013 0.000 0.137 0.134 0.104 0.118 0.135
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Table 8: Results for FFR. NoCovid Case. 25 Series.

Point and density forecast results for Interest Rate. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are reported relative to the benchmark specification (M11) for which the values are equal to 1. RMSFE-MAFE lower
(higher) than 1 indicates better (worse) performance than the benchmark. ALPL higher (lower) than 1 indicates better
(worse) performance. The description of the model is reported in Table 2. Values in the table are capped at 3.

Root Mean Square Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.931 0.944 0.970 0.983 0.944 0.942 0.990 0.994 1.065 1.067 1.004 1.273 1.173 1.137 1.031 1.027 1.125 1.039 1.033 1.203
2 0.942 0.938 0.928 0.922 0.932 0.937 0.923 0.925 1.220 1.231 1.011 1.341 1.240 1.001 0.908 0.906 1.038 0.963 0.973 0.992
3 0.927 0.927 0.923 0.926 0.924 0.924 0.925 0.929 1.887 2.008 1.011 1.239 1.222 0.961 0.925 0.924 1.034 0.932 0.936 1.077
4 0.917 0.916 0.916 0.915 0.916 0.914 0.916 0.916 3.000 3.000 1.001 1.266 1.244 0.944 0.913 0.912 1.000 0.946 0.969 1.005
5 0.981 0.984 0.982 0.982 0.982 0.981 0.983 0.984 3.000 3.000 0.999 1.226 1.256 1.003 0.979 0.980 1.032 1.006 1.012 1.058
6 0.972 0.973 0.973 0.973 0.973 0.973 0.973 0.973 3.000 3.000 0.996 1.340 1.150 0.986 0.967 0.967 1.024 0.990 1.002 1.002
7 0.965 0.966 0.965 0.965 0.964 0.964 0.965 0.965 3.000 3.000 1.009 1.549 1.082 0.963 0.956 0.956 0.956 0.941 0.940 0.973
8 0.962 0.962 0.962 0.962 0.962 0.962 0.963 0.963 3.000 3.000 1.000 1.398 0.985 0.973 0.958 0.959 0.970 0.968 0.976 0.984

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.819 0.829 0.843 0.847 0.819 0.817 0.849 0.851 1.023 1.044 1.022 0.901 1.112 1.042 0.887 0.903 1.107 0.765 0.791 0.870
2 0.863 0.854 0.859 0.852 0.852 0.851 0.855 0.856 1.085 1.089 1.012 1.138 1.219 0.977 0.833 0.832 1.171 0.933 0.956 0.900
3 0.902 0.904 0.877 0.875 0.891 0.891 0.873 0.878 1.206 1.239 1.012 1.170 1.137 0.961 0.863 0.863 1.140 0.918 0.938 0.905
4 0.896 0.893 0.899 0.896 0.886 0.882 0.896 0.896 1.497 1.566 0.994 1.212 1.163 0.969 0.886 0.886 1.087 0.937 0.963 0.904
5 0.984 0.988 0.990 0.989 0.976 0.973 0.990 0.990 2.124 2.240 0.991 1.376 1.219 1.038 0.974 0.975 1.087 1.012 1.028 1.038
6 0.961 0.961 0.966 0.965 0.956 0.954 0.964 0.963 3.000 3.000 1.009 1.465 1.109 1.002 0.949 0.949 1.048 0.983 1.011 0.980
7 0.966 0.970 0.970 0.969 0.963 0.962 0.969 0.968 3.000 3.000 1.006 1.633 1.096 0.989 0.956 0.955 0.991 0.961 0.971 0.952
8 0.973 0.977 0.976 0.975 0.971 0.972 0.975 0.975 3.000 3.000 1.000 1.558 1.014 1.012 0.972 0.973 0.997 0.988 1.005 0.985

