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Abstract

Empirical studies in various social sciences often involve categorical outcomes with in-

herent ordering, such as self-evaluations of subjective well-being and self-assessments

in health domains. While ordered choice models, such as the ordered logit and ordered

probit, are popular tools for analyzing these outcomes, they may impose restrictive

parametric and distributional assumptions. This paper introduces a novel estimator,

the ordered correlation forest, that can naturally handle non-linearities in the data

and does not assume a specific error term distribution. The proposed estimator mod-

ifies a standard random forest splitting criterion to build a collection of forests, each

estimating the conditional probability of a single class. Under an “honesty” condi-

tion, predictions are consistent and asymptotically normal. The weights induced by

each forest are used to obtain standard errors for the predicted probabilities and the

covariates’ marginal effects. Evidence from synthetic data shows that the proposed

estimator features a superior prediction performance than alternative forest-based es-

timators and demonstrates its ability to construct valid confidence intervals for the

covariates’ marginal effects.
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1 Introduction

Categorical outcomes with a natural order, often referred to as ordered non-numeric out-

comes, are commonly observed in empirical studies across the social sciences. For example,

happiness research typically employs large surveys to collect self-evaluations of subjective

well-being (Frey & Stutzer, 2002), and health economics is heavily based on self-assessments

in several health domains (see, e.g., Peracchi & Rossetti, 2012, 2013). These outcomes are

usually measured on a discrete scale with five or ten classes, where the classes can be arranged

in a natural order without any knowledge about their relative magnitude.

Ordered choice models, such as ordered logit and ordered probit, are frequently used

to analyze the relationship between an ordered outcome and a set of covariates (see, e.g.,

Greene & Hensher, 2010). These models target the estimation of the conditional choice prob-

abilities, which represent the probability that the outcome belongs to a certain class given

the values of the covariates. However, they are limited by their dependence on parametric

and distributional assumptions that are often based on analytical convenience rather than

knowledge about the underlying data generating process. As a result, econometricians may

need to consider alternative techniques to produce more accurate and reliable predictions.

This paper introduces a novel machine learning estimator specifically optimized for han-

dling ordered non-numeric outcomes. Employing traditional machine learning estimators

“off-the-shelf” can result in biased and inefficient estimation of conditional probabilities.

This is because classification algorithms do not leverage the ordering information embedded

in the structure of the outcome, and regression algorithms treat the outcome as if it is mea-

sured on a metric scale.1 The proposed estimator is designed to mitigate the biases that

traditional methods can introduce, ultimately resulting in enhanced predictive performance.

The proposed estimator, named the ordered correlation forest, adapts a standard random

forest splitting criterion (Breiman, 2001) to the mean squared error relevant to the specific

1 For comprehensive overviews of traditional classification and regression algorithms, the reader is referred
to Hastie et al. (2009) and Efron and Hastie (2016).
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estimation problem at hand. The new splitting rule is then used to build a collection of

forests, each estimating the conditional probability of a single class. After constructing

the individual trees within each forest, the ordered correlation forest employs an unbiased

estimator of conditional probabilities within each leaf. Model consistency is ensured, as the

predictions always fall within the unit interval by construction. To estimate the covariates’

marginal effects, the ordered correlation forest utilizes a nonparametric approximation of

derivatives (Lechner & Okasa, 2019).

Under an “honesty” condition (Athey & Imbens, 2016), the ordered correlation forest

inherits the asymptotic properties of random forests, namely the consistency and asymptotic

normality of their predictions (Wager & Athey, 2018). Honesty is a subsample-splitting

technique that requires that different observations are used to place the splits and compute

leaf predictions and is crucial to achieving consistency of the random forest predictions.

