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Abstract

The concept of drawdown quantifies the potential loss in the value of a financial asset

when it deviates from its historical peak. It plays an important role in evaluating market

risk, portfolio construction, assessing risk-adjusted performance and trading strategies. This

paper introduces a novel measurement framework that produces, along with the drawdown

and its dual (the drawup), two Markov chain processes representing the current lead time

with respect to the running maximum and minimum, i.e., the number of time units elapsed

from the most recent peak and trough. Under relatively unrestrictive assumptions regarding

the returns process, the chains are homogeneous and ergodic. We show that, together with

the distribution of asset returns, they determine the properties of the drawdown and drawup

time series, in terms of size, serial correlation, persistence and duration. Furthermore, they

form the foundation of a new algorithm for dating peaks and troughs of the price process

delimiting bear and bull market phases. The other contributions of this paper deal with

out-of-sample prediction and robust estimation of the drawdown.

Keywords: Financial time series; risk measures; dating bear and bull markets.

JEL Codes: C22, C58, E32.
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1 Introduction

In the analysis of financial time series the drawdown measures the potential loss implicit in the

current market value of a financial asset with respect to the running maximum value. It provides

a path-dependent indicator of downside risk which has become increasingly popular for hedge

and mutual funds, commodity trading and insurance; see, among others, Carr et al. (2011), Bali

et al. (2013, sec. 5), McNeil et al. (2015, p. 78), Wu et al. (2021), Landriault et al. (2017), and

the references therein. Geboers et al. (2022) review the main developments in the literature

related to the drawdown. The drawup, the dual process of the drawdown, measures the deviation

of the current price from the historical minimum.

The maximum drawdown over a given investment horizon complements classical risk measures;

as reported by Van Hemert et al. (2020), investors assign to it great consideration for evaluting

trading strategies and portfolio managers. Goldberg and Mahmoud (2014, 2017) investigated the

tail mean of the distribution of maximum drawdowns over finite paths, referred to as Conditional

Expected Drawdown; de Melo Mendes and Lavrado (2017) studied the Maximum Drawdown

at Risk, defined as a quantile of the maximum drawdown distribution. Chekhlov et al. (2005)

introduced a family of risk measures called Conditional Drawdown at Risk (CDaR), representing

the tail mean of drawdown distribution, encompassing the average and maximum drawdown,

and analyzed its mathematical properties.

In parallel to these developments, the literature has considered replacing the variance in

portfolio optimization by risk measures based on the drawdown. Maximization of the expected

return of a portfolio under constraints on the drawdown process was pioneered by Grossman and

Zhou (1993) and extended by Cvitanió and Karatzas (1995). Zabarankin et al. (2014) consider

the problem of minimizing the CDaR of a portfolio subject to a constraint on the expected

return. In addition, several drawdown-based performance measures have been developed, the

most popular being the Calmar ratio, which is the ratio of excess mean returns to the maximum

drawdown of a portfolio. See Geboers et al. (2022, sec. 4.3) for an overview and references.

Schuhmacher and Eling (2011) discuss the theoretical underpinnings of these measures.

Finally, the drawdown process and, although less frequently, the drawup, have been the

subject of considerable interest in various areas of applied probability. See, Graversen and

Shiryaev (2000), Magdon-Ismail et al. (2004), Pospisil and Vecer (2008), Hadjiliadis and Večeř

(2006), Pospisil et al. (2009), Zhang and Hadjiliadis (2010), Mijatović and Pistorius (2012) Caglar

and Vardar-Acar (2013), Landriault et al. (2015), Atiya and Magdon-Ismail (2018), Bai and Liu
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(2019), among others.

Against this background, the purpose of this paper is to provide a characterization of the

drawdown of a discrete time price process, under realistic assumptions concerning the probabilistic

structure of the process. As in Zabarankin et al. (2014), we adopt the notion of drawdown with

a fixed and finite window, depending on a horizon parameter τ , which will be assumed to be

fixed and chosen by the investigator, according to the scope of the investment. A key element is

the introduction of two adapted processes, measuring respectively the current lead time from the

running maximum and minimum. These processes are discrete state first order Markov chains,

which, under suitable assumptions on the price process, are homogeneous and ergodic. The time

series properties of drawdowns and drawups are dependent upon those of absolute multiperiod

returns and the ergodic probabilities of the two Markov chains.

The lead time processes are also at the basis of new dating algorithm for identifying peaks and

troughs of the price process delimiting bull and bear market phases. Moreover, their transition

probabilities are the essential ingredients for characterizing the duration of drawdown/drawup

periods. There is a substantial literature on the problem of dating and characterizing bear

and bull markets, see Maheu and McCurdy (2000), Pagan and Sossounov (2003), Lunde and

Timmermann (2004), Maheu et al. (2012), Hanna (2018), and on drawdown duration, see Li et

al. (2022) and the references therein. The paper contributes to this literature by providing a new

model-free dating algorithm that is derived in the context of drawdown and drawup measurement.

Its properties depend on the choice of the horizon parameter τ .

Our empirical illustrations refer to the S&P500 daily stock market index (closing price)

from January 3, 2000, to August 30, 2023, and its components stocks. The time series were

downloaded from Yahoo Finance using the quantmod R package and the tickers obtained from

Wikipedia’s List of S&P 500 companies. As our interest lies in capturing the characteristics of

time series of draw-ups and downs over a long period of time, and the cross-sectional variability

of these characteristics, in some of the analyses we exclude the incomplete time series relating to

companies which entered the index after January 2016, which leaves a subset of 484 stocks; in

others, we will focus on the 381 series with complete observations for the whole sample period.

The other original contributions of this paper are the following: we consider (i) the use of

daily high and low prices for determining the upper and lower bound for the drawdown computed

on the closing price; (ii) robust estimation of the drawdown, abstracting from high frequency

variation in prices; (iii) the prediction of the drawdown. For the last point we compare a variety
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of direct time series predictors, based on modelling the series of drawdowns, with the drawdown

computed on the future paths simulated from the predictive distribution of prices, with the

support of a conditionally heteroscedastic model.

The paper has the following structure. The next section defines the drawdown and drawup

processes, and related processes, such as the current time distance from the running maximum

and minimum. Section 3 illustrates the time series properties of the drawdown. The dating

algorithm for bull and bear phases is presented in section 4. Section 5 is an empirical section

dealing with alternative ways of measuring cross-sectional dependence and association among the

drawdowns of the individual components of the S&P500 index. It also deals with the assessment

of the relationship among measures of risk based on the CDaR and other characteristics of

drawdowns and drawups (duration, persistence), and with the assessment of the dependence of

CDaR by its level and investment horizon. Section 6 works out the lower and upper bound for

the drawdown and proposes a denoising estimation strategy based on a parametric lowpass filter.

Section 7 looks at the problem of multistep prediction of the drawdown. In section 8 we draw

our conclusions.

2 Drawdowns and drawups: basic definitions

Let Pt, t = 0, 1, . . . , n, denote the logarithmic price of a financial asset, where t is time in days; we

define the log-return at time t as Rt = Pt −Pt−1, t = 1, . . . , n. The multiperiod (uncompounded)

return is defined as Rt(i) = Pt − Pt−i ≡
∑i−1

k=0Rt−k. Obviously, Rt(1) = Rt and for convention

we extend the definition to i ∈ 0, 1, . . . , τ, τ ∈ Z
+, by setting Rt(0) = 0.