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.319 0.366 0.329 0.352 0.339 0.375 0.348 0.360 -0.002 -0.002 0.003 0.076 0.131 0.001 0.327 0.338
2 0.235 0.286 0.270 0.302 0.270 0.306 0.310 0.322 -0.001 0.001 0.001 0.092 0.148 -0.016 0.291 0.283
3 0.201 0.249 0.242 0.274 0.235 0.269 0.282 0.292 0.004 0.002 -0.001 0.089 0.145 -0.004 0.293 0.302
4 0.194 0.242 0.239 0.271 0.231 0.263 0.281 0.291 -0.001 -0.004 0.002 0.086 0.141 0.024 0.314 0.311
5 0.182 0.232 0.229 0.262 0.220 0.254 0.271 0.282 0.002 0.000 0.003 0.076 0.131 0.038 0.265 0.285
6 0.187 0.238 0.237 0.270 0.226 0.259 0.279 0.290 0.002 -0.003 0.000 0.080 0.136 0.051 0.303 0.303
7 0.184 0.238 0.234 0.268 0.224 0.258 0.277 0.287 0.001 -0.001 0.002 0.074 0.132 0.056 0.303 0.317
8 0.185 0.237 0.234 0.267 0.224 0.258 0.276 0.287 0.003 0.001 0.002 0.072 0.126 0.059 0.329 0.319
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Table 9: Results for GDP, Covid Case, 7 Series.

Point and density forecast results for GDP. Root Mean Squared Forecast Error (RMSFE) upper panel. Median Absolute
Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results are relative
to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-MAFE lower
(higher) than 1 indicate better (worse) performance than the benchmark. ALPL higher (lower) than 1 indicates better
(worse) performance. The model description is reported in Table 2. Values in the table are capped at 3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.993 1.120 1.092 1.140 0.976 1.046 1.064 1.135 1.200 1.208 1.007 1.377 1.100 1.011 1.008 1.008 1.147 1.032 1.012 1.012
2 1.008 1.070 1.038 1.039 0.995 1.028 1.016 1.040 1.199 1.212 0.998 1.396 1.015 1.040 1.015 1.009 1.058 1.022 1.014 1.014
3 1.001 1.026 1.017 1.014 0.987 0.989 0.999 1.003 1.300 1.305 1.001 1.367 0.990 0.995 0.979 0.979 1.030 1.010 1.016 1.016
4 1.009 1.024 1.020 1.013 0.998 1.002 1.007 1.003 1.499 1.495 1.003 1.393 0.999 1.007 0.969 0.974 1.000 1.004 1.014 1.014
5 0.998 1.008 1.003 0.998 0.998 1.000 1.000 0.997 1.672 1.646 1.005 1.363 0.995 1.002 0.989 0.985 0.997 0.997 0.996 0.996
6 1.003 1.013 1.006 1.004 1.001 1.004 1.001 1.001 2.159 2.058 1.002 1.422 0.995 0.998 0.991 0.991 0.994 0.999 0.999 0.999
7 1.002 1.017 1.002 1.004 0.997 0.999 0.998 0.999 2.584 2.219 1.001 1.405 0.997 1.005 0.996 0.997 1.000 0.999 0.998 0.998
8 0.998 1.008 0.996 0.999 0.999 0.998 0.999 0.998 3.000 2.810 1.001 1.404 0.995 0.998 0.997 0.997 0.996 0.998 0.995 0.995

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.983 1.038 1.018 1.045 0.976 0.976 1.046 1.046 1.071 1.076 1.010 1.308 1.118 1.015 1.121 1.124 1.212 1.011 1.006 1.006
2 1.022 1.082 1.055 1.057 0.995 0.995 1.046 1.046 1.095 1.117 1.013 1.370 1.027 1.068 1.016 1.013 1.063 1.000 1.000 1.000
3 0.992 1.025 1.002 0.995 0.970 0.970 0.987 0.987 1.115 1.125 1.010 1.429 0.972 0.981 0.949 0.948 1.031 1.000 1.007 1.007
4 0.995 1.006 1.009 0.996 0.982 0.982 0.989 0.989 1.157 1.151 1.005 1.463 0.977 0.996 0.939 0.938 0.990 1.001 1.027 1.027
5 1.007 1.028 1.016 1.002 0.998 0.998 1.005 1.005 1.191 1.187 1.009 1.439 0.989 1.007 0.983 0.982 0.987 0.992 0.994 0.994
6 1.007 1.022 1.010 1.003 1.000 1.000 0.997 0.997 1.264 1.250 1.006 1.469 0.991 1.000 0.978 0.978 0.987 0.992 0.997 0.997
7 1.011 1.040 1.008 1.013 0.997 0.997 0.999 0.999 1.311 1.250 1.003 1.530 0.997 1.019 1.004 1.002 1.001 0.993 0.990 0.990
8 0.994 1.014 0.988 0.996 0.995 0.995 0.995 0.995 1.539 1.362 1.002 1.559 0.989 0.996 1.011 1.010 0.989 0.995 0.992 0.992