The particular honesty implementation used by the ordered correlation forest allows for

a weight-based estimation of the variance of the predicted probabilities. This is achieved by

rewriting the random forest predictions as a weighted average of the outcomes (Athey et al.,

2019). The weights, which are obtained for the predicted probabilities, can be properly

transformed to obtain standard errors for the covariates’ marginal effects (for a similar

approach, see Lechner & Okasa, 2019; Lechner & Mareckova, 2022). We can then use

the estimated standard errors to conduct valid inference about the marginal effects as usual,

e.g., by constructing conventional confidence intervals.

The rest of the paper unfolds as follows. Section 2 provides a brief overview of ordered

choice models and discusses some alternative estimation strategies. Section 3 presents the

ordered correlation forest, explaining estimation and inference about the statistical targets

of interest. Section 4 uses synthetic data to compare the ordered correlation forest with

alternative estimators and evaluate its performance in estimating and making inference about

the covariates’ marginal effects. Section 5 provides further comparisons with alternative

estimators using real data. Section 6 concludes.
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2 Ordered Choice Models

Ordered choice models are a class of statistical models used to analyze the relationship

between an ordered non-numeric outcome .8 and a set of covariates ,8 (McCullagh, 1980).

These models are typically motivated by postulating the existence of a latent and continuous

outcome variable of interest . ∗
8 , assumed to obey the following regression model (see, e.g.,

Peracchi, 2014):

. ∗
8 = 6 (,8) + n8 (2.1)

where ,8 consists of a set of raw covariates, 6 (·) is a potentially non-linear regression func-

tion, and n8 is independent of ,8 and has cumulative distribution � (·). Then, an observa-

tional rule links the observed outcome .8 to the latent outcome . ∗
8 using unknown threshold

parameters −∞ = Z0 < Z1 < · · · < Z"−1 < Z" = ∞ that define intervals on the support of . ∗
8 ,

with each interval corresponding to one of the " categories or classes of .8:

Z<−1 < . ∗
8 ≤ Z< =⇒ .8 = <, < = 1, . . . , " (2.2)

Although the " classes have a natural ordering, they are not measured on a cardinal scale.

This limits our ability to make precise quantitative comparisons.

Researchers are typically interested in the estimation of the conditional choice probabil-

ities, defined as:

?< (,8) := P (.8 = < |,8) (2.3)

However, the marginal effect of the 9-th covariate on ?< (·) is a more interpretable measure

for ordered choice models. The marginal effect is defined differently depending on whether

the 9-th covariate is continuous or discrete:

∇ 9 ?< (F) :=




m?< (F)

mF 9

, if F 9 is continuous (2.4)

?<
(
⌈F 9⌉

)
− ?<

(
⌊F 9⌋

)
, if F 9 is discrete (2.5)
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where F 9 is the 9-th element of the vector F and ⌈F 9⌉ and ⌊F 9⌋ correspond to F with its

9-th element rounded up and down to the closest integer. We can summarize the marginal

effects in various ways, such as computing the marginal effect at the mean ∇ 9 ?< (F̄), with

F̄ denoting a vector of means. Alternatively, we can compute the marginal effect at the

median, the mean marginal effect, and the median marginal effect.

From (2.1) and (2.2), the conditional choice probabilities write as:

?< (,8) = P
(
Z<−1 < . ∗

8 ≤ Z< |,8

)

= P (Z<−1 − 6 (,8) < n8 ≤ Z< − 6 (,8))

= � (Z< − 6 (,8)) − � (Z<−1 − 6 (,8))

(2.6)

If the regression function 6 (·) and the distribution � (·) of the error term n8 are known, we

can estimate (2.6) directly using standard maximum likelihood methods.