Definition 1. The τ -maximum process, M+
t , and the associated τ -drawdown process, Dt, are

defined respectively as

M+
t = max{Pt, Pt−1, . . . , Pt−τ}, Dt = M+

t − Pt, t = τ, τ + 1, . . . , n. (1)

The lead time with respect to the running maximum defines the discrete random process S+
t , with

τ + 1 states S+
t = i, if M+

t = Pt−i, i = 0, . . . , τ.

Definition 2. The τ -minimum process, M−
t , and the associated τ -drawup process, Ut, are defined

respectively as

M−
t = min{Pt, Pt−1, . . . , Pt−τ}, Ut = Pt −M−

t , t = τ, τ + 1, . . . , n. (2)
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The lead time with respect to the running minimum defines the discrete random process S−
t , with

τ + 1 states S−
t = i, if M−

t = Pt−i, i = 0, . . . , τ.

M+
t defines a random lagged value of Pt, while S

+
t counts the time units separating the current

value from the τ -maximum; M−
t , and the related processes, are obtained by applying the max-filter

to the sign reversed price series, after a sign change, e.g., M−
t = −max{−Pt−i, i = 0, 1, . . . , τ}.

Definitions 1 and 2 depend on the horizon τ , which determines the size and the dynamics of

the drawdown: if Dt(τ) denotes the drawdown as a function of τ , Dt(τ) ≥ Dt(τ
∗), for τ∗ > τ .

This follows immediately from max{Pt, Pt−1, . . . , Pt−τ} ≤ max{Pt, Pt−1, . . . , Pt−τ∗}. Similar

properties hold for Ut. We assume that τ is selected a priori by the analyst, according to a desired

or typical duration of a position or investment. Interesting horizons are τ = 5, 10, 15, 22, 65,

corresponding to weekly, bi-weekly, tri-weekly, monthly and quarterly horizons.

Figure 1 shows realizations of the aforementioned processes. The observed logarithmic

price, denoted as pt, represents the natural logarithm of the daily S&P 500 stock market index,

available from January 3, 2000, to August 31, 2023. Its time series is graphed in the top panel,

covering the sub-period from January 3, 2023, to August 30, 2023, for visibility, along with

the realization of the maximum and minimum process, m+
t = max{pt−j , j = 0 . . . , τ}, and

m−
t = min{pt−j , j = 0 . . . , τ}, for τ = 22. The interval (m−

t ,m
+
t ), often referred to as the price

channel in the financial practice, is a measure of local range and volatiliy. The central panel

shows the drawdown dt = m+
t −pt and the drawup ut = pt−m−

t , while the bottom panel displays

the realized values of the current lead time with respect to the running maximum (s+t ) and the

running minimum (s−t ).

Table 1 provides some descriptive statistics for the same series, but refers to the complete

data starting from January 2000. The distribution of drawdowns is characterized by larger

dispersion (in terms of range, interquartile range and standard deviation), skewness and kurtosis,

than that of drawups. The mean and median drawup values are larger, instead. On average,

drawups are higher and less influenced by extreme values compared to drawdowns. As for the

lead time processes, they reveal that the drawdowns of the SP500 index have shorter duration:

the median lead time with respect to the running minimum is 16, as opposed to 6 time units,

which is the value recorded for s+t .
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Figure 1: Logarithm of S&P500 closing price (January 3, 2023 - August 30, 2023). Top panel:

Series (pt), τ -maxima (m+
t ) and minima (m−

t ) for τ = 22. Central panel: drawdown (dt) and

drawup (ut). Bottom panel: current lead time from maximum (s+t ) and minimum (s−t ).
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Table 1: S&P500 closing price (January 3, 2000 to August 30, 2023). Descriptive statistics for
the drawdown (dt) the drawup (ut), the lag-max (s+t ) and the lag-min (s−t ) time series.

dt ut s+t s−t
min 0.000 0.000 0.000 0.000
q0.25 0.002 0.015 1.000 5.000
median 0.012 0.032 6.000 14.000
q0.75 0.036 0.051 16.000 20.000
max 0.411 0.251 22.000 22.000
mean 0.026 0.037 8.563 12.653
stand. dev. 0.038 0.031 7.813 7.811
skewness 3.238 1.713 0.463 -0.314
kurtosis 19.553 8.267 1.711 1.614
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3 Time series properties of the drawdown

Suppose that the τ -maximum (τ -minimum) occurs at time t− i. This corresponds to the event

S+
t = i (S−

t = i), i ≤ τ , for which Pt < Pt−i (Pt > Pt−i), so that the drawdown (drawup)

equals |Rt(i)| = Pt−i − Pt. Therefore, the drawdown and drawup are the following measurable

transformation of the sequence {Pt−j , j = 0, 1, . . . , τ}:

Dt =
τ

∑

i=0

I(S+
t = i)|Rt(i)|, Ut =

τ
∑

i=0

I(S−
t = i)|Rt(i)|, (3)

where I(·) is the indicator function, taking value one if the argument is true and zero otherwise,

and we recall having posited Rt(0) = 0. The event S+
t = i occurs when Pt−i > Pt−j , for

j 6= i, j = 0, . . . , τ , equivalently,

{Rt(i) < 0, Rt−1(i− 1) < 0, . . . , Rt−i+1(1) < 0, Rt−i > 0, Rt−i(2) > 0 . . . , Rt−i(τ − i) > 0}.

On the contrary, S−
t = i occurs when Pt−i < Pt−j , j = 0, . . . , τ, j 6= i, or equivalently when

{Rt(i) > 0, Rt−1(i− 1) > 0, . . . , Rt−i+1(1) > 0, Rt−i < 0, Rt−i(2) < 0 . . . , Rt−i(τ − i) < 0}.

Therefore, Dt and Ut result from applying non-linear filters to the past and current logarithmic

returns. Consequently, their characteristics are contingent upon the joint distribution of past

and current returns. We will confine our focus to processes satisfying the following assumption.

Assumption 1. {Rt, t = 1, . . . , n} is strictly stationary with absolutely continuous marginal

distribution function F (x), with continuous density f(x), satisfying E(|Rt|r) < ∞ for some r > 2.

Moreover, it is strongly mixing of size −r/(r − 2), i.e., αm = O(m−s), s > r/(r − 2).

Recall that {Rt, t ∈ Z} is α-mixing (Davidson, 1994, Ch. 14) if limm→∞ αm = 0, where αm

is the mixing coefficient, defined as

αm = sup
B∈F t

−∞
,C∈F∞

t+m

|P (B ∩ C)− P (B)P (C)|,

and F s
t , t < s is the σ-field generated by {Rt, Rt+1, . . . , Rs}. We also say that {Rt, t ∈ Z} is

α-mixing of size −g0, g0 > 0, if αm = O(m−g), g > g0.

Assumption 2. τ ≥ 1 is a fixed positive integer.

Under Assumptions 1-2 the processes S+
t and S−

t are first order homogeneous Markov chains

with ergodic probabilities π+
i = P (S+

t = i) and π−
i = P (S−

t = i), respectively, for i = 1, . . . , τ .
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Homogeneity is implied by the assumption of strict stationarity, by which the joint distribution

of {Rt−j , 0 ≥ j ≥ τ} does not depend on t. The continuity condition prevents the occurrence of

ties (Rt(i) = 0 has zero probability).