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.198 0.278 0.193 0.269 0.191 0.268 0.196 0.280 -0.000 -0.000 0.000 0.343 0.339 -0.023 0.247 0.265
2 0.142 0.217 0.146 0.213 0.148 0.216 0.155 0.219 0.005 0.009 -0.003 0.315 0.313 0.003 0.213 0.291
3 0.133 0.211 0.143 0.209 0.144 0.216 0.159 0.223 0.007 0.014 -0.004 0.299 0.295 0.019 0.268 0.280
4 0.125 0.204 0.135 0.200 0.141 0.213 0.156 0.217 0.005 0.013 -0.004 0.297 0.293 0.022 0.271 0.299
5 0.123 0.204 0.136 0.200 0.139 0.213 0.158 0.220 0.007 0.016 -0.005 0.302 0.297 0.029 0.312 0.314
6 0.121 0.201 0.135 0.199 0.138 0.213 0.158 0.220 0.007 0.016 -0.005 0.302 0.298 0.031 0.310 0.310
7 0.120 0.200 0.135 0.198 0.138 0.213 0.159 0.221 0.007 0.016 -0.005 0.303 0.298 0.031 0.311 0.319
8 0.119 0.200 0.134 0.198 0.137 0.212 0.159 0.221 0.006 0.015 -0.005 0.303 0.299 0.032 0.301 0.313
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Table 10: Results for CPI, Covid Case, 7 Series.

Point and density forecast results for CPI Inflation. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicate better (worse) performance than the benchmark. ALPL higher (lower) than 1
indicates better (worse) performance. The description of the model is reported in Table 2. Values in the table are
capped at 3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.971 0.989 1.006 1.065 0.977 1.014 1.016 1.041 1.014 1.026 1.013 1.594 0.984 1.092 1.034 1.033 0.945 0.967 0.986 0.986
2 1.006 1.036 1.014 1.007 1.000 1.038 0.992 1.009 1.031 1.031 1.007 1.577 1.057 1.026 1.032 1.031 0.984 0.991 0.991 0.991
3 1.003 1.009 1.004 1.008 0.994 1.021 1.006 1.012 1.058 1.097 0.996 1.275 1.001 1.027 1.042 1.034 0.998 0.991 1.003 1.003
4 1.012 0.999 1.015 1.024 1.016 1.030 1.027 1.028 0.995 1.012 1.010 1.510 0.990 1.026 1.016 1.013 1.000 1.000 1.009 1.009
5 1.008 1.012 1.007 1.011 1.002 1.008 1.000 1.005 1.026 1.045 1.001 1.395 1.001 1.024 1.003 1.001 1.016 1.006 1.010 1.010
6 1.001 0.997 1.005 1.006 1.003 1.005 1.005 1.009 1.032 1.033 0.998 1.342 1.003 1.014 1.003 1.003 1.006 1.003 1.004 1.004
7 1.002 0.999 1.001 1.001 0.997 1.000 0.999 1.000 1.030 1.046 1.000 1.412 0.999 1.006 0.993 0.994 0.996 0.998 1.000 1.000
8 1.004 1.004 1.001 1.001 1.001 1.004 0.998 0.999 1.046 1.018 1.000 1.474 0.999 1.004 0.990 0.990 0.998 0.996 0.998 0.998

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 1.017 1.037 1.030 1.061 1.014 1.014 1.051 1.051 1.031 1.046 1.023 1.669 1.043 1.103 1.102 1.103 0.977 0.986 1.003 1.003
2 1.016 1.028 1.012 1.011 1.009 1.009 1.015 1.015 1.021 1.004 1.005 1.626 1.078 1.022 1.027 1.027 0.983 0.997 1.002 1.002
3 0.997 1.001 0.997 1.004 0.994 0.994 1.013 1.013 1.042 1.069 0.995 1.294 1.011 1.040 1.039 1.037 1.016 0.997 1.014 1.014
4 1.026 1.009 1.025 1.032 1.025 1.025 1.029 1.029 0.992 1.015 1.009 1.578 0.996 1.042 1.032 1.030 1.015 1.012 1.027 1.027
5 1.010 1.017 1.007 1.021 1.003 1.003 1.010 1.010 1.033 1.047 1.002 1.545 0.998 1.031 1.006 1.006 1.019 1.006 1.016 1.016
6 1.007 1.002 1.007 1.011 1.008 1.008 1.011 1.011 1.044 1.045 1.000 1.405 1.004 1.030 1.007 1.007 1.007 1.004 1.005 1.005
7 1.002 0.994 1.000 1.001 0.996 0.996 0.995 0.995 1.033 1.045 1.001 1.423 0.995 1.009 0.988 0.989 0.988 0.998 1.005 1.005
8 1.009 1.012 1.008 1.007 1.005 1.005 1.006 1.006 1.046 1.027 0.999 1.620 1.004 1.015 0.991 0.991 0.996 0.997 0.999 0.999