However, in many practical applications, precise knowledge of 6 (·) is not available. In-

stead, a common approach is to approximate it using a linear-in-parameter model (see, e.g.,

Belloni & Chernozhukov, 2011):

6 (,8) = -)
8 V ++8,: (2.7)

where -8 = ℎ (,8) is a :-dimensional vector of constructed covariates (generally the raw

covariates ,8 plus interactions and polynomials thereof) and +8,: is an approximation error

that is assumed to be independent of -8. Substituting the linear approximation (2.7) into

(2.1) gives:

. ∗
8 = -)

8 V +*8 (2.8)

where the random error *8 = n8 ++8,: depends on : through the approximation error +8,: and

has cumulative distribution � (·). Then, we can approximate the statistical target ?< (·) as

follows:2

2 The ultimate target of estimation is ?< (·). ?∗< (·) serves as an approximation that allows us to tackle
the estimation problem as if it were parametric.
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?∗< (,8) := P (.8 = < |ℎ (,8))

= �
(
Z< − -)

8 V
)
− �

(
Z<−1 − -)

8 V
) (2.9)

We can impose assumptions on the distribution � (·) of the random error *8 to estimate (2.9)

using standard maximum likelihood methods. Popular choices are the standard normal and

the standard logistic distribution functions, producing the ordered probit and ordered logit

models, respectively. In scenarios where : > =, regularization techniques such as L1- or

L2-type penalization are needed.

Although easy to interpret and computationally simple, this approach features several

limitations. First, it imposes strong distributional assumptions generally derived from an-

alytical convenience rather than knowledge about the underlying data generating process.

Second, it requires the specification of a linear-in-parameter model such as (2.7) to account

for non-linearities in 6(·). Third, the estimated marginal effects have the restrictive prop-

erty of single-crossing, meaning that they can change sign only once when moving from the

smallest class to the largest.

Recent developments in statistical learning (see, e.g., Hastie et al., 2009; Efron & Hastie,

2016) offer ways to overcome these limitations. For instance, random forest algorithms

(Breiman, 2001) offer a nonparametric estimation approach that does not assume a specific

error term distribution and can naturally handle non-linearities in 6 (·) without requiring

a linear-in-parameter model. However, classification forests do not leverage the ordering

information embedded in the structure of the outcome, and regression forests treat the

outcome as if it is measured on a metric scale. Consequently, applying these algorithms

“off-the-shelf” can result in biased and inefficient estimation of conditional probabilities.

To overcome these limitations, one approach is to transform ordered non-numeric out-

comes into a metric scale using scores based on the classes of the observed outcome, thus

allowing us to use any regression algorithm on the transformed outcome. For example,

Hothorn et al. (2006) propose using the midpoint values of the intervals defined on the
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support of the latent outcome as score values. In the cases where . ∗
8 is not observed, this

translates into setting the scores equal to the class labels of .8. However, this assumes that

the intervals are of equal length, which may not be accurate in practice. To address this

issue, Hornung (2020) proposes the ordinal forest estimator, which optimizes the class inter-

vals and uses score values corresponding to these optimized intervals in a standard regression

forest. The optimization process involves growing multiple forests using randomly generated

candidate score sets, and constructing the final score values by summarizing the score sets

with the smallest out-of-bag error. Hornung (2020) shows that the ordinal forest estimator

outperforms a standard regression forest that uses class labels as score values using both real

and synthetic data. However, the optimization process can be computationally expensive,

which may limit its practical use for large data sets or real-time applications.

Another approach involves expressing conditional probabilities as conditional expecta-

tions of binary variables, which can be estimated by any regression algorithm. One first

strategy, which we label multinomial machine learning, is to express conditional probabili-

ties as follows:

?< (,8) = E [1 (.8 = <) |,8] (2.10)

This allows us to estimate each ?< (·) separately by regressing the binary variable 1 (.8 = <)

on ,8 using any nonparametric estimator:

?̂""!
< (,8) = ?̂< (,8) (2.11)

Alternatively, we can specify a linear-in-parameter model to estimate the approximate target

?∗< (·) through parametric regression of the binary variable 1 (.8 = <) on -8.

