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Abstract

This paper investigates the performance of routinely used optimiza-
tion algorithms in application to the Generalized Covariance estima-
tor (GCov) for univariate and multivariate mixed causal and noncausal
models. The GCov is a semi-parametric estimator with an objective
function based on nonlinear autocovariances to identify causal and non-
causal orders. When the number and type of nonlinear autocovariances
included in the objective function are insufficient/inadequate, or the er-
ror density is too close to the Gaussian, identification issues can arise.
These issues result in local minima in the objective function, which
correspond to parameter values associated with incorrect causal and
noncausal orders. Then, depending on the starting point and the op-
timization algorithm employed, the algorithm can converge to a local
minimum. The paper proposes the Simulated Annealing (SA) optimiza-
tion algorithm as an alternative to conventional numerical optimization
methods. The results demonstrate that SA performs well in its appli-
cation to mixed causal and noncausal models, successfully eliminating
the effects of local minima. The proposed approach is illustrated by an
empirical study of a bivariate series of commodity prices.
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1 Introduction

In recent years, there has been a growing interest in employing mixed causal-noncausal pro-

cesses for the analysis of economic and financial time series (Lanne and Saikkonen (2013),

Hecq, Lieb, and Telg (2016), Gourieroux and Jasiak (2022), Gourieroux and Jasiak (2022),

Swensen (2022), and Cavaliere, Nielsen, and Rahbek (2020)). These models have gained

popularity due to their ability to incorporate both causal and noncausal components to

accurately capture the intricate nonlinear dynamics feature of economic and financial pro-

cesses. In economics, the integration of both causal and noncausal components is particularly

valuable when it comes to modeling rational expectations. Unlike traditional autoregressive

models, mixed models offer insight into how economic variables are influenced by their ex-

pectations and the mechanisms underlying the formation of these expectations (see Lanne

and Saikkonen (2011), Lanne and Saikkonen (2013)). In the financial domain, these models

capture nonlinear dynamics, including local trends, commonly referred to as speculative bub-

bles. Speculative bubbles are explosive financial patterns that frequently emerge in highly

volatile markets, such as the cryptocurrency and commodity markets. These bubbles repre-

sent periods of excessive prices (rates), driven more by market psychology and speculation

than by the underlying fundamentals. During such episodes, asset prices rise to unsustainable

levels, often followed by a sudden and sharp decline, leading to adverse economic outcomes.

Therefore, the identification and analysis of speculative bubbles are of crucial importance to

avoid possible disruptions of economic stability and resource allocation (see Gourieroux and

Jasiak (2017), Fries and Zakoian (2019), and Hecq and Voisin (2021)).

The estimation techniques available for mixed causal-noncausal processes fall into two

main categories: parametric and semi-parametric estimators. The parametric (approximate)

maximum likelihood method yields efficient estimates only when the error distribution is

specified correctly. In contrast, semi-parametric methods offer the advantage of robustness to

specification errors and do not require a distributional assumption on the errors of the model

(Gourieroux and Jasiak (2017), Gourieroux and Jasiak (2022), and Hecq and Velasquez-

Gaviria (2022)). As a consequence, the benefit of employing a semi-parametric estimator is

evident. Currently, GCov is the only semi-parametric estimator in the time domain avail-

able for the estimation of mixed causal-noncausal models. It was introduced by Gourieroux

and Jasiak (2017) and subsequently extended to a semi-parametrically efficient estimator in

Gourieroux and Jasiak (2022). The GCov is characterized by an objective function based

on the autocovariances of linear and nonlinear functions of independent and identically dis-

tributed (i.i.d.) model errors.
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This paper aims to address potential challenges associated with local minimum issues in

the objective function of the estimator GCov applied to mixed causal and noncausal models

and optimized by algorithms that are routinely used. In particular, we show that these chal-

lenges may arise from difficulties in distinguishing between causal and noncausal dynamics,

often linked to factors such as an insufficient number of nonlinear autocovariances, inappro-

priate nonlinear transformations, or a close to Gaussian error density. As a result, our findings

indicate that traditional optimization algorithms, like the Broyden-Fletcher Goldfarb-Shanno

(BFGS) algorithm, may struggle to converge to the global minimum in this context when

their starting points are poorly selected (see Dennis Jr and Schnabel (1996), Fletcher (2000),

and Byrd, Lu, Nocedal, and Zhu (1995)). This difficulty can lead to inaccurate results,

underscoring the limitations of conventional optimization methods when applying GCov to

processes involving a noncausal component.

To avoid optimization problems caused by a potential local minimum occurrence, we

propose combining the estimator GCov with the Simulated Annealing (SA) optimization

algorithm. SA is a powerful metaheuristic method designed to converge to the global mini-

mum when the objective function contains numerous local minima. Originally proposed by

Kirkpatrick, Gelatt Jr, and Vecchi (1983), SA draws inspiration from the solid annealing pro-

cess to address optimization problems. Over the years, SA has shown remarkable success in

solving complex optimization problems in various fields, including computer (VLSI) design,

image processing, molecular physics, and chemistry (see, for example, Wong, Leong, and

Liu (2012), Carnevali, Coletti, and Patarnello (1987), Jones (1991), and Pannetier, Bassas-

Alsina, Rodriguez-Carvajal, and Caignaert (1990)). This paper shows that the SA algorithm

significantly improves the optimization of the estimator GCov in mixed causal-noncausal

autoregressive models, ensuring accurate parameter estimates and correct inference on au-

toregressive orders.

It is important to note that this paper is focused exclusively on the estimation of causal

and noncausal parameters. We do not study inference on estimated parameters nor perform

portmanteau-type tests GCov (see Gourieroux and Jasiak (2022), Jasiak and Neyazi (2023)),

and assume that the models are correctly identified and specified. This paper focuses pri-

marily on the application of the GCov estimator to multivariate models. For comparison,

we also present some results on univariate processes to illustrate graphically the objective

function of the estimator displayed as a function of a single parameter. In this context,

alternative optimization strategies can be employed to achieve a successful convergence of

GCov. For example, a grid search strategy over the set of parameter values can be used to

find the estimators that minimize the objective function (see Bec, Nielsen, and Saidi (2020)
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for a grid search approach in the parametric framework). However, applying this alternative

methodology in the multivariate framework can be challenging due to the large dimensions

of the grid arrangement.

The paper is organized as follows. Section 2 discusses mixed causal and noncausal models

and introduces the GCov estimator. Section 3 shows that its objective function may exhibit

local minima under some conditions, which adversely affect the results of BFGS optimiza-

tion. Section 4 suggests the use of SA to solve the problem of local minima and to provide

optimal starting values. Section 5 investigates a bivariate series of commodity prices. Section

6 concludes.

2 GCov estimator of mixed causal and noncausal pro-

cesses

This section describes the causal-noncausal models and defines the GCov estimator.

2.1 Model representation

This section reviews univariate and multivariate mixed causal-noncausal models.

A strictly stationary univariate mixed causal and noncausal process for a zero-mean series

yt, where t = 1, 2, . . . , is given by:

φ(L)ϕ(L−1)yt = ηt, (1)

where the backward-looking polynomial, also defined as the causal polynomial, is given by

φ(L) = 1−φ1L−· · ·−φrL
r. On the other hand, the forward-looking polynomial, also defined

as the noncausal polynomial, is defined as ϕ(L−1) = 1− ϕ1L
−1 − · · · − ϕsL

−s. Furthermore,

ηt represents a sequence of random variables i.i.d. with a mean of 0 and a variance of σ2. In

(1), both the causal and noncausal polynomials are characterized by roots outside the unit

circle:

φ(z) 6= 0 and ϕ(z) 6= 0 for |z| ≤ 1.