The transition probabilities, p+ij = P (S+
t+1 = j|S+

t = i), p−ij = P (S−
t+1 = j|S+

t = i), i, j =

0, 1, . . . , τ, are obtained uniquely from the joint distribution of the τ + 1 consecutive returns

{Rt+1−k, k = 0, . . . , τ}, see Proietti (2023, sec. 3) for details. The transition matrix of S+
t takes

the form:

T+ =































p+00 p+01 0 . . . 0 0

p+10 0 p+12 . . . 0 0

p+20 0 0
. . . 0 0

...
... · · · . . .

. . .
...

p+τ−1,0 0 0 · · · 0 p+τ−1,τ

p+τ0 p+τ1 p+τ2 · · · p+τ,τ−1 p+ττ































. (4)

From state i, i = 0, . . . , q − 1, the only admissible transitions are to 0 or i+ 1: for instance, in

the drawdown case, either Pt+1 > Pt−i, and thus a transition is made to state 0, or Pt+1 < Pt−i.

Therefore, the first τ − 1 rows of the transition matrix have only two nonzero entries: p+i0 and

p+i,i+1 = 1− p+i0. On the contrary, from state τ a transition can be made to any other state. The

transition matrix of the Markov chain S−
t is derived similarly, and has the same lower Hessenberg

structure as (4), with the 0’s located in the same position.

Given the representation (3), it has been proven in Proietti (2023) that under Assumptions

1-2 the drawdown process Dt is weakly stationary with mean µD =
∑τ

i=0 π
+
i E(|Rt(i)|), variance

Var(Dt) =
∑τ

i=0

[

Var(|Rt(i)|) + E(|Rt(i)|)2
]

π+
i − µ2

D, and autocovariance function

Cov(Dt, Dt+k) =

τ
∑

i=0

τ
∑

j=0

[Cov(|Rt(i)|, |Rt+k(j)|) + E(|Rt(i)|)E(|Rt(j)|)] p+(k)
ij π+

i − µ2
D, (5)

where p
+(k)
ij = P (S+

t = j|S+
t−k = i), i, j = 0, . . . , τ , are the elements of the k-period transition

matrix [T+]k. Moreover, the strong-mixing regularity condition of Assumption 1 implies that the

autocovariance sequence is absolutely summable, since |Cov(Dt, Dt+k)| = O
(

|k|−(1+ǫ)
)

, ǫ > 0.

Similar properties hold for the drawup process Ut, which has mean µU =
∑τ

i=0 E(|Rt(i)|)π−
i

and Cov(Ut, Ut+k) taking the same expression as (5) with p
+(k)
ij replaced by the elements of the

k-period transition matrix of the chain S−
t , and π+

i replaced by π−
i .

As it is clear from (3), Dt and Ut are characterized by strong serial dependence and are

cross-correlated, being a mixture of absolute multiperiod returns for all horizons from 1 to τ . As
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such, they are a manifestation of the volatility of asset returns.

3.1 Example: Gaussian random walk

As mentioned in the introduction, several contributions have characterized aspects of the proba-

bility distribution of a drawdown in a continuous time setting, when the data generating process

is a Wiener or a Levy process. We complement those results by illustrating, in discrete time,

the properties of the drawdown (mean, variance and temporal persistence), and the associated

Markov Chain S+
t (ergodic and transition probabilities), when logarithmic prices are generated

as a Gaussian random walk with drift. The main driver of those features is the drift of one-period

returns relative to their standard deviation, also known as the Sharpe ratio.

Let Pt = Pt−1+µ+ ǫt, ǫt ∼ i.i.d. N(0, σ2). Suppose τ = 1. Then Dt can take only two values,

0 and |Rt|, with probabilities π+
0 = Φ(µ/σ) and π+

1 = 1 − π0, respectively, where Φ(z) is the

cumulative distribution function of a standard normal random variate. Using the properties of

the folded normal distribution,

µD = Φ
(

−µ

σ

)

[

σ

√

2

π
e−0.5µ2/σ2

+ µ
{

1− 2Φ
(

−µ

σ

)}

]

.

Moreover, Dt is serially uncorrelated, and Var(Dt) = (σ2 + µ2)Φ
(

−µ
σ

)

− µ2
D. Finally, the

transition probabilities are equal to the unconditional ones, e.g., p+00 = p+10 = Φ
(µ
σ

)

.

For τ > 1, Dt is a moving average process of order τ − 1, and p+00 = Φ(µ/σ); if µ = 0,

this is also equal to p+ττ , i.e., the first and last same state probabilities are both equal to 0.5.

The remaining marginal and transition probabilities of S+
t are evaluated analytically with the

support of the algorithms provided by Kan and Robotti (2017) for the multivariate folded normal

distribution.

Table 2 presents the ergodic probabilities π+
i , the same-state transition probabilities p+00 and

p+ττ , the unconditional mean and variance of Dt, the values of its autocorrelation function at

lags 1, 5, and 10, as the Sharpe ratio, µ/σ, varies from -2.5 to 2.5; the horizon parameter is

set equal to τ = 22. In the zero drift case the chain has a symmetric probability distribution,

π+
i = π+

τ−i, and the only admissible same state transition probabilities (p+00 and p+ττ ) are both

equal to 1/2. The expected drawdown is obviously larger when the drift is negative and decreases

monotonically as the Sharpe ratio increases.

As µ/σ increases, π+
0 tends to 1, the expected gap decreases towards zero and its variance

decreases: when the drift is positive and high, relative to σ, S+
t tends to be in state 0 (π+

0 is
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close to 1). Also, the persistence of Dt varies inversely with the Sharpe ratio.

Table 2: Characteristics of the Markov chain S+
t and of drawdown process Dt, when τ = 22 and

prices are generated by the Gaussian random walk process Pt = Pt−1+µ+σǫt, ǫt ∼ i.i.d. N(0, σ2),

as a function of the Sharpe ratio µ/σ.

Values of µ/σ
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

µD 54.98 43.95 32.86 21.67 10.18 2.34 1.02 0.36 0.14 0.05 0.02
Var(Dt) 22.04 22.09 22.19 22.39 21.86 5.54 3.88 1.03 0.37 0.14 0.05
ACF(1) 0.95 0.95 0.95 0.94 0.94 0.86 0.78 0.49 0.26 0.10 0.02
ACF(5) 0.77 0.77 0.76 0.75 0.71 0.49 0.34 0.05 0.03 -0.02 0.00
ACF(10) 0.54 0.54 0.54 0.52 0.47 0.22 0.12 0.00 0.01 -0.03 0.00

π+
0 0.00 0.00 0.00 0.00 0.00 0.12 0.53 0.80 0.93 0.98 0.99

π+
1 0.00 0.00 0.00 0.00 0.00 0.06 0.16 0.13 0.06 0.02 0.01

π+
2 0.00 0.00 0.00 0.00 0.00 0.05 0.09 0.04 0.01 0.00 0.00

π+
3 0.00 0.00 0.00 0.00 0.00 0.04 0.06 0.02 0.00 0.00 0.00

π+
4 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.01 0.00 0.00 0.00

π+
5 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00
...

...
...

...
...

...
...

...
...

...
...