However, ?̂""!
< (·) does not leverage the information embedded in the ordered structure

of the outcome. To overcome this limitation, an alternative strategy that we label ordered

machine learning expresses conditional choice probabilities as the difference between the

cumulative probabilities of two adjacent classes:
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?< (,8) = P (.8 ≤ < |,8) − P (.8 ≤ < − 1|,8)

= `< (,8) − `<−1 (,8)

(2.12)

with `< (,8) := E [1 (.8 ≤ <) |,8]. Then we can estimate each `< (·) separately by regress-

ing the binary variable 1 (.8 ≤ <) on ,8 using any nonparametric estimator and pick the

difference between the cumulative probabilities of two adjacent classes to estimate ?< (·):3

?̂$"!
< (,8) = ˆ̀< (,8) − ˆ̀<−1 (,8) (2.13)

As before, we can alternatively specify a linear-in-parameter model to estimate the approx-

imate target ?∗< (·) through parametric regressions of the binary variables 1 (.8 ≤ <) and

1 (.8 ≤ < − 1) on -8.

However, ?̂$"!
< (·) can potentially produce negative predictions, thereby contradicting

the definition of probabilities. Although we might resolve this issue by setting negative

predictions to zero, such a solution is suboptimal, and an alternative estimator that does

not require truncation may perform better. This paper introduces a novel estimator that

leverages the ordered structure of the outcome and produces predictions that always fall

within the unit interval, thus resulting in enhanced predictive performance compared to

existing methods.

3 Estimation and Inference

This section discusses the implementation of the ordered correlation forest (OCF) esti-

mator. First, we illustrate the estimation of conditional choice probabilities and marginal

effects. Second, we discuss the conditions required for the consistency and asymptotic nor-

mality of OCF predictions. Finally, we show how to conduct approximate inference about

the statistical targets of interest.

3 Lechner and Okasa (2019) combine ordered machine learning with random forests (Breiman, 2001) and
discuss how to estimate and conduct inference about marginal effects.
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3.1 Estimation

Similar to the ordered machine learning approach, OCF computes the prediction of con-

ditional choice probabilities as the difference between the cumulative probabilities of two

adjacent classes (see equation 2.12). However, instead of estimating `< (·) and `<−1 (·) sep-

arately, OCF internally performs this computation in a single random forest. This allows us

to tie the estimation of `< (·) and `<−1 (·) to correlate the errors made in estimating these

two expectations. Additionally, it avoids negative predictions.

To see the importance of correlating the estimation errors, we can decompose the mean

squared error of a prediction ?̂$"!
< (·) at F as follows:4

MSE
(
?̂$"!
< (F)

)
= E

[{
?̂$"!
< (F) − ?< (F)

}2]

= E
[
{ ˆ̀< (F) − ˆ̀<−1 (F) − `< (F) + `<−1 (F)}

2
]

= MSE ( ˆ̀< (F)) +MSE ( ˆ̀<−1 (F)) − 2EC ( ˆ̀< (F) , ˆ̀<−1 (F))

(3.1)

where the last term is the error correlation and captures the degree to which the errors made

in estimating `< (·) and `<−1 (·) are correlated:

EC ( ˆ̀< (F) , ˆ̀<−1 (F)) = E [{ ˆ̀< (F) − `< (F)} { ˆ̀<−1 (F) − `<−1 (F)}] (3.2)

Equation (3.1) shows that ?̂$"!
< (·) is a suboptimal estimator. Besides potentially leading

to negative predictions, estimating `< (·) and `<−1 (·) separately minimizes only the mean

squared error terms and ignores the error correlation. Tying the estimation of `< (·) and

`<−1 (·) to correlate the errors could improve estimation performance since errors that move

in the same direction cancel out when taking the difference ˆ̀< (·) − ˆ̀<−1 (·).

To address this limitation, OCF constructs a collection of forests, one for each of the

" classes of .8. However, rather than the standard criterion (Breiman, 2001), OCF uses

equation (3.1) as the splitting rule to build the individual trees in the <-th forest. This

4 This decomposition can be applied to any estimation strategy that involves calculating the difference
between two surfaces. For example, Lechner and Mareckova (2022) leverage this decomposition to estimate
heterogeneous causal effects under a selection-on-observables assumption.
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allows the estimator to account for the error correlation that ?̂$"!
< (·) ignores. Intuitively,

during the tree-building process, OCF anticipates that the predictions in the final leaves will

involve the difference between two estimated functions. Consequently, it seeks splits that not

only yield accurate estimates of `< (·) and `<−1 (·) but also take into account the correlation

between the errors made in estimating these expectations.