If ϕ 6= 0 for some j ∈ {1, . . . , s}, the process in (1) is defined as purely noncausal if

φ1 = φ2 = · · · = φr = 0. The conventional causal autoregression is obtained when

ϕ1 = ϕ2 = · · · = ϕs = 0.

As shown in Lanne and Saikkonen (2011), the mixed causal and noncausal process ex-

pressed in (1) has the following alternative model representation (Breidt, Davis, Lh, and
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Rosenblatt (1991)):

yt =

p
∑

j=1

θjyt−j + ǫt,

with θ(z) 6= 0 for |z| = 1. When p = r + s, the autoregressive polynomial can be factored as

θ(z) = θ+(z)θ−(z), where:

θ+(z) = 1− θ+1 z − · · · − θ+r z
r 6= 0 for |z| ≤ 1,

and

θ−(z) = 1− θ−1 z − · · · − θ−s z
s 6= 0 for |z| ≥ 1.

This alternative model representation, even if characterized by roots inside the unit circle, is

not an explosive process because the error term ǫt is not an innovation with respect to the

past of yt, since ǫt = −(1/ϕs)ηt−s (Lanne and Saikkonen (2011)).

Due to the presence of the noncausal component, the process in (1) becomes capable of

capturing nonlinear dynamics, including local trends (bubbles) and conditional heteroskedas-

ticity (see Breidt, Davis, Lh, and Rosenblatt (1991), Lanne and Saikkonen (2011), Hencic

and Gouriéroux (2015), and Gourieroux and Jasiak (2018)).

As shown in Breidt, Davis, Lh, and Rosenblatt (1991), Lanne and Saikkonen (2011),

Gourieroux and Zakoian (2017), mixed causal-noncausal processes defined in (1) admits a

unique two-sided strictly stationary solution:

yt =
∞
∑

j=−∞

ψjηt+j, (2)

with ψ0 equal to 1. The two-sided MA representation clarifies that the autoregressive process

(1) is mixed, that is, causal-noncausal since the current value of the process yt is affected by

past, present, and future shocks. When the process in (1) is purely causal (resp. noncausal),

then ψj = 0 for all j > 0 (resp. j < 0) and its current value is affected only by current and

past shocks (resp. present and future shocks) (see Breidt, Davis, Lh, and Rosenblatt (1991)

and Lanne and Saikkonen (2011)).

Findley (1986) points out that the coefficients of a two-sided moving average representa-

tion (including present, past, and future errors) can be distinguished from a one-sided moving

average representation (including the past and present errors) only if the error term ηt follows

a non-Gaussian distribution. The reason is that the Gaussian distributions are entirely char-

acterized by their second-order moments, which display symmetry over time in stationary

processes. Therefore, in Gaussian processes, distinguishing between backward and forward
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representations is not possible (see Giancaterini, Hecq, and Morana (2022)). As a conse-

quence, any estimator that relies solely on linear second-order properties, such as the OLS,

does not possess the capability to discern this feature. Therefore, mixed causal-noncausal

processes can always be represented as purely causal AR(p) (resp. purely noncausal) with

the same linear sample autocovariance function as the true data-generating process (DGP).

In addition, the causal representation of a noncausal process has autoregressive roots equal to

the inverses of autoregressive roots of the DGP that lie inside the unit circle. In general, the

sample autocovariance functions are identical for mixed causal-noncausal processes and their

representations are obtained by replacing the autoregressive coefficients by the coefficients

of autoregressive polynomials with roots equal to the inverses of the true ones (see Breidt,

Davis, Lh, and Rosenblatt (1991)). However, among all processes that share the same linear

sample autocovariance functions as the true DGP, only the correct specification has serially

i.i.d. errors. For this reason, in addition to the assumption of non-Gaussianity, the correct

identification of the noncausal component also requires serially i.i.d. model errors (Hecq,

Lieb, and Telg (2016)).

In the multivariate level, the autoregressive representation with roots inside and outside

the unit circle and the multiplicative specification in (1) do not always overlap. In particular,

as underscored by Davis and Song (2020), Swensen (2022), Cubadda, Hecq, and Voisin (2023)

and Gourieroux and Jasiak (2022), the multiplicative representation in (1) does not always

exist and covers only a subset of mixed causal-noncausal processes at the multivariate level.

This makes the following specification:

Yt = Θ1Yt−1 − . . .ΘpYt−p + ut, (3)

with |Θ| 6= 0 for |z| = 1, more general compared to the multiplicative representation. There-

fore, this paper only considers the specification in (3) at the multivariate level.

Let us assume that the process in (3) is strictly stationary and satisfies the following

assumptions:

• Assumption A.1: The roots of det(Θ(z)) are of modulus different from 1.

• Assumption A.2: Vectors ut, t = 1, ..., T are serially i.i.d., non-Gaussian and square-

integrable with zero mean E(ut) = 0 and variance–covariance matrix V (ut) = Σu;

In addition, we suppose that det(Θ(z)) has n1 roots outside and n2 = n− n1 inside the unit

circle. As in Gourieroux and Jasiak (2017), we consider the semi-parametric specification of

the causal-noncausal model and do not impose any distributional assumptions on the errors,
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except for serial independence and non-Gaussian distribution in A.2. Like in the univariate

framework, the assumptions of i.i.d. and non-Gaussian errors {ut}
T
t=1, are required to hold

for correct identification of the noncausal component of the process with autoregressive roots

inside the unit circle (see Davis and Song (2020), Gourieroux and Jasiak (2017)).

The existence of a strictly stationary solution of (3), as well as the two-sided moving av-

erage representation of Y , is shown in Gourieroux and Jasiak (2017). We review their Repre-

sentation Theorem for a Vector Autoregressive process of order 1, VAR(1): Yt = ΘYt−1 + ut,

satisfying A.1 and A.2 where the matrix Θ is of dimension n × n and has eigenvalues of

modulus different from 1, to set up the notation.

Representation Theorem (Gourieroux and Jasiak (2017)): Under Assumptions A.1-

A.2, a mixed causal-noncausal n-dimensional VAR (1) (with n ≥ 1), admits a decomposition

of the autoregressive matrix Θ with an invertible (n × n) real matrix A of eigenvectors and

two square real matrices: J1 of dimension (n1×n1) and J2 of dimension (n2×n2) containing

the eigenvalues of Θ of modulus strictly less (resp. larger) than 1, and such that:

Yt = A1Y
∗

1,t + A2Y
∗

2,t (4)

Y ∗

1,t = J1Y
∗

1,t−1 + u∗1,t, Y ∗

2,t = J−1
2 Y ∗

2,t+1 − J−1
2 u∗2,t+1 (5)

Y ∗

1,t = A1Yt, Y ∗

2,t = A2Yt (6)

u∗1,t = A1ut, Y ∗

2,t = A2ut (7)

where [A1, A2] = A and [A1′, A2′]′ = A−1.