...
π+
17 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00

π+
18 0.00 0.00 0.00 0.01 0.04 0.04 0.00 0.00 0.00 0.00 0.00

π+
19 0.00 0.00 0.00 0.02 0.06 0.04 0.00 0.00 0.00 0.00 0.00

π+
20 0.00 0.00 0.01 0.04 0.09 0.05 0.00 0.00 0.00 0.00 0.00

π+
21 0.01 0.02 0.06 0.13 0.16 0.06 0.00 0.00 0.00 0.00 0.00

π+
22 0.99 0.98 0.93 0.80 0.53 0.12 0.00 0.00 0.00 0.00 0.00

p+00 0.00 0.01 0.08 0.19 0.31 0.50 0.69 0.84 0.93 0.98 0.99
p+22,22 0.99 0.98 0.93 0.84 0.69 0.50 0.31 0.19 0.08 0.01 0.00

3.2 Estimation of the marginal and transition probabilities

Given a time series of logarithmic prices, the estimation of the marginal and transition probabilities

of the Markov chains S+
t and S−

t takes place as follows. Let us define the indicator function

I+it = I(S+
t = i), taking value 1 if S+

t = i and zero otherwise. Denoting the number of joint

occurrences of S+
t = i and S+

t+1 = j as

n+
ij =

n
∑

t=τ+1

I+i,t−1I
+
jt ,

the transition probabilities of the Markov chain S+
t are estimated by

p̂+ij =
n+
ij

n+
i.

,
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where n+
i. =

∑q
j=0 n

+
ij . The estimator of the marginal probabilities is

π̂+
i =

n+
i.

τ
∑

j=0
n+
j.

, i = 0, 1, . . . , τ.

The large sample properties of these estimators have been derived in Proietti (2023). Analogous

estimators are adopted for the marginal and transition probabilities of S−
t .

For the S&P500 time series, for τ = 22, π̂+
0 = 0.1839 and π̂−

0 = 0.0826, meaning that the

proportion of time units for spent at the maximum (minimum) of the last 22 observations is

18.4% (8.3%). The probability of a continuation of the maximum is p̂+00 = 0.5005, while that of a

minimum is smaller (p̂−00 = 0.4265).

4 A dating algorithm for turning points, bear and bull phases

The Markov chains S+
t and S−

t can be used to date peaks and troughs of a stock index, delimiting

bear and bull phases of the market. A peak marks the inception of a bear market phase, which

is terminated by a trough. A bull phase is entered after a trough and is terminated by a peak.

The dating algorithm has two steps that are hereby described.

1. Identification of candidate turning points. Let k ≤ τ denote a positive integer determining

the “isolation” of peaks and troughs.

❼ A candidate peak at time t is identified by the event

{S−
t−j > 0} ∩ {S+

t = 0} ∩ {S+
t+j = j}, j = 1, 2, . . . , k.

In words, a necessary condition for the occurrence of a peak is that a local maximum

is found at time t (S+
t = 0), and the current price is above the next k prices

(Pt > Pt+j , j = 1, . . . , k), while prices have been moving upwards from their historical

minimum for the previous k periods, (S−
t−j > 0), j = 1, 2, . . . , k.

❼ A candidate trough at time t is identified by the event

{S+
t−j > 0} ∩ {S−

t = 0} ∩ {S−
t+j = j}, j = 1, 2, . . . , k.

In words, at time t a local minimum occurs ( S−
t = 0), and the current price lies below

the next k prices (Pt < Pt+j , j = 1, . . . , k), while prices are moving downwards from

their τ -maximum (S+
t−j > 0), j = 1, 2, . . . , k.
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2. Enforce the alternation of turning points. The candidate turning points do no necessarily

alternate, i.e., nothing prevent that two or more consecutive peaks are identified after a

trough, and viceversa. Consecutive candidate peaks (troughs) are eliminated in a sequential

manner, by selecting the one for which the logarithmic price is larger (smaller).

The dating algorithm depends crucially on the horizon τ and considers in the first step

2k + 1 consecutive values of (S+
t , S

−
t ), centred at t. The choice of the isolation parameter k

affects predominantly the number of preliminary turning points that are identified: too large a k

would lead to discard candidate turning points that do not comply with the isolation property

required of a peak or a trough. Having a smaller k leads to a greater number of candidates and

is potentially less dangerous, as irrelevant turning points would be eliminated in the second step.

However, k enforces a minimum duration constraint on the subsequent bear and bull phase. In

general, the dating algorithm is relatively insensitive to the choice of k, which induces minor

difference only during very prolonged bear and bull phases; we found that choosing k ≈ τ/3

provides a reasonable solution.

The dating algorithm has been applied to the S&P500 index and to 484 series with complete

observations starting not later than January 2016. The horizon that was used is τ = 65 (a

quarter of a year of daily observations) and k was set equal to 22. Figure 2 plots, along with the

series, the turning points (vertical lines) and the bear phases identified for the index (shaded

areas). The series in blue is the diffusion index of a bear phase, i.e., the proportion of individual

stock series that are in a bear phase at a particular time. This is tipically larger than 1/2 during

episodes like the great financial crisis, the Covid-19 crisis, and the energy crisis triggered by the

Ukraine war.

The duration of the phases depends on the drift and the variability of the market: during the

first years of the 2000’s prolonged bear phases prevailed, in association with a downturn of the

market.

Obviously, the characterization of bear and bull phases is bound up with the definition of the

horizon τ . This is an essential ingredient. An investor rebalancing the portfolio every quarter

would look at the phases identified for τ = 65; one rebalancing every month would consider

τ = 22.

For the S&P500 index the probability of being in a bear (bull) state is estimated to be equal

to 31.66% (68.34%). A bear (bull) phase is typically associated with Dt > 0 (Ut > 0), although

there are instances in which a minor trough (peak), occurring before a major one, could be

12



Figure 2: S&P500 logarithmic prices (red), bull (white) and bear (grey) phases and bear diffusion

index (blue), based on 484 component series.
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eliminated by the above procedure. This occurs rarely: while Ut is found to be always positive

during a bull phase, Dt = 0 during a bear phase was found in 4 cases out of 1864. Moreover, it

does not hold that Dt (Ut) is identically equal to zero during a bull (bear) phase. A positive

drawdown can be found after a trough, i.e. during a bull phase, if the trough occurs after r < τ

time units after a previous peak (a peak is sometimes evocatively described as a high water

mark). Actually, P (Ut > 0|Bear) and P (Dt > 0|Bull) are estimated equal to 90.34% and 80.91%,

respectively.

In other words, the emerging and the persistence of positive drawdowns (drawups) serve to

identify a candidate peak (trough), but the indicator of a positive drawdown (drawup) does not

depend perfectly on the bear and bull phase.

4.1 Drawdown and drawup duration

The processes S+
t and S−

t are at the basis of two constructed random variables measuring the

duration of a rally of positive drawdowns and drawups.

Let us define the random variable Dd taking values Dd = k, k = 0, 1, . . . , τ , if, after being in

13



a peak at time t, the price process lies below Pt in the subsequent k times and peaks again at

time t+ k + 1; under such circumstances, positive drawdowns have persisted for k periods. We

posit, for k ≤ τ ,

P (Dd = k) = P (S+
t+k+1 = 0, S+

t+k = k, . . . , S+
t+1 = 1|S+

t = 0)

=







p+00, k = 0,

p+01p
+
12 · · · p+k−1,kp

+
k0, 1 ≤ k ≤ τ.

(6)

For k > τ , we can only provide the survival probability P (Dd > τ) = 1−
∑τ

k=0 P (Dd = k). If

the chain has transition probabilities satisfying p+i,i+1 = 1− p+00, for positive integer i and τ → ∞,

Dd is a geometric random variable, i.e., P (Dd = k) = p+00(1 − p+00)
k, k ≥ 0. The probability

distribution of Dd can be estimated once the transition probabilities of the chain S+
t are estimated

according to section 3.2.