To use (3.1) as the splitting rule, we need to estimate its components. This, in turn,

requires an estimator of `< (·) in each node. An unbiased estimator of `< (·) in a child node

C9 ⊂ W consists of the proportion of observations in C9 whose outcome is not greater than

<:

ˇ̀< (,8) =
1

|C9 |

∑

8:,8∈C9

1 (.8 ≤ <) (3.3)

This leads us to estimating MSE ( ˇ̀< (·)) and EC ( ˇ̀< (·) , ˇ̀<−1 (·)) in each node by their

sample analogs:

zMSE 9 ( ˇ̀< (,8)) =
1

|C9 |

∑

8:,8∈C9

[1 (.8 ≤ <) − ˇ̀< (,8)]
2 (3.4)

xEC 9 ( ˇ̀< (,8) , ˇ̀<−1 (,8)) =
1

|C9 |

∑

8:,8∈C9

1 (.8 ≤ <) 1 (.8 ≤ < − 1) − ˇ̀< (,8) ˇ̀<−1 (,8) (3.5)

Then, in the <-th forest, OCF constructs individual trees by recursively partitioning each

parent node P ⊆ W into two child nodes C1, C2 ⊂ P such that the following minimization

problem is solved:

min
C1,C2

2∑

9=1

zMSE 9 ( ˇ̀< (,8)) + zMSE 9 ( ˇ̀<−1 (,8)) − 2xEC 9 ( ˇ̀< (,8) , ˇ̀<−1 (,8)) (3.6)

Once the recursive partitioning stops, each tree in the <-th forest unbiasedly estimates

?< (·) at F by computing the proportion of observations in the same leaf as F whose outcome

equals <:
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?̂$��
<,1 (F) = ˇ̀< (F) − ˇ̀<−1 (F)

=

1

|!<,1 (F) |

∑

8∈!<,1 (F)

1 (.8 = <)
(3.7)

where !<,1 (F) is the set of observations falling in the same leaf of the 1-th tree as the

prediction point F. The predictions from each tree are then averaged to obtain the forest

predictions:5

?̂$��
< (F) =

1

�<

�<∑

1=1

?̂$��
<,1 (F) (3.8)

where 1 = 1, . . . , �< indexes the trees in the <-th forest. In contrast to ordered machine

learning, OCF ensures model consistency, as the predictions ?̂$��
< (·) always fall within the

unit interval by construction.

Estimation of marginal effects proceeds as proposed by Lechner and Okasa (2019). For

discrete covariates, we can plug an estimate ?̂$��
< (·) of ?< (·) into equation (2.5) to have a

straightforward estimator of ∇ 9 ?< (·):

∇ 9 ?̂$��
< (F) = ?̂$��

< (⌈F 9⌉) − ?̂$��
< (⌊F 9⌋) (3.9)

For continuous covariates, we use a nonparametric approximation of the infinitesimal change

in F 9 :

∇ 9 ?̂$��
< (F) =

?̂$��
< (z⌈F 9⌉) − ?̂$��

< (z⌊F 9⌋)

F 9 − w 9

(3.10)

where z⌈F 9⌉ and z⌊F 9⌋ correspond to F with its 9-th element set to F 9 = F 9 + lf9 and

w 9 = F 9 − lf9 , with f9 the standard deviation of F 9 and l > 0 a tuning parameter.

5 It may be necessary to perform a normalization step to ensure that
∑"

<=1
?̂$��
< (F) = 1. This is true

also for ?̂""!
< (·) and ?̂$"!