In equation (5), the processes Y ∗

1,t and Y ∗

2,t are the purely causal and purely noncausal

components of the process Yt, respectively. Any mixed causal-noncausal VAR(p) model (3),

with p ≥ 2, can be written as mixed causal-noncausal VAR(1) by using the companion form

as follows (Gourieroux and Jasiak (2017)):

Xt = ΨXt − 1 + ξt,

where Xt = [Yt, Yt−1, . . . , Yt−p+1]
′, ξt = [ut, 0, 0, . . . , 0], and:

Ψ = B





J1 0

0 J2



B−1,

with B and J containing the eigenvectors and eigenvalues of matrix Ψ, respectively. As a

consequence, for p ≥ 2, we have:

Xt = B1X
∗

1,t +B2X
∗

2,t
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X∗

1,t = J1X
∗

1,t−1 + ξ∗1,t, X∗

2,t = J−1
2 X∗

2,t+1 − J−1
2 ξ∗2,t+1

X∗

1,t = B1Yt, X∗

2,t = B2Yt

ξ∗1,t = B1ut, X∗

2,t = B2ut

where [B1, B2] = B and [B1′, B2′]′ = B−1. Consequently, when p ≥ 2, the causal and

noncausal components are functions of the current and lagged values of Yt, since X∗

1,t =

B1Xt =
∑p−1

h=0B
1
hYt−h and X∗

2,t = B2Xt =
∑p−1

h=0B
2
hYt−h.

2.2 GCov estimator

Section 2.1 showed that identification of mixed causal-noncausal processes from second-order

moments only is not possible. It also noted that among the processes that share the same

linear autocovariance function, only the true model has serially i.i.d. errors. Although dis-

tinguishing the true model based on the linear second-order moments only is not feasible,

the second-order moments and second cross-moments of nonlinear functions of i.i.d. non-

Gaussian errors can identify the process (Chan, Ho, and Tong (2006)). This concept under-

lies the semi-parametric estimators GCov introduced by Gourieroux and Jasiak (2017) and

Gourieroux and Jasiak (2022) and denoted GCov17 and GCov22, respectively. The estima-

tor GCov22 minimizes a portmanteau-type objective function involving the autocovariances

of nonlinear transformations of model errors viewed as functions of model parameters. For

example, the GCov22 estimator of the parameter θ = vec(Θ′) of the strictly stationary n-

dimensional mixed causal-noncausal VAR(1) process with ut = Yt − ΘYt−1 minimizes the

following portmanteau statistic:

θ̂ = argmin
Θ

H
∑

h=1

Tr
[

Γ̂a(h; θ)Γ̂a(0; θ)
−1Γ̂a(h; θ)

′Γ̂a(0; θ)
−1
]

, (8)

where H is the highest selected lag, Γ̂a(h; θ) is the sample autocovariance between a(ut) and

a(ut−h), with a(ut) =
[

a1(ut)
′, . . . , aK(ut)

′
]

, and aj(ut) is an element by element function, for

j = 1, . . . , K. K indicates the number of linear and nonlinear transformations included in

the estimator GCov22 and Tr denotes the trace of a matrix. The choice of an informative set

of transformations (aj) depends on the specific series under investigation. Gourieroux and

Jasiak (2017) and Gourieroux and Jasiak (2022) explain that this problem is analogous to

selecting moments in the Generalized Method of Moments (GMM) estimation or instruments

in the Instrumental Variable (IV) estimation. For example, in financial applications that aim

to capture the absence of a leverage effect, one can select both linear and quadratic functions.

For a bivariate process with n = 2, we may consider the following set of four functions
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(K = 4): a1(ut) = u1,t, a2(ut) = u2,t, a3(ut) = u21,t, and a4(ut) = u22,t. This implies that a1

and a2 are linear functions of errors in a causal-noncausal process, while, a3 transforms the

error term of the first variable, u1,t, squaring it for each t = 1, . . . , T , where T represents

the total number of observations. Similarly, the function a4 emulates the behavior of a3,

except that it applies the squaring operation to u2,t for each t = 1, . . . , T . Alternatively,

we can consider the signs of returns and their squares to separate the volatility dynamics

from the bounce effect of the bid-ask: a1(ut) = sign(u1), a2(ut) = sign(u2), a3(ut) = u21, and

a4(ut) = u22. It is important to note that if a(ut) includes only linear transformations of the

error term, then Γ̂(h), with h = 1, . . . , H, would provide only information on the second-

order linear moments of the process, rendering the estimator unable to identify and estimate

the correct specification. Therefore, the nonlinear transformations enable us to estimate the

true process. Under the regularity conditions given in Gourieroux and Jasiak (2022), the

semi-parametric estimator in (8) is consistent and asymptotically normally distributed when

the fourth moments of a(ut) are finite. Additionally, the GCov22 estimator in (8) is semi-

parametrically efficient. The matrix on the r.h.s of (8) is diagonalizable, with the sum of

its eigenvalues being the sum of the squares of the canonical correlations between a(ut) and

a(ut−h), for h = 1, . . . , H.

For comparison, we could estimate the parameters of the n-dimensional VAR(1) by the

GCov17, which minimizes:

θ̂ = argmin
Θ

H
∑

h=1

Tr
[

Γ̂a(h; θ)diag(Γ̂a(0; θ))
−1Γ̂a(h; θ)

′diag(Γ̂a(0; θ))
−1
]

, (9)

where diag(Γ̂a(0; θ)) is the matrix containing solely the diagonal elements of Γ̂a(0). Therefore,

the only difference between (8) and (9) is that Gcov17 takes into account only the diagonal

elements of the matrix Γ̂a(0). This feature makes GCov17 particularly appealing in the

high-dimensional framework, when the matrix Γ̂(0) is of large dimension, potentially leading

to a numerically more stable computation. Like the estimators defined in (8), GCov17 is

consistent and is normally distributed asymptotically when the fourth-order moments of

a(ut) are finite. In general, estimator (9) is not semi-parametrically efficient, except when

the weights in the objective function are Γ̂(0), instead of diagΓ̂(0) and the estimators in (8)

and (9) coincide (see Gourieroux and Jasiak (2017)).

3 BFGS Optimization of Gcov22

This Section examines the behavior of the objective function of the GCov22 estimator for

different types and numbers K of nonlinear error transformations and illustrates the per-
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formance of the BFGS optimization algorithm as implemented in Broyden (1970), Fletcher

(1970), Goldfarb (1970), and Shanno (1970).

Our investigation concerns both multivariate and univariate models. As mentioned in

Section 1, our analysis of univariate models is intended solely to offer a clear visual represen-

tation of the objective function in a two-dimensional Cartesian plane. For this purpose, we

consider a purely noncausal AR(1) process. In the multivariate framework, we consider the

mixed causal-noncausal VAR(1) process.

The results presented focus exclusively on the Gcov22 estimator. This decision is made

because both Gcov22 and Gcov17 perform similarly in terms of accuracy in the univariate

and multivariate models considered. Results for GCov17 are available upon request.

3.1 The univariate framework

We consider a univariate (n = 1) purely noncausal autoregressive process of order 1:

yt = θyt+1 + ηt, t = 1, ..., T. (10)

where the autoregressive coefficient |θ| < 1 and ηt is a strong (i.i.d.) white noise with the

t-Student(ν) distribution. This process is a strictly stationary noncausal process and char-

acterized by a root outside the unit circle (Lanne and Saikkonen (2011)). As highlighted in

Section 2, the noncausal process in (10) can be written as a causal process yt = 1/θyt−1 + ǫt

where E(ǫt yt−1) 6= 0. In other words, the error process ǫt is not an innovation process, and

the coefficient on yt−1 is greater than 1 in absolute value. Consequently, a local minimum at

1/θ can emerge, and we aim to investigate this phenomenon in this section.