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 -0,030 -0,017 -0,041 -0,039 -0,025 -0,014 -0,041 -0,041 -0,000 -0,000 -0,000 0,177 0,178 -0,009 -0,017 -0,003
2 -0,059 -0,041 -0,055 -0,055 -0,044 -0,031 -0,050 -0,054 0,002 0,008 -0,003 0,158 0,157 0,021 0,013 0,026
3 -0,056 -0,034 -0,049 -0,047 -0,038 -0,023 -0,042 -0,044 0,002 0,009 -0,005 0,167 0,166 0,035 0,027 0,041
4 -0,054 -0,029 -0,042 -0,039 -0,036 -0,019 -0,035 -0,036 0,002 0,012 -0,006 0,173 0,172 0,045 0,037 0,051
5 -0,060 -0,033 -0,045 -0,043 -0,040 -0,021 -0,037 -0,038 0,004 0,016 -0,007 0,182 0,181 0,056 0,048 0,062
6 -0,061 -0,034 -0,045 -0,044 -0,040 -0,021 -0,036 -0,038 0,003 0,016 -0,007 0,184 0,182 0,058 0,064 0,064
7 -0,061 -0,034 -0,045 -0,044 -0,040 -0,021 -0,036 -0,037 0,003 0,016 -0,007 0,185 0,183 0,059 0,051 0,065
8 -0,062 -0,034 -0,045 -0,044 -0,040 -0,021 -0,035 -0,037 0,002 0,016 -0,007 0,186 0,184 0,060 0,052 0,066
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Table 11: Results for FFR, Covid Case, 7 Series.

Point and density forecast results for Interest Rate. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicate better (worse) performance than the benchmark. ALPL higher (lower) than 1
indicates better (worse) performance. The description of the model is reported in Table 2. Values in the table are
capped at 3 .

Root Mean Square Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.911 0.984 0.939 0.941 0.948 1.038 0.943 0.961 0.989 1.029 1.011 1.174 1.019 0.952 0.987 0.987 1.028 1.010 0.997 0.997
2 1.003 1.051 1.013 1.029 0.986 1.001 1.002 1.021 1.019 1.069 1.015 1.421 1.092 1.013 0.966 0.968 1.078 1.047 1.029 1.029
3 0.998 1.027 1.018 1.032 0.979 1.009 0.994 1.027 1.075 1.083 1.001 1.328 0.998 0.996 0.995 0.993 1.071 1.007 1.011 1.011
4 1.034 1.037 1.026 1.015 1.009 1.017 0.999 1.000 1.167 1.237 1.002 1.350 0.997 0.991 0.956 0.954 1.049 1.008 1.029 1.029
5 1.009 1.026 1.012 1.013 1.003 1.011 1.003 0.999 1.151 1.181 1.002 1.257 1.014 1.015 1.003 1.003 1.030 1.018 1.016 1.016
6 1.010 1.005 1.010 1.009 1.006 0.991 1.005 1.006 1.268 1.263 1.006 1.373 1.001 1.037 0.993 0.993 1.016 1.013 1.018 1.018
7 1.007 1.023 1.010 1.014 1.004 1.011 1.007 1.005 1.376 1.307 1.001 1.597 1.005 1.026 0.990 0.989 0.989 0.985 0.984 0.984
8 1.005 1.010 1.001 1.002 1.001 0.998 0.998 0.999 1.765 1.523 1.007 1.437 0.995 1.009 0.991 0.990 1.004 1.001 1.007 1.007