< (·).
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3.2 Asymptotic Properties

Wager and Athey (2018) establish the consistency and asymptotic normality of random

forest predictions. However, besides some regularity and technical assumptions, there are

certain conditions regarding the construction of individual trees that must be satisfied. In

the following, we discuss these conditions.

The first condition requires that the trees use different observations to place the splits

and compute the leaf predictions. This condition is called honesty and is crucial to bounding

the bias of forest predictions.

Definition 1 (Honesty). A tree is honest if it uses the outcome .8 to either place the splits

or compute the leaf predictions, but not both.

Wager and Athey (2018) implement honesty by drawing a subsample S1 from the original

sample S and splitting the subsample into two halves SCA
1

and Sℎ>=
1

, using SCA
1

to grow the

1-th tree and Sℎ>=
1

to compute its leaf predictions (see also Athey et al., 2019). Alternatively,

Lechner and Mareckova (2022) propose a different approach. They divide the original sample

S into a training sample SCA and an honest sample Sℎ>=, constructing trees from random

subsamples of SCA and computing their leaf predictions from Sℎ>=. This strategy ensures that,

under i.i.d. sampling, the weights assigned to individual units in Sℎ>= are independent of the

outcomes of other units, thus allowing for weight-based inference about leaf predictions and

their transformations, such as marginal effects. OCF adopts this strategy as well (details in

Section 3.3). However, this strategy is somewhat less efficient than the approach proposed by

Wager and Athey (2018). This is because, under the latter approach, each data point F will

participate in both SCA
1

and Sℎ>=
1

of some trees, thus achieving honesty while making more

efficient use of the data. However, under this approach, each weight can depend on other

units’ outcomes, which limits the usage of the weight-based representation of random forest

predictions for obtaining standard errors for the leaf predictions and their transformations.

The second condition is that the leaves of the trees must become small in all dimensions of
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the covariate space as the sample size increases. This is necessary for achieving consistency of

the predictions and is accomplished by introducing randomness in the tree-growing process

and enforcing a regularity condition on how quickly the leaves get small.

Definition 2 (Random-split). A tree is random-split if, at every step of the tree-growing

procedure, the probability that the next split occurs along the 9−th covariate is bounded below

by c/:, for some 0 < c ≤ 1, for all 9 = 1, . . . , :.

Definition 3 (U-regularity). A tree is U-regular if each split leaves at least a fraction U of

the observations in the parent node on each side of the split and the trees are fully grown to

depth 3 for some 3 ∈ #, that is, there are between 3 and 23−1 observations in each terminal

node of the tree.

To achieve U-regularity, OCF ignores splits that do not satisfy this condition. The algo-

rithm always selects the best split from among the candidate splits that would maintain at

least a fraction U of the parent node’s observations on both sides of the split. This way, we

can rule out any influence of the splitting rule on the shape of the final leaves.

Third, trees must be constructed using subsamples drawn without replacement, rather

than bootstrap samples, as originally proposed by Breiman (2001).

Fourth, to establish asymptotic normality, trees must be symmetric.

Definition 4 (Symmetry). A predictor is symmetric if the (possibly randomized) output of

the predictor does not depend on the order in which observations are indexed in the training

and honest samples.

Under these conditions, Wager and Athey (2018) establish consistency and asymptotic

normality of the random forest predictions. If the " forests constructed by OCF satisfy these

conditions, then they inherit these properties, thus producing consistent and asymptotically

normally distributed predictions of conditional probabilities.

12



3.3 Inference

In addition to the consistency and asymptotic normality of the random forest predictions,

Wager and Athey (2018) show that the asymptotic variance of such predictions can be

consistently estimated by adapting the infinitesimal jackknife estimator proposed by Wager

et al. (2014) to the case of subsampling without replacement. This approach can be used to

estimate the variance of a prediction ?̂$��
< (·) at F. However, generalizing this method to

estimate the variance of marginal effects ∇ 9 ?̂$��
< (·) is not straightforward.