To display the objective function of the estimator GCov22 of θ and to analyze the possi-

ble existence of local minima, we calculate the values of the objective function in (8). This

computation is carried out based on the simulated process given above, using θ = (0.66, 0.9),

ν = (4, 10), T = 500, and H = 10. This choice of autoregressive coefficients of the DGP

allows us to analyze the objective function when the coefficient is close to the unit circle

(θ = 0.9) or farther away from it (θ = 0.66). The choice of parameter ν in the error density

is intended to examine cases where the process is well identified (ν = 4) and situations where

identification issues may arise due to the proximity of the error density to the Gaussian

framework (ν = 10).

In empirical investigations, we do not have prior knowledge of the most suitable functions

aj and the appropriate value of K for our dataset. Indeed, as mentioned in Section 2, the

choice depends on the specific process under investigation. Therefore, we explore various

combinations of ak and K:
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• T0: a1(ηt)=ηt;

• T1: a1(ηt)=ηt, a2(ηt)=η
2
t , a3(ηt)=η

3
t , a4(ηt)=η

4
t ;

• T2: a1(ηt)=ηt, a2(ηt)=log(η
2
t );

• T3: a1(ηt)=sign(ηt), a2(ηt)=η
2
t ;

• T4: a1(ηt)=sign(ηt), a2(ηt)=log(η
2
t ).

We consider H = 10 in (8) since this number of lags can capture the correct dynamics in

most cases, as reported in Gourieroux and Jasiak (2017) and Gourieroux and Jasiak (2022).

For illustration, the objective function (8) is calculated on a set of the values of the

autoregressive coefficients, covering a range of -1 to 5 with a step size of 0.01. For each

coefficient within this interval, we calculate and plot the value of the objective function. The

objective functions displayed in Figures 1-(a,c) and 2-(a,c) confirm that when only the linear

transformations of the error term (T0) are used, the objective function of GCov22 exhibits

two global minima, associated with the true parameter value (θ) and its causal explosive

counterpart (1/θ). Consequently, GCov22, in this context, cannot differentiate between the

true noncausal and the causal autoregressive processes. The minimum coordinate in the

neighborhood of the true parameter value is the maximizer of a Gaussian maximum likeli-

hood function or the OLS estimator of a regression of yt on its lead or lag.

Next, we consider both linear and nonlinear transformations (T1-T4). The bimodality

issue in the objective function of GCov22 is alleviated, but not completely resolved. Figures

1-(a,c) show that when the true autoregressive coefficient is 0.66, the objective function has

a global minimum at 0.66 but there can remain a local minimum at the incorrect parameter

value 1.5 = θ−1. Furthermore, Figures 2-(a,c) show that when θ = 0.9 is closer to the unit

root, then in addition to the global minimum at 0.9 there is a local minimum corresponding

to 1.1 = θ−1. In the latter case, it is noticeable that the distance between the local and

global minima decreases, making the bimodality issue more problematic. These results re-

main valid, regardless of the specific choices of ak and K (similar results were obtained for

various ak and K beyond T0-T4, not presented here but available upon request). Whether

the problem with the local minimum is related to the choice of aj, K, or a combination of

both, it is crucial to recognize that in empirical investigations where the optimal selection of

these inputs is unknown, the optimization of the objective function can be challenging in the

presence of local minima.

Let us illustrate the performance of the BFGS optimization algorithm under these con-

ditions. The BFGS algorithm is a well-known deterministic optimization technique that
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approximates the inverse gradient of the objective function to locate the minimum. It starts

from the given starting value and iteratively refines this estimate using gradient information

and an approximation of the inverse Hessian matrix. We also optimize the objective function

related to GCov22 with other commonly used numerical optimization algorithms, such as

the Nelder-Mead method, the conjugate gradient method, and BFGS with limited memory.

We do not report these findings here, but they are available upon request. In Figures 1-(b,d)

and 2-(b,d), we present the empirical density function of the estimator GCov22, which has

been optimized using the BFGS algorithm. The empirical density is derived from Monte

Carlo simulations of the noncausal process in equation (8) with N = 1000 replications and

parameters θ = (0.66, 0.9), ν = (4, 10), T = 500, and H = 10. Specifically, we illustrate

scenarios where the starting value of the optimization algorithm corresponds to the local

minimum (0.66−1, 0.9−1), respectively. Figures 1-(b,d) and 2-(b,d) depict the performance of

the BFGS optimization algorithm under these conditions: an erroneous choice of an initial

value close to the local minimum may hinder the BFGS optimization algorithm from escaping

it and converging towards the global minimum. For results obtained when the true value

θ = (0.66, 1.5) is selected as the initial value, refer to Table 1.

Furthermore, the results indicate that when the BFGS optimizer is applied to GCov22,

it performs worse when the coefficient is farther away from the unit circle (θ = 0.66). Table

1 shows that a lower percentage of correctly estimated (and identified) models is achieved

for θ = 0.9 compared to θ = 0.66. The reason is that when the autoregressive coefficient

approaches the unit circle, the distance between the local and global minima decreases, mak-

ing it more challenging for the optimization algorithm to differentiate between the global

minimum and the associated correct coefficient estimator.

The results suggest that if the stationarity restriction on θ is ignored, local minima issues

can arise due to the domain of the estimator GCov22 being divided into two sets within

this specific DGP: set 1 with coefficients θ < 1 and set 2 with coefficients θ > 1. As a

consequence, if the optimization problem starts in set 2, that is, where a local minimum

occurs, it is likely that the numerical optimization algorithm will get trapped in that set and

converge to the local minimum instead of the global one. Finally, it should be noted that the

results illustrated in Figures 1-2 and Table 1 are obtained from simulated length processes

T = 500. For T = (1000, 1500), the results are slightly better and the local minima disappear

asymptotically. These results are not reported but are available upon request.

We conclude that careful selection of an appropriate starting value for an optimization

algorithm is essential to ensure accurate parameter estimates. This is even more important in

multivariate analysis, as we will show in Section 3.2. Indeed, the larger number of parameters
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in multivariate analysis adds a layer of complexity, making the task of achieving convergence

towards the global minimum a more intricate challenge.

Figure 1: BFGS optimization of Gcov22 in noncausal AR(1) with θ = 0.66,
T = 500 and OLS starting value

ν = 4
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(a) Visualization of the Gcov22 objec-
tive function. The green and red ver-
tical lines represent the true and in-
verse values of θ, respectively.
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(b) Empirical Density of BFGS op-
timized θ̂: Monte Carlo with N =
1000 replications and T = 500, 0.66−1

starting value

ν = 10
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(c) Visualization of the Gcov22 objec-
tive function. The green and red ver-
tical lines represent the true and in-
verse values of θ, respectively.
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(d) Empirical Density of BFGS op-
timized θ̂: Monte Carlo with N =
1000 replications and T = 500, 0.66−1

starting value.
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Figure 2: BFGS optimization of Gcov22 in noncausal AR(1) with θ = 0.9, T = 500
and OLS starting value

ν = 4
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(a) Visualization of the Gcov22 objec-
tive function. The green and red ver-
tical lines represent the true and in-
verse values of θ, respectively.
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(b) Empirical Density of BFGS opti-
mized θ̂: Monte Carlo with N = 1000
replications and T = 500, 0.9−1 start-
ing value.
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(c) Visualization of the Gcov22 objec-
tive function. The red and green ver-
tical lines represent the true and in-
verse values of θ, respectively.
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(d) Empirical Density of BFGS opti-
mized θ̂: Monte Carlo with N = 1000
replications and T = 500, 0.9−1 start-
ing value.