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.866 0.892 0.878 0.878 0.887 0.887 0.899 0.899 0.940 1.000 1.052 0.905 0.978 0.872 0.959 0.956 0.961 0.789 0.798 0.798
2 0.988 1.020 0.988 1.019 0.967 0.967 0.999 0.999 0.988 1.011 1.025 1.234 1.115 0.996 0.967 0.960 1.182 1.059 1.054 1.054
3 1.011 1.062 1.013 1.051 0.981 0.981 1.020 1.020 1.031 1.042 1.030 1.275 0.987 0.950 0.993 0.985 1.163 1.040 1.053 1.053
4 1.031 1.052 1.035 1.049 1.004 1.004 1.014 1.014 1.088 1.116 1.010 1.324 0.998 0.989 1.009 0.999 1.128 1.028 1.058 1.058
5 1.018 1.044 1.030 1.036 1.005 1.005 1.009 1.009 1.105 1.128 1.006 1.418 1.011 1.009 1.064 1.056 1.052 1.040 1.038 1.038
6 1.022 1.033 1.026 1.031 1.003 1.003 1.006 1.006 1.132 1.135 1.006 1.521 0.997 1.011 1.029 1.029 1.032 1.035 1.045 1.045
7 1.017 1.041 1.017 1.031 1.003 1.003 1.003 1.003 1.123 1.106 1.000 1.680 1.002 1.023 1.037 1.030 1.003 0.994 0.997 0.997
8 1.015 1.025 1.015 1.014 1.001 1.001 0.998 0.998 1.201 1.154 1.005 1.584 0.994 1.016 1.048 1.042 0.996 1.004 1.012 1.012

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.254 0.369 0.261 0.366 0.241 0.349 0.254 0.353 0.007 0.004 -0.009 0.129 0.130 0.029 0.339 0.328
2 0.187 0.274 0.198 0.276 0.196 0.294 0.214 0.305 0.003 0.010 -0.000 0.118 0.118 -0.012 0.264 0.212
3 0.171 0.254 0.182 0.254 0.177 0.266 0.200 0.285 0.006 0.011 -0.004 0.112 0.110 0.003 0.293 0.286
4 0.154 0.234 0.167 0.236 0.171 0.266 0.193 0.279 -0.001 0.006 -0.002 0.111 0.111 0.021 0.304 0.311
5 0.149 0.225 0.160 0.229 0.169 0.257 0.189 0.272 -0.002 0.005 -0.003 0.099 0.098 0.042 0.313 0.323
6 0.150 0.228 0.162 0.230 0.170 0.269 0.191 0.275 0.001 0.007 -0.004 0.103 0.102 0.045 0.333 0.333
7 0.150 0.233 0.161 0.233 0.170 0.266 0.191 0.274 0.006 0.016 -0.004 0.103 0.102 0.049 0.342 0.331
8 0.151 0.235 0.164 0.236 0.168 0.263 0.191 0.279 0.006 0.015 -0.004 0.097 0.096 0.049 0.323 0.321
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Table 12: Results for GDP, 7 series, NoCovid case.

Point and density forecast results for GDP. Root Mean Squared Forecast Error (RMSFE) upper panel. Median Absolute
Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results are
relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicates better (worse) performance than the benchmark. ALPL higher (lower) than 1
indicates better (worse) performance. The model description is reported in Table 2. Values in the table are capped at
3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.935 0.948 0.977 0.986 0.939 0.942 0.979 0.989 1.007 1.009 1.013 1.223 1.046 1.015 1.165 1.163 1.312 0.999 1.005 1.005
2 0.988 1.033 1.014 1.032 0.984 1.022 1.004 1.028 0.989 1.008 1.003 1.285 0.982 1.089 1.032 1.028 1.134 0.958 0.961 0.961
3 0.981 0.991 0.995 0.997 0.966 0.962 0.977 0.970 1.005 1.021 1.012 1.261 0.958 0.979 0.962 0.959 1.044 1.006 1.017 1.017
4 0.996 1.008 0.998 0.989 0.986 0.985 0.991 0.965 1.022 1.030 1.008 1.313 0.985 1.001 0.967 0.967 1.003 1.000 1.011 1.011
5 0.992 0.998 1.001 0.994 0.989 0.993 0.995 0.990 1.018 1.025 1.011 1.348 0.988 1.003 0.988 0.988 0.989 0.992 0.991 0.991
6 1.001 1.024 1.003 1.000 0.995 0.999 0.996 0.995 1.012 1.027 1.004 1.344 0.988 0.988 0.975 0.975 0.986 0.997 0.995 0.995
7 1.005 1.029 1.006 1.012 0.998 1.002 0.998 0.999 0.995 0.995 1.003 1.409 0.993 1.013 0.991 0.991 0.993 0.996 0.995 0.995
8 0.993 1.002 0.993 0.998 0.998 0.998 0.998 0.997 0.997 1.008 1.003 1.475 0.989 0.995 0.996 0.996 0.989 0.991 0.987 0.987