To overcome this limitation, OCF employs an alternative approach that leverages the

weight-based representation of random forest predictions (Athey et al., 2019) and adapts

the weight-based inference proposed by Lechner and Mareckova (2022) (see also Lechner &

Okasa, 2019). In particular, OCF implements honesty in a way that guarantees that the

weight assigned to the 8-th unit is independent of the outcomes of other units. This allows for

the derivation of a straightforward formula for the variance of honest predicted probabilities

and marginal effects.

First, we express OCF predictions as weighted averages of the outcomes. Let S denote

the observed sample. The following provides an expression for a prediction ?̂$��
< (·) at F

numerically equivalent to that in (3.8):

?̂$��
< (F) =

∑

8∈S

Û<,8 (F) 1 (.8 = <)

Û<,1,8 (F) =
1
(
,8 ∈ !<,1 (F)

)
��!<,1 (F)

�� , Û<,8 (F) =
1

�<

�<∑

1=1

Û<,1,8 (F)

(3.11)

where the weights Û<,1 (F) , . . . , Û<,|S| (F) determine the forest-based adaptive neighborhood

of F. They represent how often the 8-th observation in S shares a leaf with F in the <-th

forest. This measures how important the 8-th observation is for fitting ?< (·) at F. Notice

that
∑

8∈S Û<,8 (F) = 1 for all F.

Calculating the variance of a prediction ?̂$��
< (F) in (3.11) is challenging because the

weight assigned to the 8-th unit Û<,8 (F) is a function of both S and ,8. Thus, this weight
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depends on the outcomes of all other units in S, which complicates the formula for the

variance.

However, the formula for the variance simplifies under the particular honesty implemen-

tation of OCF. Let SCA and Sℎ>= be a training sample and an honest sample obtained by

randomly splitting the observed sample S. Also, let ÛCA
<,8

(·) be the weights induced by a

forest constructed using only SCA . Then, an honest prediction ?̃$��
< (·) at F is obtained by

the following weighted average of observations in Sℎ>=:

?̃$��
< (F) =

∑

8∈Sℎ>=

ÛCA
<,8 (F) 1 (.8 = <) (3.12)

The new weight assigned to the 8-th unit ÛCA
<,8

(F) is a function of SCA and of ,8. Thus, under

i.i.d. sampling this weight is independent of the outcomes of other units in Sℎ>=. This allows

us to derive a simple formula for the variance of an honest prediction ?̃$��
< (F):

V

(
?̃$��
< (F)

)
= |Sℎ>= |V

(
ÛCA
<,8 (F) 1 (.8 = <)

)
(3.13)

We can estimate this variance by its sample analog.

By plugging (3.12) into (3.10), we obtain the following estimator of honest marginal

effects:6

∇ 9 ?̃$��
< (F) =

1

F 9 − w 9

{
∑

8∈Sℎ>=

ÛCA
<,8 (

z⌈F 9⌉)1 (.8 = <) −
∑

8∈Sℎ>=

ÛCA
<,8 (

z⌊F 9⌋)1 (.8 = <)

}

=

1

F 9 − w 9

∑

8∈Sℎ>=

ǓCA
<,8 (

z⌈F 9⌉, z⌊F 9⌋)1 (.8 = <)

(3.14)

with ǓCA
<,8

(z⌈F 9⌉, z⌊F 9⌋) = ÛCA
<,8

(z⌈F 9⌉) − ÛCA
<,8

(z⌊F 9⌋) a transformation of the original weights.

Using the same argument as before, under i.i.d. sampling the weight assigned to the 8-

th unit ǓCA
<,8

(z⌈F 9⌉, z⌊F 9⌋) is independent of the outcomes of other units in Sℎ>=. Thus the

variance of an honest marginal effect ∇ 9 ?̃$��
< (F) can be expressed as follows:

V

(
∇ 9 ?̃$��

< (F)
)
=

|Sℎ>= |
(
F 9 − w 9

)2 V
(
ǓCA

<,8
(z⌈F 9⌉, z⌊F 9⌋)1 (.8 = <)

)
(3.15)

6 Similar results are obtained for discrete covariates by plugging (3.12) into (3.9).
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As before, we can estimate this variance by its sample analog.