3.2 The multivariate framework

Let us now investigate the performance of the BFGS-optimized estimator GCov22 in mul-

tivariate causal-noncausal models. We consider a 3-dimensional mixed causal-noncausal
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VAR(1):

Yt = ΘYt−1 + ut, (11)

where ut is serially i.i.d. with a multivariate t-Student distribution characterized by ν = 4

degrees of freedom and a diagonal variance-covariance matrix Σu. The autoregressive matrix

is Θ, and referring to Representation Theorem, we consider:

A =











0.8 0.7 1.2

1 0.9 0.8

0.6 0.7 0.65











, J =











0.3 0 0

0 0.5 0

0 0 2.2











,

such that:

Θ = AJA−1 =











3.97 −3.73 1.3

2.29 −2.38 1.41

1.87 −2.16 1.40











. (12)

Hence, the considered process is characterized by two eigenvalues inside the unit circle related

to the causal component (j1 and j2) that are collected in matrix J1:

J1 =





j1 0

0 j2



 =





0.3 0

0 0.5



 ,

and an eigenvalue outside the unit circle (related to the noncausal component): j3 = 2.2.

Despite the assumption that (11) exhibits an eigenvalue outside the unit circle, this process

is not explosive in light of the Representation Theorem presented in Section 2. In particular,

according to equations (4), (5), and (6), the DGP of process (11) is expressed as the following

linear combination of its causal and noncausal components:

Yt = A1Y
∗

1,t + A2Y
∗

2,t

= A1J1A
1Yt−1 + A2j

−1
3 A2Yt+1 + A1A

1ut + A2j
−1
3 A2ut+1.

Appendix A displays the path and autocorrelation function of a simulated process Yt.

Next, we explore the performance of the BFGS optimizer of the GCov22 estimator in

multivariate VAR(1) processes. We calculate the empirical density function of the estimator

of matrix Θ by implementing a Monte Carlo experiment with N = 1000 replications of the

VAR(1) for T = 500 observation.

We examine the ”worst case scenario” when the OLS estimate of Θ (ΘOLS) is used as the

starting value of the BFGS algorithm for the optimization of GCov22. The OLS estimator
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of a multivariate causal-noncausal model is inconsistent and ΘOLS is potentially associated

with local minima in the objective function, since they are characterized by eigenvalues j1,

j2, and j
−1
3 (Gourieroux and Jasiak (2017)). Then, in the presence of such a local minimum,

the algorithm would have difficulty converge to the global minimum.

Figure 3 and Table 2 show the results obtained from the nonlinear transformations T1-T4.

We do not illustrate the linear transformation T0 since, as shown in the previous sections,

it is not capable of capturing the true DGP in mixed causal-noncausal processes. It should

be noted that in multivariate processes, the number K increases since we implement the

transformations of the errors of each series of components. As a consequence, T1 is now

characterized by K = 12, while all other transformations are characterized by K = 6. The

results show that, like in the univariate framework, the objective function of GCov22 can

have local minima at the parameter values of incorrect autoregressive matrices with eigen-

values replaced by their reciprocals. More specifically, Figure 3 illustrates that the empirical

density function of Θ̂ is centered on the starting value ΘOLS of a matrix characterized by the

eigenvalues j1, j2, and j
−1
3 rather than the population matrix Θ expressed in (12). Then, the

BFGS algorithm remains trapped around the starting value. Table 2 summarizes our find-

ings and shows that, as a consequence, the process is predominantly identified erroneously

as purely causal by GCov22. The transformation T1 performs better than the other trans-

formations in identifying the true process (Table 2), although the density function of Θ̂ still

focuses mainly around ΘOLS rather than on the true autoregressive matrix.

For comparison, Figure 4 displays the density function of Θ̂ when the BFGS algorithm

starts at the starting value equal to an autoregressive matrix with all eigenvalues outside the

unit circle, i.e, j−1
1 , j−1

2 , and j3. To obtain this starting value, we estimate Yt = ΘYt+1 + ut

using OLS and then find the inverse of the estimated matrix, denoted by Θ̃. The empirical

density function of Θ̂ is obtained from a MC experiment with N = 1000 replications. Using

Θ̃ as the starting value makes us mistakenly identify the process as purely noncausal most of

the time and produces an empirical density function centered on Θ̃, instead of matrix (12).

The BFGS algorithm is again trapped around the inconsistent estimate that serves as the

starting value.

Let us now discuss the case when the BFGS algorithm is initiated at the true autore-

gressive matrix as the starting value. In Figure 5, the empirical density function of the

BFGS optimized GCov22 estimator is shown. The results highlight that in this scenario the

conventional BFGS optimization algorithm successfully converges to the global minimum,

producing an empirical density function centered on (12). As a result, the model is correctly

identified most of the time, regardless of the nonlinear transformations T1-T4 employed (see
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Table 2).

In the multivariate framework, we also explore autoregressive matrices with eigenvalues

close to the unit circle and error distributions close to the Gaussian. Our findings about the

GCov22 objective function resemble those of the previous section: higher degrees of freedom

in the t-Student error distribution lead to more identification problems and more pronounced

local minimum challenges. In addition, when the eigenvalues are near the unit circle, the

distance between the local and global minima is reduced, deteriorating the convergence of the

optimization algorithms. Since these results resemble those of Section 3.1, their presentation

is omitted but is available upon request.

The above results extend the findings of the univariate framework as follows: the domain

of the objective function of the GCov22 estimator consists of four sets, characterized by the

matrices producing specific roots:

• Set 1: Characterized by all those autoregressive matrices that provide eigenvalues inside

the unit circle (resp. roots outside the unit circle);

• Set 2: Characterized by all those autoregressive matrices that provide two eigenvalues

inside the unit circle and one eigenvalue inside the unit circle;

• Set 3: Characterized by all those autoregressive matrices that provide one eigenvalue

inside the unit circle and two eigenvalues outside the unit circle;

• Set 4: Characterized by all those autoregressive matrices that provide eigenvalues out-

side the unit circle.

Each set contains a matrix that minimizes the value of the objective function based on the

autocovariances of linear functions of model errors. However, when nonlinear transformations

of errors are considered, there is a single global minimum associated with the true values of

the autoregressive matrix (12), and potentially local minima associated with the parameters

of incorrect autoregressive matrices. Therefore, in our case, if the optimization algorithm

starts within a set, particularly in proximity to a local minimum (Sets 1-3-4), conventional

optimization algorithms are likely to become trapped in that set and converge to the local

minimum instead of the global one. On the other hand, successful convergence is always

achieved when the starting value is selected from the same set as the global minimum (Set 2).