In a similar way, we can construct a variable for the duration of drawups, Du, taking the

value k if, after the occurrence of a trough at time t (i.e., S−
t = 0), Pt+j lies above Pt for all

1 ≤ j ≤ k, and a new local minimum is reached at time t+ k + 1.

Table 3 reports the drawdown and drawup duration probabilities P (Dd = k) and P (Du = k)

for selected values of k, along with the corresponding survival probabilities, estimated from the

Markov chains s+t and s−t with τ = 22 adapted to the S&P500 time series. Interestingly, the

comparison of the survival functions P (Dd > k) and P (Du > k) shows that the distribution of

the duration of drawups (Du) dominates stochastically that of drawdowns, i.e., once a positive

drawups phase is entered, there is a higher probability of remaining in the same phase, with

respect to a positive drawdowns phase. The survival probability after 22 days is less than 7% in

the case of a drawdown, whereas it is about 17% for a drawup.

5 Some stylized facts

The time series of drawdowns, dt, and drawup, ut, with τ = 22 have been computed for the

N = 501 constituent stocks of S&P500, along with the states s+t and s−t , which measure the

distance in time units from the running maximum and the running minumum price, respectively.

To analyze risk diversification and investigate the influence of systemic factors on risk, or for

pairs trading, it is essential to assess the association among individual stocks. This raises the

question concerning which drawdown correlation measure should be considered, in the light of

the constraints on the values of both dt and ut - limited to nonnegative real values - and the
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Table 3: SP500 index 2000-01-03 to 2023-08-30 (n = 4026). Probability distribution of the

duration of a drawdown (Dd) and a drawup (Du).

k P (Dd = k) P (Dd > k) P (Du = k) P (Du > k)
0 0.5005 0.4995 0.4265 0.5735
1 0.1568 0.3427 0.1605 0.4130
2 0.0830 0.2597 0.0533 0.3597
3 0.0347 0.2249 0.0450 0.3147
4 0.0289 0.1961 0.0358 0.2790
5 0.0252 0.1708 0.0182 0.2608
6 0.0242 0.1467 0.0095 0.2513
7 0.0186 0.1280 0.0125 0.2388
8 0.0103 0.1177 0.0122 0.2266
9 0.0071 0.1106 0.0100 0.2166
10 0.0075 0.1032 0.0055 0.2111
11 0.0044 0.0988 0.0040 0.2071
12 0.0056 0.0932 0.0062 0.2009
13 0.0033 0.0899 0.0023 0.1986
14 0.0037 0.0863 0.0032 0.1954
15 0.0046 0.0816 0.0041 0.1913
16 0.0022 0.0794 0.0019 0.1894
17 0.0020 0.0774 0.0049 0.1845
18 0.0029 0.0745 0.0043 0.1802
19 0.0025 0.0720 0.0030 0.1772
20 0.0014 0.0706 0.0040 0.1731
21 0.0017 0.0689 0.0026 0.1706
22 0.0042 0.0647 0.0060 0.1646

presence of a non-negligible proportion of zero observations, quantified by π̂+
0 and π̂−

0 . Moreover,

the serial correlation in dt and ut may lead to an overassessment of the stocks’ comovements.

Focusing exclusively on the time period from January 3, 2000, to August 30, 2023, and

narrowing our analysis to the subset of 381 data series with complete observations, in Figure 3 we

present a comparison of five pairwise association measures. These measures are computed for two

generic stocks, labeled as r and s, and encompass the following: (i) Pearson’s correlation between

the time series drt and dst. (ii) Spearman’s rank correlation coefficients between the time series

drt and dst, which is the correlation of the probability integral transform of the drawdown series.

(iii) Pearson’s correlation coefficient between the values of s+rt and s+st, treating the variables as

quantitative. (iv) Cramér’s V ,

Vrs =

√

χ2
rs

τ(n− τ)
, χ2

rs =

τ
∑

i=0

τ
∑

j=0

(

n+
ij,rs − n+

i.,rsn
+
.j,rs/(n− τ)

)2

n+
i.,rsn

+
.j,rs/(n− τ)

,

where n+
ij,rs is the number of times s+t = i for stock r and s+t = j for stock s. This amounts to

treating the current lead time from the maximum as a nominal variable. (v) Goodman-Kruskal
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Figure 3: Cross-sectional distribution and relation between measures of pairwise association

between 381 stocks making up the S&P500 index (January 3, 2020 - August 30, 2023).

gamma index (Agresti, 2012, sec. 2.4.4),

γrs =
Crs −Drs

Crs +Drs
, Crs =

τ
∑

i=0

τ
∑

j=0

n+
ij,rs





∑

h>i

∑

k>j

n+
hk,rs



 , Drs =

τ
∑

i=0

τ
∑

j=0

n+
ij,rs





∑

h>i

∑

k<j

n+
hk,rs



 .

In this context, Crs represents the number of concordances, and Drs represents the number of

discordances; this amounts to treating the current lead time from the maximum as an ordinal

variable. All of these measures yield values within the range of -1 to 1, with the exception of

Cramér’s V , which falls within the 0 to 1 range.

Figure 3 illustrates the marginal cross-sectional distribution of the 72,390 pairwise coefficients,

and their bivariate scatterplots. Pearson’s drawdown correlation has the largest variability and

least concordance with the other measures; on the contrary, Spearman’s rank correlation shows

high coherence with the association measures based on s+t . Concerning the latter, there is an

almost perfect one-to-one correspondence between γrs and Pearson’s correlation based on s+t ;

finally, we would probably dismiss Cramér’s V on the grounds that it is not a signed measure.

Chekhlov et al. (2005), see also Zabarankin et al. (2014), define the conditional drawdown at
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risk (CDaR) at the level α as the average of the (1− α) largest drawdowns:

CDaR(τ, α) =
1

(1− α)n

n
∑

t=1

dtI(dt ≥ qα),

where qα denotes the α-quantile of the τ -drawdown distribution. The CDaR encompasses the

mean drawdown, which arises for α = 0, the median drawdown (α = 0.5), and the maximum

drawdown (α = 1). The conditional drawup at risk (CUaR) is defined similarly, CUaR(τ, α) =

1
(1−α)n

∑n
t=1 utI(ut ≥ qα). Both CDaR(τ, α) and CUaR(τ, α) are increasing in both arguments.

We shall return to this issue later.

The correlation heatmap in figure 4 presents the cross-sectional association, across N = 381

constituent stocks of S&P500, of a number of risk measures, CDaR(22, 0), CDaR(22, 0.5),

CDaR(22, 1), CUaR(22, 0), CUaR(22, 0.5), CUaR(22, 1), characteristics of asset returns, namely

average returns µ̂ = 1
n

∑n
t=1 rt and their standard deviation, σ̂ =

√

1
n

∑n
t=1(rt − µ̂)2, two

performance measures, namely the Sharpe ratio, µ̂/σ̂, and the Calmar ratio, µ̂/CUaR(22, 1), and

a set of characteristics of the observed Markov chains s+t and s−t : the estimated probability of

being in state zero (the current value coincides with the historical maximum/minimum), π̂+
0

and π̂−
0 , respectively, the same state transition probabilities p̂+00 and p̂−00, and the bull and bear

survival probabilities at τ = 22 days. The measure of association adopted is Spearman’s rank

correlation, which is invariant to monotonic transformations of the variables.