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.984 1.011 1.005 1.021 0.980 0.980 1.024 1.024 1.015 1.015 1.013 1.273 1.086 1.021 1.168 1.166 1.222 1.014 1.026 1.026
2 1.018 1.061 1.040 1.043 0.995 0.995 1.029 1.029 0.993 1.007 1.017 1.282 1.010 1.080 1.029 1.030 1.106 0.967 0.979 0.979
3 0.978 0.993 0.980 0.974 0.962 0.962 0.963 0.963 1.009 1.016 1.018 1.342 0.951 0.978 0.966 0.963 1.028 0.994 0.998 0.998
4 0.988 0.993 0.994 0.979 0.978 0.978 0.968 0.968 1.009 1.001 1.007 1.382 0.975 0.994 0.957 0.955 1.000 0.996 1.019 1.019
5 0.997 1.009 1.004 0.992 0.986 0.986 0.995 0.995 1.010 1.008 1.012 1.359 0.982 1.006 0.993 0.992 0.972 0.985 0.982 0.982
6 1.002 1.023 1.003 0.995 0.992 0.992 0.989 0.989 1.022 1.028 1.008 1.379 0.987 0.992 0.980 0.980 0.984 0.989 0.990 0.990
7 1.013 1.039 1.012 1.018 0.999 0.999 0.999 0.999 0.994 0.987 1.004 1.471 0.994 1.020 1.005 1.004 0.997 0.990 0.987 0.987
8 0.994 1.007 0.990 0.999 0.997 0.997 0.998 0.998 0.999 1.010 1.004 1.525 0.988 0.997 1.019 1.019 0.988 0.993 0.991 0.991

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.202 0.279 0.198 0.272 0.194 0.272 0.201 0.283 -0.000 0.000 0.000 0.342 0.338 -0.024 0.296 0.275
2 0.145 0.218 0.150 0.216 0.152 0.219 0.159 0.221 0.009 0.013 -0.003 0.314 0.312 0.003 0.322 0.301
3 0.137 0.214 0.148 0.213 0.149 0.221 0.165 0.227 0.012 0.019 -0.004 0.298 0.294 0.018 0.238 0.217
4 0.129 0.206 0.141 0.204 0.145 0.218 0.161 0.221 0.011 0.018 -0.004 0.296 0.292 0.021 0.291 0.280
5 0.127 0.206 0.142 0.204 0.144 0.219 0.164 0.224 0.014 0.022 -0.005 0.301 0.297 0.029 0.278 0.228
6 0.125 0.203 0.141 0.203 0.143 0.218 0.164 0.225 0.014 0.023 -0.005 0.302 0.298 0.030 0.253 0.253
7 0.124 0.203 0.141 0.202 0.143 0.218 0.165 0.225 0.014 0.023 -0.005 0.302 0.298 0.031 0.251 0.230
8 0.124 0.202 0.141 0.202 0.142 0.218 0.165 0.225 0.014 0.023 -0.005 0.303 0.298 0.032 0.251 0.230
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Table 13: Results for CPI, 7 series, NoCovid case

Point and density forecast results for CPI Inflation. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicates better (worse) performance than the benchmark. ALPL higher (lower) than
1 indicates better (worse) performance. The description of the model is reported in Table 2. Values in the table are
capped at 3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 1 1.031 0.992 1.002 0.974 1.022 0.972 0.973 1.017 1.017 1.012 1.588 0.987 1.105 1.046 1.049 0.9766 0.9654 0.9755 0.9755
2 1 1.023 1.009 1.007 1.007 1.044 0.994 1.006 1.035 1.027 1.001 1.615 1.058 1.026 1.050 1.047 0.9725 0.9942 0.9906 0.9906
3 1 1.016 1.010 1.013 1.003 1.025 1.005 1.017 1.057 1.098 0.995 1.304 1.001 1.027 1.061 1.053 1.0083 0.9999 1.0166 1.0166
4 1 1.006 1.008 1.000 1.004 1.014 1.005 1.004 1.006 1.025 1.012 1.496 0.991 1.038 1.033 1.030 1.0129 0.9931 0.9963 0.9963
5 1 1.010 1.008 1.014 1.002 1.007 1.002 1.006 1.029 1.053 1.000 1.423 1.003 1.027 1.013 1.012 1.0153 1.0079 1.0109 1.0109
6 1 0.998 1.004 1.004 1.004 1.004 1.005 1.008 1.020 1.023 0.997 1.322 1.006 1.019 1.014 1.014 1.009 1.0051 1.007 1.007
7 1 0.997 1.001 1.001 0.997 0.999 0.998 0.999 1.034 1.051 1.001 1.423 1.000 1.007 1.000 1.000 0.9957 0.9975 0.9998 0.9998
8 1 1.005 1.002 1.001 1.002 1.004 0.999 0.999 1.012 1.013 1.000 1.469 1.000 1.006 0.996 0.996 0.9999 0.996 0.9984 0.9984