Therefore, the choice of the starting point for the optimization algorithm and the optimization

algorithm itself are two crucial steps to avoid identification issues, potentially preventing

incorrect identification and estimation of the investigated process.
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Figure 3: Density function of BFGS optimized Θ̂, OLS starting value ΘOLS
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The empirical density function of BFGS optimized Θ̂ estimating the true autoregressive matrix
(12), marked with vertical green dashed lines. The starting value for the BFGS optimization
algorithm is set at the OLS estimate of the causal counterpart of the matrix (12), that is,
ΘOLS, shown with red dashed lines, T = 500.
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Figure 4: Density function of BFGS optimized Θ̂: OLS starting value Θ̃
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The empirical density function of BFGS optimized Θ̂ estimating the true autoregressive matrix
(12), marked with vertical green dashed lines. The starting value for the BFGS optimization
algorithm is set at the OLS estimate of the noncausal counterpart of the matrix (12), Θ̃,
shown with violet dashed lines, T = 500.
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Figure 5: Density function of BFGS optimized Θ̂: starting value true Θ in (12)
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__
The empirical density function of BFGS optimized Θ̂ estimating the true autoregressive matrix
(12), marked with vertical green dashed lines. Here, the matrix in (12) serves a dual purpose
as both the population matrix and the starting point for the optimization algorithm

4 Simulated Annealing

In the previous section, we stressed the importance of selecting a starting value of the opti-

mization algorithm that belongs to the same set as the global minimum. Indeed, selecting a
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matrix with n1 and n2 equal to the true orders, as a starting value, helps achieve a success-

ful convergence of the BFGS optimization algorithm. However, in empirical investigations,

determining a priori the number of roots that lie within and outside the unit circle of the pop-

ulation matrix can be challenging. Therefore, in this section, we investigate the performance

of the SA optimization algorithm (Kirkpatrick, Gelatt Jr, and Vecchi (1983), Černỳ (1985)

and Goffe, Ferrier, and Rogers (1994)) applied to the optimization of the estimator GCov22.

Our particular focus will be on the nonlinear transformation T1, which, as demonstrated in

Section 3 outperforms T2-T4, in addition to being the most commonly employed nonlinear

transformation (see Gourieroux and Jasiak (2022) and Gourieroux and Jasiak (2022)).

4.1 The algorithm

SA is an optimization method inspired by the annealing process used in metallurgy. In

metallurgy, materials are gradually cooled to eliminate imperfections and achieve a more

stable state. The algorithm starts at a high temperature (T o) and gradually cools over time

to reduce the probability of getting stuck at a local minimum. Therefore, in optimization

problems, T o is a parameter that controls the search space exploration during optimization.

When T o is high, the algorithm is more likely to accept worse solutions than the current

one, allowing it to escape local optima and explore new areas of the search space. As T o

decreases, the algorithm is less likely to accept suboptimal solutions and converge toward the

global optimum. However, if the cooling rate is too high, the algorithm may not be able to

escape local minima (see Corana, Marchesi, Martini, and Ridella (1987), Goffe, Ferrier, and

Rogers (1992), Goffe, Ferrier, and Rogers (1994), and Goffe (1996)).

Let us now explain how the SA algorithm works when applied to the estimator GCov22.

We consider a mixed causal-noncausal VAR(1) in (11), and we use f to denote the objective

function of GCov17 or GCov22. Furthermore, we denote the maximum and minimum tem-

perature values of T o by T o
MAX and T o

MIN , respectively.

To initiate the optimization process, a function evaluation is performed at the randomly

selected starting point, denoted ΘS. Subsequently, a new matrix Θ (Θ′) is computed. Specifi-

cally, it is determined by adjusting the ij-th element of the matrix Θ′ (θ′ij) using the following

equation:

θ′ij = θSij +mij ∀i, j = 1, . . . , n. (13)

Here, θSij is the ij-th element of matrix ΘS, and mij is randomly selected from a uniform

distribution within the interval [mMIN ,mMAX]. The value f(Θ′) is then calculated and

compared with f(ΘS). If f(Θ′) < f(ΘS), Θ′ is accepted and the algorithm goes downhill.
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In the opposite scenario, when f(Θ′) > f(ΘS), the potential acceptance of Θ′ is determined

using the Metropolis criterion. According to this criterion, we compute the variable po as

follows:

po = e−
(f(Θ′)−f(ΘS))

To , (14)

we then compare it with p∗, that is, a number randomly selected from the range [0, 1]. If

po < p∗, Θ′ is rejected, and the algorithm remains at the current point in the function. On

the contrary, if po > p∗, we accept Θ′ and move downward. Equation (14) illustrates why a

lower value of T o decreases the probability of making an upward move. To find the optimal

solution, the procedure is repeated M times for each T o, starting from T o
MAX and gradually

reducing it at a rate of r, for a total of Q times, until it reaches T o
MIN .

Unlike conventional optimization algorithms, SA can escape local minima (see Corana,

Marchesi, Martini, and Ridella (1987), Aarts, Korst, and Michiels (2005)). However, as a

drawback, the parameters associated with the SA method, such as θMIN , θMAX , T
o
MAX ,

r, Q,, and M , are typically treated as black-box functions and are dependent upon the

objective function to be minimized. In empirical studies, a common approach to investigate

whether the global minimum has been found is to repeat the algorithm with a different

initial state ΘS. If the same global minimum is reached, it can be concluded with high

confidence that convergence has been achieved. In the cases where a different result is

obtained, it may be necessary to modify one or more of the parameters involved in the SA

algorithm.

4.2 Performance of BFGS with SA starting values: univariate
framework

In this section, we evaluate the performance of the SA algorithm for minimizing the objective

function of GCov22 in mixed univariate causal-noncausal models. To this end, we conducted

a Monte Carlo experiment to calculate the empirical density functions of θ̂, while maintaining

the same DGP as specified in (10), that is, θ = (0.66, 0.9), ν = (4, 11), and T = 500. The

coefficient θ obtained from SA optimization and known as θSA, serves as a starting point for

the BFGS optimization of the estimator GCov22. This strategy offers two distinct benefits.

First, it provides an opportunity to explore the impact of different initial value strategies

on reaching the global optimum, thus facilitating comparison with the results presented in

Figures 1-2 and Table 1. Second, it allows for the refinement of the solution obtained through

the SA method. This refinement proves particularly valuable when θSA is close to the global
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minimum, but there is room for improvement in its solution.

As previously mentioned, we begin with an initial temperature of T o
MAX , and at each of the

iterations Q, we allow it to decrease at a rate of r. After Q iterations, it reaches the minimum

temperature, denoted T o
MIN . It is worth noting that, in our approach, the final temperature

T o
MIN is a deterministic function of T o

MAX , r, and Q. This is true because T
o
MIN is obtained by

Q reductions at a rate of r from the initial value T o
MAX , that is, T

o
MIN = T o

MIN(T
o
MAX , r, Q).

In the literature, it is common to employ a cooling rate of r = 0.85, as indicated in Goffe,

Ferrier, and Rogers (1994) and Corana, Marchesi, Martini, and Ridella (1987). However,

determining the appropriate values for T o
MAX and Q, which later determine T o

MIN , often

requires an empirical approach. Therefore, before conducting our MC experiment, we perform

a preliminary analysis of the behavior of DGP under investigation by initially setting T o
MAX

and Q at high values. This allows us to monitor the performance of the objective function

throughout the optimization process. More specifically, in this preliminary analysis, we set

T o
MAX = 5000 and Q = 150. Figure 6-(a) illustrates the behavior of the value of a minimized

objective function of GCov22 as a function of the number of iterations Q when θ = 0.66

and ν = 4. The value of the minimized objective function of GCov22 calculated from

approximately 50 iterations fluctuates around an average value of 2.7 without making any

improvements to our optimization problem. This suggests that T o
MAX = 5000 is excessively

high and results in inefficient time use. Approximately for Q = 50, corresponding to T o = 1.5,

the value of the minimized value objective function decreases toward the global minimum.

These results are further confirmed in Figure 6-(b), which shows the behavior of the GCov22

estimator of the parameter θ as a function of Q. Based on the insights gained from this

analysis, we set TMAX = 1.5 and Q = 100 in our MC experiment. Furthermore, to effectively

explore the search space, we set M = 100. The choice of a high value for M is crucial for

a comprehensive exploration of the search space. The results are summarized in Table 1.