Strong associations exist among the risk measures (CDaR and CUaR), which are also strongly

and positively correlated with the standard deviation. Similarly, the performance measures

(Sharpe and Calmar) exhibit a significant positive correlation, with coefficient 0.96. These

metrics show positive relationships with µ̂ but negative associations with the risk measures. The

persistence of a bear state, as measured by π̂−
0 , p̂

−
00, and P (Dd > 22), demonstrates a positive

correlation with the risk metrics and a negative one with the performance metrics. Conversely,

when examining variables that express the persistence of a drawup state, such as π̂+
0 , p̂

+
00, and

P (Du > 22), the direction of the association is reversed.

We conclude this section with an analysis of the dependence of the CDaR for the i-th asset,

denoted CDaRi(τ, α), i = 1, 2, . . . , N , on the horizon τ and the level α. While α varies within

the range of [0,1], the Conditional Drawdown at Risk (CDaR) assesses the tail mean of the

distribution of drawdowns. Also, when τ is increased for a specific α, the tail mean increases, as

drawdown is a strictly increasing function of τ .

In Figure 5, you can observe the contour plots of CDaR(τ, α) for the stocks of two competing
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Figure 4: Heatmap of the pairwise Spearman’s rank correlation coefficients of selected features

of τ -drawdown and τ -drawup time series, based on N = 361 stocks with complete observations

for the period Jan. 2000-Aug. 2023, and τ = 22.
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firms belonging to the Consumer Staples sector, labelled A and B. The left panel displays the

logarithmic price of these stocks. It is evident that stock A experiences larger drawdowns,

especially in the initial decade of the sample period and at the outset of the Covid-19 pandemic

crisis. During the global financial crisis, the drawdowns are of a comparable magnitude. As a

result, the drawdown of firm A dominates stochastically that of firm B for all choices of τ and α.

By performing the rank 1 singular value decomposition of the matrix whose (k, l) element is

CDaRi(τk, αl), with τk = k, k = 1, . . . , 65, and αl = l/41, l = 0, 2, . . . , 40, we obtain the following

factorization:

CDaRi(τk, αl) = λiθi(τk)νi(αl) + ǫi, i = 1, . . . , N,

where λi is the first singular value of the CDaR matrix, θi(τk) is the k-th element of the first

left singular vector, and νi(αl) is the l-th element of the first right singular vector. The above

factorization captures the bulk of the variability of CDaRi(τk, αl): the customary goodness of fit

statistic for the rank 1 least squares approximation of the matrix of CDaR values, given by the

ratio λ2
i to sum of the squares of all the singular values, is never below 0.99 for all stocks.

The scalar λi can be interpreted as the overall risk factor for the i-th asset. Its cross-sectional

distribution across the 381 individual stocks is estimated by the histogram and the kernel density

shown in the left panel of figure 6; the values range from a minimum of 3.65 to a maximum of

18.48; the median and the mean are respectively 7.71 and 8.25, with a standard deviation equal

to 2.85.

The loadings θi(τk), τk = 1, . . . , 65, provide the τ -profile of risk, expressing the increase of risk

with the length of the time horizon of the investment. They are displayed in the central panel of

figure 6, each curve referring to a different stock. The τ -profile is increasing in τ according to

the power law θi(τk) = aiτ
βi

k ; when the coefficients βi are estimated by regressing log(θi(τk)) on

log(τk), the estimates average out to 0.52 with a standard deviation equal to 0.04, which shows

that the profile displays some heterogeneity across the stocks. As a result the square-root-of-τ

rule for characterizing how risk increases with the investment horizon can be used only as a first

approximation. It should be noticed that the τ -profiles cross, meaning that some stocks can be

relatively more risky at longer horizons than they are at shorter ones. Most curves cross around

the horizon corresponding to 41 days.

The α-profile of risk is informative on the tail behaviour of the distribution of drawdown. It

increases with α at a faster rate and it is constant for low values of α depending on the frequency

of observed zero drawdowns, which varies from stock to stock. Most individual curves cross at
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Figure 5: Daily price series of stocks A and B (logarithms, Jan. 3, 2000 - Aug. 30, 2023, left

panel). Contour plots of CDaRi(τ, α), i = {A,B}, for 1 ≤ τ ≤ 65 and 0 ≤ α ≤ 1 (right panel).

2005 2010 2015 20202.5

3

3.5

4

4.5

5

5.5

Stock A
Stock B

0.05

0.05

0.05

0.05

0.0
5

0.1

0.1

0.1

0.15

0.15

0.2
0.2

0.25

0.05

0.05

0.05

0.05

0.1

0.1

0.1

0.15
0.15

0.2

10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

α = 0.87. More risky stocks (characterized by larger λi values, coloured in red) tend to have

lower (higher) profile curves for α smaller (larger) than this threshold.

6 Robustness and Microstructure noise

6.1 Upper and lower bounds for the drawdown

So far we have been considering the drawdown that an investor faces at the closing of the market.

This is an understatement of the drawdown that is faced in real life, as it does not take into

account the intradaily variability of prices. The availability of the time series of daily maximum

(high) and minimum (low) prices recorded in day t, denoted P+
t and P−

t , respectively, enables

the computation of lower and upper bounds for the drawdown.

The upper bound, D+
t , is obtained from the time series of daily high by applying the maximum

filter in Definition 1 to the series P+
t of price high, and comparing the daily low price, denoted

P−
t , to the running τ -maximum of P+

t :

D+
t = max{P+

t−i, i = 0, 1, . . . , τ} − P−
t .

The lower bound, D−
t , is the drawdown faced by the investor who sells at the current high, P+

t ,
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Figure 6: CDaR factorization. Distribution of the risk factors λi for 381 stocks (left panel).

τ -profile of risk (central panel). The colour of the individual curves ranges from dark green to

red according to the increasing values of λi. α-profile of risk (right panel).
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a stock bought at the historical maximum low (this can be negative, hence we take the largest

between this drawdown and zero):

D−
t = max

{

max{P−
t−i, i = 0, 1, . . . , τ} − P+

t , 0
}

.

It follows directly from P−
t ≤ Pt ≤ P+

t that D−
t ≤ Dt ≤ D+

t .

Figure 7 displays the upper (solid blue line) and lower (solid green line) bounds for the

drawdown dt (dotted red line) evaluated for the closing price in the period Jan. 3, 2023 - Aug.

30, 2023. The range of values around dt depends not only on the daily price range, P+
t − Pt−,

but also on the maximum historical range, max{P+
t−i, i = 0, 1, . . . , τ}−max{P−

t−i, i = 0, 1, . . . , τ}.

6.2 Price discreteness

Observed high, low, and closing prices are multiple of a tick size, say one cent, so that their

values are rounded. As a result, (multi-)period returns can be zero, whenever they fall below

half a cent, with the consequence that more than one local maxima or minima can be present.

We break the ties at random by running the maximum and minimum filters on the series pt
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Figure 7: Upper and lower bounds for the drawdown of S&P500 closing logarithmic price (January

3, 2023 - August 30, 2023).

d
tUpper bound 

Lower bound 

2023-1 2 3 4 5 6 7 8 9

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
d
tUpper bound 

Lower bound 

contaminated by a tiny error, drawn at random from a Gaussian distribution with mean zero

and standard deviation 10−15. This noise contamination is purely instrumental to tie breaking

and neither affects the reliability of the methods nor contradicts the robust estimation approach

of the next section.