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 1 1.063 1.023 1.035 1.012 1.012 1.021 1.021 1.023 1.035 1.021 1.655 1.040 1.111 1.117 1.127 1.001 0.9939 1.0041 1.0041
2 1 1.029 1.010 1.010 1.018 1.018 1.014 1.014 1.023 0.996 1.002 1.678 1.085 1.025 1.053 1.051 0.970 1.001 1.0001 1.0001
3 1 1.004 1.003 1.005 1.002 1.002 1.016 1.016 1.042 1.067 0.992 1.310 1.014 1.040 1.064 1.062 1.030 1.0106 1.0335 1.0335
4 1 1.014 1.017 1.015 1.014 1.014 1.010 1.010 1.009 1.034 1.011 1.557 0.994 1.054 1.050 1.048 1.026 1.0031 1.0146 1.0146
5 1 1.008 1.007 1.019 1.001 1.001 1.007 1.007 1.033 1.050 1.002 1.578 0.998 1.030 1.020 1.019 1.011 1.005 1.0114 1.0114
6 1 1.005 1.009 1.012 1.010 1.010 1.013 1.013 1.029 1.030 1.000 1.379 1.009 1.039 1.025 1.025 1.011 1.0079 1.0112 1.0112
7 1 0.994 0.998 0.998 0.996 0.996 0.992 0.992 1.036 1.043 1.002 1.413 0.995 1.009 0.996 0.996 0.989 0.9967 1.005 1.005
8 1 1.012 1.007 1.006 1.005 1.005 1.004 1.004 1.019 1.016 0.999 1.636 1.004 1.018 0.995 0.995 0.997 0.9961 0.9977 0.9977

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 -0.022 -0.010 -0.033 -0.031 -0.018 -0.008 -0.033 -0.034 -0.000 -0.000 -0.000 0.176 0.177 -0.009 -0.011 0.004
2 -0.053 -0.035 -0.049 -0.049 -0.038 -0.025 -0.044 -0.047 0.004 0.010 -0.004 0.159 0.157 0.021 0.019 0.035
3 -0.050 -0.027 -0.042 -0.040 -0.032 -0.017 -0.034 -0.037 0.005 0.012 -0.005 0.167 0.166 0.036 0.033 0.049
4 -0.047 -0.021 -0.035 -0.033 -0.029 -0.011 -0.027 -0.029 0.005 0.016 -0.006 0.174 0.172 0.046 0.044 0.059
5 -0.053 -0.026 -0.038 -0.036 -0.033 -0.014 -0.029 -0.030 0.007 0.020 -0.007 0.184 0.182 0.058 0.056 0.071
6 -0.054 -0.027 -0.038 -0.037 -0.032 -0.014 -0.028 -0.030 0.007 0.020 -0.008 0.185 0.184 0.060 0.073 0.073
7 -0.055 -0.027 -0.038 -0.037 -0.032 -0.014 -0.028 -0.030 0.007 0.021 -0.008 0.186 0.185 0.061 0.059 0.074
8 -0.055 -0.027 -0.038 -0.037 -0.032 -0.013 -0.028 -0.029 0.006 0.020 -0.008 0.187 0.186 0.062 0.060 0.075
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Table 14: Results for FFR, 7 series, NoCovid case

Point and density forecast results for Interest Rate. Root Mean Squared Forecast Error (RMSFE) upper panel. Median
Absolute Forecast Error (MAFE). middle panel. Average Log Predictive Likelihood (ALPL) bottom panel. The results
are relative to the benchmark specification (M11) whose values, all equal to 1, are not reported in the table. RMSFE-
MAFE lower (higher) than 1 indicates better (worse) performance than the benchmark. ALPL higher (lower) than
1 indicates better (worse) performance. The description of the model is reported in Table 2. Values in the table are
capped at 3.