The SA algorithm yields a significant improvement in the results compared to Section 3.1:

θ̂ closely approximates the true value and the true dynamic is captured 90% of the time.

It should be noted that cases where GCov22 incorrectly identified our process as purely

causal can arise from certain replications of our MC experiment when the objective function

requires higher values of T o
MAX , Q, M , or a combination of them. As mentioned previously,

these parameters are typically problem-specific, and their selection involves experimentation.

However, for practical reasons, we maintain the same values for Q and M in all replications.

We find that improved results are obtained when SA is implemented for the estimation

of the simulated DGPs characterized by different autoregressive coefficients and degrees of

freedom (see Table 1) of t-Student error distribution.
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4.3 Performance of BFGS with SA starting values: multivariate
framework

In this section, we evaluate the performance of the SA algorithm for optimizing the estimator

GCov22 in multivariate mixed causal-noncausal models. As in Section 3.2, in each Monte

Carlo replication, we simulate the time series and then estimate them by the BFGS algorithm,

using the SA-provided starting value. For comparison, we maintain the same Monte Carlo

input and autoregressive model specified in Section 3.2. In this way, we can explore the

impact of different starting value choices on the convergence of BFGS to the global minimum

and compare them with the results presented in Figures 3-4-5 and Table 2.

Using the approach employed in Section 4.2 on univariate models, we set TMAX = 800,

Q = 200, and M = 2000. The results are shown in Figure 7 and summarized in Table 2.

In the multivariate framework, the SA algorithm yields a significant improvement in results

compared to Section 3.1. The density of the estimator is now centered on the population

value (12). Lastly, as in the previous section, it is worth noting that, for practical reasons,

we maintain a constant value for T o
MAX , Q, and M in each replication of the Monte Carlo

experiment.

Figure 6: Performance of SA in univariate noncausal process with θ = 0.66, ν = 4,
and T = 500.
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Figure 7: Empirical density function of Θ̂ with SA starting values
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The empirical density function of BFGS optimized Gcov22 with SA starting values and Θ in
(12), as the true parameter matrix. The vertical green lines in the plot indicate the corre-
sponding parameter values.
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Table 1: Estimated dynamics: Univariate framework

aj ν θ Starting value T Purely noncausal AR(1) Purely causal AR(1)

T1 4 0.66 0.66−1 500 61.4% 38.6%

T2 4 0.66 0.66−1 500 16.8% 83.2%

T3 4 0.66 0.66−1 500 74.5% 25.5%

T4 4 0.66 0.66−1 500 31.5% 68.5%

T1 4 0.66 0.66 500 99.4% 0.6%

T1 4 0.66 θSA 500 94.5% 5.5%

T1 10 0.66 0.66−1 500 13.3% 86.7%

T2 10 0.66 0.66−1 500 6.0% 94.0%

T3 10 0.66 0.66−1 500 24.2% 75.8%

T4 10 0.66 0.66−1 500 14.8% 85.2%

T1 10 0.66 0.66 500 94.6% 5.4%

T1 10 0.66 θSA 500 74.9% 25.1%

T1 4 0.9 0.9−1 500 70.8% 29.2%

T2 4 0.9 0.9−1 500 32.0% 68.0%

T3 4 0.9 0.9−1 500 41.7% 58.3%

T4 4 0.9 0.9−1 500 34.2% 65.8%

T1 4 0.9 0.9 500 86.3% 13.7%

T1 4 0.9 θSA 500 82.6% 17.4%

T1 10 0.9 0.9−1 500 36.5% 63.5%

T2 10 0.9 0.9−1 500 21.3% 78.7%

T3 10 0.9 0.9−1 500 26.7% 73.3%

T4 10 0.9 0.9−1 500 25.4% 74.6%

T1 10 0.9 0.9 500 83.9% 16.1%

T1 10 0.9 θSA 500 73.7% 26.3%

The table illustrates the performance of the BFGS algorithm in optimizing the GCov22 esti-
mator of mixed causal-noncausal univariate processes. ak indicates the linear and nonlinear
transformations used, while the starting value of the column indicates the strategy adopted to
select the starting value for the optimization algorithm
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Table 2: Estimated dynamics: Multivariate framework

aj Starting values VAR(n1 = 3, n2 = 0, p = 1) VAR(n1 = 2,n2 = 1,p = 1) VAR(n1 = 1, n2 = 2, p = 1) VAR(n1 = 0, n2 = 3, p = 1)

T1 ΘOLS 34.7% 55% 7.6% 0.7%

T2 ΘOLS 100% 0.0% 0.0% 0.0%

T3 ΘOLS 95.5% 4.3% 0.2% 0.0%

T4 ΘOLS 96.7% 3.2% 0.0% 0.1%

T1 Θ̃ 0.1% 2.3% 48.6% 49%

T2 Θ̃ 0.0% 0.0% 0.0% 100%

T3 Θ̃ 0.0% 0.0% 7.0% 93%

T4 Θ̃ 0.0% 0.0% 0.5% 99.5%

T1 Θ 0.0% 94.5% 3.1% 2.4%

T2 Θ 0.0% 97.5% 2.4% 0.1%

T3 Θ 0.0% 97.6% 2.3% 0.1%

T4 Θ 0.0% 97.3% 2.3% 0.4%

T1 ΘSA 1.4% 64.6% 28.4% 5.6%

The table illustrates the performance of the BFGS algorithm in optimizing the GCov22 es-
timator of mixed causal-noncausal multivariate VAR processes. ak indicates the linear and
nonlinear transformations used, while the column starting value indicates the strategy adopted
to select the starting value for the optimization algorithm. In this table, VAR(n1, n2, 1) indi-
cates a VAR(1), with n1 roots outside the unit circle and roots n2 inside the unit circle. Θ is
defined as in (12) and ν = 4.

5 Empirical analysis

We conduct an empirical analysis of a bivariate time series consisting of 363 daily obser-

vations on the CBOT closing prices of wheat and soybean futures in US Dollars, over the

medium term. For this analysis, we use the same data range as Gourieroux and Jasiak (2022),

covering the period from October 18, 2016, to March 29, 2018. The dataset was obtained

from https://ca.finance.yahoo.com, with the wheat futures represented by the ticker ZW =

F and the soybean futures by the ticker ZS = F. Figure 8 shows the demeaned data, while

Figure 9 presents the kernel-smoothed density estimators of the series.

Our primary objective is to evaluate the performance of the BFGS optimized estimator

GCov22. Additionally, we seek to identify the presence of speculative bubbles in agricultural

commodity markets. Detecting such bubbles has significant implications for various stake-

holders, including market participants, policymakers, and investors, as it directly impacts

decision-making in both the agricultural and financial sectors. It should be noted that the

examined series does not exhibit global trends or other widespread and persistent explosive

patterns. Instead, they display local trends and spikes, often sharing similar patterns with

concurrent spikes. To gain insight into the interactions among these variables and determine
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whether noncausal components drive these processes, we proceed to estimate a 2-dimensional

VAR(p).

Following Gourieroux and Jasiak (2017), we select the value of autoregressive order p = 2

that eliminates serial autocorrelation from residuals and apply the BFGS optimized GCov22

to the demeaned data. Furthermore, we reject the null hypothesis of the Gaussianity of the

residuals of the estimated model.

We use both the OLS estimate of the bivariate process (ΘOLS) and the starting value

obtained from the SA as starting points for the BFGS algorithm. The results are presented

in Table 3, which indicates that the choice of starting value significantly affects the results.