6.3 Robust estimation

Robust drawdown estimation deals with abstracting from irrelevant price variability, e.g., induced

by microstructure noise, in the assessment of risk. This notion is inherently different from

statistical robustness, which deals with reducing the influence of large values on the inferences. In

our framework large drawdowns should not be discounted, actually representing a manifestation

of risk.

Filimonov and Sornette (2015) introduced the notion of ǫ-drawdown, a measure ignoring

variation below a certain magnitude. Hereby we consider a different approach which aims at

measuring the drawdown abstracting from high-frequency noise in price movements, which is

responsible for the identification of minor peaks and troughs. This is achieved by a parametric

low-pass filter applied to Pt, filtering out high-frequency components.
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Suppose that prices can be modelled by the ARIMA process

Pt = Pt−1 + µ+
θ(L)

φ(L)
ξt, ξt ∼ WN(0, σ2),

where φ(L) = 1 −∑p
j=1 φjL

j is a p-th order autoregressive polynomial in the lag operator L,

such that Lkyt = yt−k, φ(L) 6= 0 ⇐⇒ |L| ≤ 1 and θ(L) = 1 +
∑

j θjL
j , θ(L) 6= 0 ⇐⇒ |L| ≤ 1

(the latter two conditions ensure stationarity and invertibility of Pt − Pt−1).

We aim at achieving the decomposition of Pt into orthogonal components, Pt = P ∗
t + ǫt,

where P ∗
t is the low-pass component and ǫt is the high-pass component. The component P ∗

t is

obtained by the application of a low-pass filter whose gain function decreases monotonically from

1 to 0 as the frequency ranges from 0 to π. The frequency at which the gain is equal to 0.5 is

referred to as the cutoff frequency of the filter and it will be denoted by ϑc. This terminology

means that the filter will preserve to a large extent the fluctuations with periodicity larger than

pc = 2π/ϑc and reduce the amplitude of those with smaller period (high-frequency variation).

Consider the following orthogonal decomposition of ξt:

ξt =
(1 + L)s

ϕ(L)
ηt +

√
ς
(1− L)s

ϕ(L)
ζt,

where ηt ∼ WN(0, σ2), ζt ∼ WN(0, σ2), and E(ηtζt−j) = 0, ∀j ∈ Z. The lag polynomial ϕ(L)

satisfies the relation

ϕ(L)ϕ(L−1) = (1 + L)s(1 + L−1)s + ς(1− L)s(1− L−1)s, (7)

while the scale parameter ς is related to the cutoff frequency θc = 2π/pc by ς =
(

1+cos θc
1−cos θc

)s
. See

Proietti (2008) for further details. The factorization of the right hand side of (7) exists and is

unique since its Fourier transform is strictly positive, see Sayed and Kailath (2001), who discuss

a variety of algorithms for computing ϕ(L), given s and ς.

Given a particular choice of s and pc, or equivalently θc, it can be shown that the lowpass and

highpass components have respectively the following ARMA(p+ s, q + s− 1) representations:

∆P ∗
t = µ+

θ(L)(1 + L)s

φ(L)ϕ(L)
ηt, ǫt =

√
ς
θ(L)(1− L)s−1

φ(L)ϕ(L)
ζt,

(notice that the spectral density of ∆P ∗
t is zero at the Nyquist frequency, corresponding to a

period of 2 days, whereas that of ǫt is zero at the long run frequency).

The minimum mean square linear estimator of P ∗
t based on a doubly infinite sample Pt−j , j =

−∞,−1, 0, 1, . . . ,∞, is P̂ ∗
t = wLP (L)Pt, where wLP (L) is the Wiener-Kolmogorov low-pass filter

wLP (L) =
(1 + L)s(1 + L−1)s

ϕ(L)ϕ(L−1)
,
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see Whittle (1983). Given a finite realization of Pt, the estimation of P ∗
t is carried out by

representing the decomposition as a state space model and applying the Kalman filter and

smoother, see Durbin and Koopman (2012). Hence, even though wLP (L) does not depend on

the autoregressive and moving average parameters, the finite sample properties (the behaviour of

the boundaries of the sample and the estimation error) will depend on the ARIMA model for Pt.

For the S&P500 stock index we fitted the ARIMA(0,1,1) model ∆Pt = µ+ ξt + θξt−1 to the

series from Jan. 3 2000 to Aug. 30, 2023; the parameter estimates resulted µ̂ = 1.80× 10−4 (s.e.

1.49× 10−4, θ̂ = −0.11 (s.e. 0.01), σ̂ = 0.0124. Figure 8 displays the estimates of the low-pass

component of the price series, pt, corresponding to cutoff frequencies corresponding to periods

equal to 5 days (red line) and 22 days (blue line), for the subperiod January 3, 2023 - August 30,

2023. The corresponding drawdown, evaluated on the smoothed series, is plotted in the lower

panel. It can be seen that using θc = 2π/22 provides a smooth assessment of the drawdown and

that the series is zero more often when high-frequency variation is removed. A less desirable

feature is the reduction of the size of the drawdown, which is an unavoidable consequence of

smoothing the price series. A solution that avoids this potential drawback and that gets close to

the censoring approach proposed by Filimonov and Sornette (2015) is to estimate the drawdown

by dtI(d̃t > 0), where d̃t is the drawdown evaluated for the lowpass component of pt.

7 Drawdown Prediction

We address the issue of predicting Dt+h at time t using the information available at that time.

Given that the drawdown is a measurable transformation of current and past prices, the question

arises as to whether it is it more efficient predicting directly the drawdown from a time series of

past drawdowns, or indirectly from the price predictions, by comparing the predicted price to

the running τ -maximum of the price series augmented by its forecasts.

In the latter case, assuming a quadratic loss function, the optimal h-step-ahead predictor of

prices is the conditional expectation of Pt+h, given the information available at time t, denoted

Et(Pt+h), which is obtained by cumulating all forecastable returns,

Et(Pt+h) = pt +
h
∑

j=1

Et(Rt+j).

Suppose that asset returns are generated by a generalized autoregressive conditionally het-

eroscedastic (Bollerslev, 1986, GARCH) process: Rt = µ+ σtεt, where, if L (0, 1) denotes the
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Figure 8: Logarithm of S&P500 closing price (January 3, 2023 - August 30, 2023). Estimates of

the low-pass components of prices and drawdown with cutoff frequency 2π/5 and 2π/22.
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distribution of a continuous random variable with mean 0 and unit variance, εt ∼ i.i.d. L (0, 1),

and

σ2
t = ω + α(Rt−1 − µ)2 + βσ2

t−1,

where that ω, α > 0, β ≥ 0 and E{log(αε2t + β)} < 0, under which assumptions Rt is strictly

stationary (Nelson, 1990).

The prediction of the drawdown can be made by sequential Monte Carlo, drawing samples

from the predictive distribution of prices, and thus of the drawdown, and finally taking the

average of the predicted particles. If we let p
(i)
t+j , j = 1, 2, . . . h, denote the i-th sample path of

future prices at time t, a draw from the predictive distribution of drawdowns is

d
(i)
t+h = max{p(i)t+h−j , j = 0, 1, . . . , τ} − p

(i)
t+h

where, if h < τ , p
(i)
t+h−j = pt+h−j .