Root Mean Squared Forecast Error (RMSFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.908 0.933 0.910 0.911 0.938 1.001 0.926 0.935 0.971 1.011 1.011 1.192 0.957 0.961 0.990 0.990 1.013 0.997 0.992 0.992
2 1.001 1.024 1.001 1.006 0.987 0.987 0.991 0.997 1.008 1.059 1.015 1.436 1.041 1.016 0.971 0.973 1.068 1.029 1.022 1.022
3 0.996 1.015 1.004 1.016 0.981 1.000 0.988 1.010 1.009 1.018 1.001 1.335 0.993 1.001 1.000 0.998 1.070 0.997 0.996 0.996
4 1.032 1.028 1.016 1.006 1.007 1.007 0.993 0.990 1.097 1.173 1.002 1.348 0.995 0.992 0.960 0.959 1.044 1.002 1.017 1.017
5 1.008 1.027 1.009 1.010 1.002 1.004 1.001 0.996 1.027 1.066 1.002 1.255 1.015 1.015 1.010 1.009 1.029 1.015 1.013 1.013
6 1.010 1.006 1.010 1.009 1.007 0.988 1.005 1.006 1.037 1.052 1.006 1.380 1.001 1.040 1.008 1.008 1.017 1.014 1.020 1.020
7 1.006 1.024 1.009 1.014 1.003 1.008 1.006 1.004 0.973 0.969 1.001 1.615 1.004 1.027 1.006 1.005 0.988 0.985 0.982 0.982
8 1.005 1.011 1.001 1.002 1.000 0.994 0.997 0.999 1.013 1.036 1.007 1.446 0.995 1.011 1.006 1.006 1.005 1.002 1.007 1.007

Mean Absolute Forecast Error (MAFE)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

1 0.862 0.864 0.855 0.856 0.880 0.880 0.882 0.882 0.924 0.980 1.052 0.925 0.947 0.874 0.960 0.957 0.935 0.767 0.788 0.788
2 0.988 0.999 0.982 1.005 0.969 0.969 0.984 0.984 0.980 0.999 1.029 1.265 1.087 0.999 0.986 0.978 1.166 1.034 1.049 1.049
3 1.015 1.056 1.006 1.044 0.985 0.985 1.010 1.010 1.000 1.012 1.033 1.289 0.988 0.963 1.010 1.002 1.165 1.026 1.038 1.038
4 1.026 1.040 1.021 1.038 0.998 0.998 0.998 0.998 1.041 1.069 1.010 1.311 0.997 0.992 1.023 1.015 1.119 1.016 1.036 1.036
5 1.013 1.044 1.020 1.027 0.997 0.997 0.997 0.997 1.037 1.063 1.006 1.399 1.009 1.009 1.080 1.072 1.046 1.027 1.025 1.025
6 1.025 1.039 1.026 1.033 1.002 1.002 1.005 1.005 1.038 1.046 1.006 1.525 1.001 1.017 1.069 1.069 1.034 1.033 1.048 1.048
7 1.016 1.043 1.014 1.030 0.998 0.998 0.999 0.999 0.988 0.984 1.000 1.693 1.000 1.024 1.078 1.072 1.000 0.991 0.992 0.992
8 1.015 1.031 1.014 1.014 0.998 0.998 0.997 0.997 1.009 1.008 1.005 1.590 0.993 1.018 1.082 1.076 0.998 1.003 1.012 1.012

Average Log Predictive Likelihood (ALPL)

H M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M12 M16 M17 M18 M19 M20

1 0.231 0.351 0.237 0.343 0.219 0.333 0.230 0.330 0.009 0.006 -0.010 0.133 0.134 0.037 0.322 0.314
2 0.162 0.260 0.171 0.256 0.175 0.286 0.190 0.281 0.003 0.011 -0.001 0.121 0.120 -0.011 0.221 0.237
3 0.148 0.240 0.157 0.235 0.162 0.256 0.179 0.262 0.008 0.014 -0.005 0.116 0.114 0.002 0.237 0.245
4 0.133 0.221 0.146 0.218 0.156 0.258 0.175 0.259 0.004 0.012 -0.003 0.118 0.118 0.024 0.327 0.323
5 0.129 0.211 0.141 0.210 0.155 0.248 0.172 0.252 0.004 0.010 -0.003 0.102 0.101 0.044 0.323 0.322
6 0.131 0.213 0.146 0.213 0.156 0.258 0.175 0.254 0.006 0.012 -0.005 0.101 0.100 0.045 0.327 0.327
7 0.135 0.219 0.149 0.219 0.159 0.258 0.178 0.258 0.012 0.023 -0.004 0.100 0.099 0.050 0.334 0.333
8 0.134 0.217 0.149 0.218 0.158 0.255 0.177 0.259 0.011 0.020 -0.004 0.094 0.093 0.050 0.335 0.332
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