When we use the OLS starting values, the optimized BFGS GCov22 identifies the process as

a purely causal VAR(2). However, when the SA starting values are used, we obtain a lower

value of the objective function GCov22, and the bivariate process is identified as a mixed

causal and noncausal VAR(2) with three roots outside the unit circle and one root inside the

unit circle: j1 = 0.972, j2 = 0.88, j3 = 0.604, j4 = −4.355 and:

Θ̂1 =





0.44 1.23

3.31 −2.34



 , Θ̂2 =





0.52 −1.21

−3.19 3.10



 .

The associated matrix B̂ (Section 2.1) is:

B̂ =

















−0.68 −0.45 0.38 −0.29

−0.15 −0.47 0.34 0.92

−0.70 −0.52 0.63 0.07

−0.15 −0.54 0.57 −0.21

















.

Since j4 lies outside the unit circle, it implies the simultaneous occurrence of ”speculative”

bubbles in the two series considered. Furthermore, the negative value of this eigenvalue

underscores the fact that these bubbles display fluctuations (see Gourieroux and Zakoian

(2017) and Hecq and Voisin (2021)).

After computing B−1, we obtain a noncausal component of dimension 1 representing a

common bubble in commodity prices:

X∗

2,t = 1.54Y1,t − 1.21Y2,t + 0.78Y1,t−1 − 0.66Y2,t−1

These findings underscore the importance of combining SA with the BFGS optimization

of the GCov22 or another routinely used optimization algorithm. Employing SA to get the

starting value is crucial in this case, enabling us to identify a noncausal component of the

process, which, in turn, allows us to capture the nonlinear features that define these series.
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Figure 8: Empirical investigation: wheat and soybean
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The graph shows the demeaned prices of wheat (black line) and soybean (red line) futures
from October 18, 2016, to March 29, 2018.

Figure 9: Marginal sample densities of demeaned daily future price series.
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Marginal sample densities of demeaned daily future price series are non-Gaussian.
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Table 3: Estimated coefficients of mixed bivariate VAR(2)

Soybean and Wheat

SV Θ1 Θ2 f.v. Model

φj,1 φj,2 φj,1 φj,2

ΘOLS

φ1,j 1.16 0.24 -0.29 -0.29
2.00 VAR(n1 = 4, n2 = 0, p = 2)

φ2,j 1.06 1.05 -0.04 -0.09

SA
φ1,j 0.44 1.23 0.52 -1.21

1.50 VAR(n1 = 3, n2 = 1, p = 2)
φ2,j 3.31 -2.34 -3.19 3.10

The column ”SV” and ”f.v.” display the choice of starting values of the algorithm and the
value of the objective function at the minimum. In this table, VAR(n1, n2, 1) indicates a
VAR(1), with n1 roots outside the unit circle and roots n2 inside the unit circle.

6 Conclusions

In this paper, we have investigated the performance of the BFGS algorithm for the optimiza-

tion of the GCov22 estimator in mixed causal-noncausal models. The GCov22 estimator is a

semi-parametric method, which does not require any distributional assumptions on the model

errors other than serial independence and non-Gaussianity. It minimizes a portmanteau-type

criterion based on nonlinear autocovariances, providing consistent estimates and consequently

allowing for the identification of the causal and noncausal orders of the mixed VAR.

Our findings highlight the importance of considering an adequate number and type of

nonlinear autocovariances in the objective function of the estimator GCov22. When these

autocovariances are insufficient or inadequate or when the error density closely resembles the

Gaussian distribution, identification issues can arise. This manifests itself in the presence

of local minima in the objective function, occurring at parameter values associated with the

incorrect causal and noncausal orders. Consequently, the optimization algorithm may con-

verge to a local minimum, leading to inaccurate estimates.

To avoid the optimization problem due to local minima and improve the accuracy of the

estimation, we propose the use of the SA optimization algorithm as an alternative to con-

ventional numerical optimization methods. The SA algorithm effectively manages the iden-

tification issues caused by local minima, successfully eliminating their effects. By exploring

the parameter space more robustly and flexibly, SA provides a reliable solution for obtaining
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more accurate estimates of the causal and noncausal orders. However, it is worth noting that,

in high-dimensional frameworks, Simulated Annealing (SA) may be time-consuming, due to

the computational complexity involved in finding the global minimum. For future research

in this framework, it would be beneficial to investigate the optimization of GCov22 using

more complex optimization algorithms. For example, it would be interesting to explore how

Dynamic Mode Decomposition performs in this context (see Tu (2013), Schmid (2010), and

Gu, Lin, Lee, and Qiu (2024)). Regardless, one should reestimate the model using several

different sets of starting values and compare the minimized values of the objective functions

to ensure a correct outcome.

The proposed method is applied to the GCov22 estimator of the causal-noncausal vector

autoregressive model of a series of bivariate commodity prices. The results highlight the exis-

tence of local minima in this application and the advantage of the SA algorithm in providing

reliable results in empirical research.
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Appendix

Figure 10: Graph of the simulated time series in (11)-(12)
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Figure 11: Autocorrelation function of process generated by (11)-(12)

0 5 10 15 20

0.0
0.4

0.8

Lag

AC
F

Series 1

0 5 10 15 20

0.0
0.4

0.8

Lag

Srs1 & Srs2

0 5 10 15 20

0.0
0.4

0.8

Lag

Srs1 & Srs3

−20 −15 −10 −5 0

0.0
0.4

0.8

Lag

AC
F

Srs2 & Srs1

0 5 10 15 20

0.0
0.4

0.8

Lag

Series 2

0 5 10 15 20

0.0
0.4

0.8

Lag

Srs2 & Srs3

−20 −15 −10 −5 0

0.0
0.4

0.8

Lag

AC
F

Srs3 & Srs1

−20 −15 −10 −5 0

0.0
0.4

0.8

Lag

Srs3 & Srs2

0 5 10 15 20

0.0
0.4

0.8

Lag

Series 3

32



References

Aarts, Emile, Jan Korst, and Wil Michiels (2005). “Simulated annealing”. In: Search method-
ologies: introductory tutorials in optimization and decision support techniques, pp. 187–
210.

Bec, Frederique, Heino Bohn Nielsen, and Sarra Saidi (2020). “Mixed causal–noncausal au-
toregressions: Bimodality issues in estimation and unit root testing 1”. In: Oxford Bulletin
of Economics and Statistics 82.6, pp. 1413–1428.

Breidt, F Jay, Richard A Davis, Keh-Shin Lh, and Murray Rosenblatt (1991). “Maximum
likelihood estimation for noncausal autoregressive processes”. In: Journal of Multivariate
Analysis 36.2, pp. 175–198.

Broyden, Charles George (1970). “The convergence of a class of double-rank minimization al-
gorithms 1. general considerations”. In: IMA Journal of Applied Mathematics 6.1, pp. 76–
90.

Byrd, Richard H, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu (1995). “A limited memory
algorithm for bound constrained optimization”. In: SIAM Journal on scientific computing
16.5, pp. 1190–1208.

Carnevali, Paolo, Lattanzio Coletti, and Stefano Patarnello (1987). “Image processing by
simulated annealing”. In: Readings in Computer Vision. Elsevier, pp. 551–561.

Cavaliere, Giuseppe, Heino Bohn Nielsen, and Anders Rahbek (2020). “Bootstrapping non-
causal autoregressions: with applications to explosive bubble modeling”. In: Journal of
Business & Economic Statistics 38.1, pp. 55–67.
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