If M denote the number of independent paths, i = 1, . . . , I, the final h-step-ahead prediction

of the drawdown is obtained by averaging the I draws:

d̂t+h|t =
1

I

I
∑

i=1

d
(i)
t+h. (8)
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Assuming that the parameters of the GARCH model and µ are known at time t, the draws

d
(i)
t+h are obtained by the following simulation scheme:

❼ For i = 1, 2, . . . , I,

– Set r
(i)
t|t = rt, σ

2(i)
t|t = σ2

t .

– For j = 1, 2, . . . , h, draw r
(i)
t+j|t ∼ L (µ, σ

2(i)
t+j|t), where

σ
2(i)
t+j|t = ω + α(r

(i)
t+j−1|t − µ)2 + βσ

2(i)
t+j−1|t.

❼ Evaluate p
(i)
t+h|t = pt +

∑h
k=1 r

(i)
t+k|t.

❼ Set d
(i)
t+h|t = max{p(i)t+h−j|t, j = 0, 1, . . . , τ} − p

(i)
t+h|t.

The direct approach is based on a forecasting model for the dt time series. We consider five

different predictors.

❼ The direct predictor of Dt+h based on fitting an ARMA model, selected according an

information criterion such as Akaike’s, to the series dt (D-ARMA).

❼ The direct exponential smoothing predictor of Dt+h, based on fitting an ARIMA(0,1,1)

model by maximum likelihood (D-ARIMA(0,1,1)).

❼ The direct predictor of Dt+h based on fitting the Heterogeneous Autoregressive (HAR)

model proposed by Corsi (2009), such that

Dt = m+ β1Dt−1 + β2D̄5,t−1 + β3D̄22,t−1 + et,

where et is assumed to be white noise and D̄rt =
∑r−1

j=0 Dt−j (D-HAR).

❼ Recalling (3), the conditional predictor

E(Dt+h|S+
t = i,Ft) =

τ
∑

j=0

p
+(h)
ij µ̃t+h|t(j),

is based on the prediction of the state indicators I(S+
t+h = j|S+

t = i) through the h-step

transition probabilities p
+(h)
ij and those of the j-step-ahead returns µ̃t+h|t(j) = Et|Rt+h(j)|.

The latter will be obtained fitting HAR models to the |Rt(j)| series, j = 1, . . . , τ (C-HAR).
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❼ The conditional factor predictor is based on the same logic, but obtains the multistep

predictions µ̃t+h|t(j) = Et|Rt+h(j)| by a factor model, as

µ̃t+h|t(j) = a1f̂1,t+h + a2f̂2,t+h + a3f̂3,t+h,

where the factors and their loadings are estimated by performing a principal component

analysis of the absolute multistep returns series, |rt(j)|, and predicted by fitting independent

HAR models to the first three principal factors, which are sufficient to represent most of

the variation of |rt(j)| (C-Factor HAR).

Table 4 presents the outcomes of a rolling forecasting experiment designed to forecast the

S&P500 drawdown with horizon τ = 22. This experiment involved employing rolling window of

T = 4, 000 observations as a training sample for estimating the forecasting models. Drawdown

predictions were made for up to 22 days in advance, and were compared to the actual values.

Subsequently, the earliest observation was removed from the training set, a new observation was

added at the end, and the out-of-sample forecasting exercise was repeated. This process was

reiterated until the end of the sample period was reached. In total, the experiment generated

1,824 forecast errors for each forecast horizon, ranging from 1 to 22 days, over the test period

spanning from November 25, 2015, to July 31, 2023. The indirect predictor (8) is based on

I = 1, 000 particles.

The second column of Table 4 reports the root mean square error (RMSE) of the particle

Monte Carlo (MC) predictor (8), which serves as a reference:

RMSE(h) =

√

√

√

√

n−22
∑

t=n−T

(d̂t+h|t − dt+h)2, h = 1, . . . , 22.

The remaining columns display the ratio of the RMSE of the five direct predictors to that of the

particle MC predictor. Values greater (smaller) than one indicate a worse (better) predictive

performance. Notably, among the direct predictors, Direct-HAR (D-HAR) is characterized by

the best forecasting performance, yielding the smallest RMSE for forecast horizons from h = 17

to h = 22. However, for shorter horizons, the particle MC predictor stands out prominently as

the most accurate option.

A major advantage of the particle MC method is the availability of interval and density

estimates of the drawdown resulting from the sequential simulation experiment. Figure 9 shows

one instance of the rolling forecasting experiment, specifically related to predicting the drawdown

for the 22 days spanning from February 28, 2023, to March 29, 2023, based on the 4,000
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observations available on February 27. The figure displays the predictions (8), along with the

first and third quartiles of the predictive distribution and the 95% predictive interval, showing

that the observed drawdowns fell within it.

Table 4: Root mean square error (RMSE) of the particle Monte Carlo predictor d̂t+h|t =
1
I

∑I
i=1 d

(i)
t+h and relative RMSE of five alternative direct predictors of the S&P500 drawdown.

RMSE Relative Root Mean Square Error
Horizon Particle MC D-ARMA D-ARIMA(0,1,1) D-HAR C-HAR C-Factor HAR

1 0.0118 1.360 1.380 1.351 3.001 1.877
2 0.0150 1.315 1.350 1.306 2.344 2.043
3 0.0185 1.222 1.272 1.216 1.890 2.054
4 0.0212 1.161 1.227 1.157 1.639 2.044
5 0.0232 1.146 1.226 1.143 1.500 2.007
6 0.0253 1.097 1.191 1.096 1.373 1.892
7 0.0266 1.111 1.222 1.112 1.301 1.813
8 0.0286 1.072 1.195 1.073 1.212 1.659
9 0.0296 1.085 1.224 1.084 1.164 1.559

10 0.0314 1.062 1.213 1.060 1.102 1.433
11 0.0327 1.054 1.220 1.052 1.070 1.342
12 0.0340 1.045 1.225 1.042 1.047 1.270
13 0.0354 1.026 1.217 1.023 1.025 1.210
14 0.0362 1.024 1.228 1.020 1.013 1.178
15 0.0373 1.008 1.222 1.004 1.004 1.147
16 0.0380 1.005 1.232 1.000 0.998 1.130
17 0.0388 0.996 1.235 0.990 0.994 1.116
18 0.0396 0.986 1.237 0.980 0.986 1.101
19 0.0403 0.977 1.238 0.970 0.983 1.088
20 0.0410 0.964 1.234 0.957 0.976 1.072
21 0.0414 0.958 1.238 0.951 0.972 1.060
22 0.0417 0.953 1.239 0.946 0.974 1.055

8 Conclusions

The measurement approach considered in this paper generates, along with the drawdown and

drawup, two Markov processes measuring the current lag with respect to the running maximum

and minimum, that serve the purpose of characterizing the time series properties (persistence,

duration, etc.) of the drawdown and drawup. They are at the basis of a novel model-free dating

algorithm for bear and bull phases that is computationally efficient and easy to implement.

This paper has proposed a unifying framework that combines conventional time series

techniques with the measurement approach described above to perform tasks such as robust

estimation and drawdown prediction.
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Figure 9: S&P500 drawdown series (τ = 22, dotted red line), January 3 - March 29, 2023, and

out-of-sample predictions.
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Mijatović, A., and Pistorius, M. R. (2012). On the drawdown of completely asymmetric Lévy
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