Following the discussion of Section 3.2, the honest predicted probabilities in (3.12) are

consistent and asymptotically normal, provided that the weights ÛCA
<,8

(·) are induced by a

forest composed of U-regular with U ≤ 0.2 and symmetric random-split trees grown using

subsampling without replacement. With these conditions met, we can use the estimated

standard errors of honest predicted probabilities ?̃$��
< (·) to conduct valid inference as usual,

e.g., by constructing conventional confidence intervals.

Furthermore, under the same conditions the honest marginal effects in (3.14) are a linear

combination of normally distributed predictions, and thus have a normal distribution as well.

Therefore, we can also construct conventional confidence intervals for honest marginal effects

∇ 9 ?̃$��
< (·) using their estimated standard errors.

4 Simulation Results

This section uses synthetic data to evaluate the performance of the ordered correlation

forest (OCF) estimator. In the next subsection, we present the DGPs employed in the

simulation. Then, we compare OCF with various alternative methods in terms of estimating

conditional choice probabilities. Finally, we assess the ability of OCF in estimating and

making inference about the covariates’ marginal effects.

4.1 Data-Generating Processes

Latent outcomes are generated as in (2.1), with n8 ∼ logistic (0, 1). Six raw covariates are

generated as ,8,1,,8,3,,8,5 ∼ N (0, 1) and ,8,2,,8,4,,8,6 ∼ Bernoulli (0.4). Covariates are

independent of one another and of n8. We consider ,8,5 and ,8,6 as “noise” covariates, as

they enter the DPGs below with null coefficients.

We consider three designs that differ in the regression function 6 (·):
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Design 1. 6 (,8) = ,)
8 V

Design 2. 6 (,8) =

6∑

9=1

sin
(
2,8, 9

)
V 9

Design 3. 6 (,8) = 2 sin
(
,)

8 V
)

with V = (1, 1, 1/2, 1/2, 0, 0) in all designs. Design 1 represents a linear model where all

the raw covariates enter without transformation, serving as a benchmark for assessing the

performance of the estimators under a straightforward and interpretable setting. In Design

2, the covariates are transformed while preserving the additive structure of the model, thus

allowing us to evaluate the estimators’ ability to handle non-linearities arising from covariate

transformations. Design 3 introduces more complex non-linearities by departing from the

additive model structure and employing a nonlinear regression model. For each design, we

consider four sample sizes, |S| ∈ {500, 1000, 2000, 4000}. Thus, we consider overall twelve

different scenarios.

In each design, we obtain the observed outcomes .8 by discretizing . ∗
8 into three classes:

Z<−1 < . ∗
8 ≤ Z< =⇒ .8 = <, < = 1, 2, 3

We construct the threshold parameters Z1 and Z2 as follows. First, we fix two values Z
@

1
= 0.33

and Z
@

2
= 0.66. Then, we generate a sample of 1, 000, 000 . ∗

8 and set Z< = &
(
Z
@
<

)
, with & (·)

the empirical quantile function of . ∗
8 . This way, the threshold parameters are uniformly

spaced, and the class widths are approximately equal.

4.2 Conditional Probabilities

After drawing a sample S, we estimate the conditional choice probabilities using both

multinomial and ordered machine learning techniques, combining them with random forests

(Breiman, 2001) and penalized logistic regressions with an L1 penalty (Tibshirani, 1996).

We refer to the resulting estimators as multinomial random forest ("'�), multinomial L1
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regression ("!1), ordered random forest ($'�), and ordered L1 regression ($!1). We also

consider two versions of OCF, the “adaptive” version $��
�
and the “honest” version $��

�
.

This way, we can quantify the loss in the precision derived from using fewer observations to

build the forests, representing the price to pay for valid inference. Finally, we include the

standard ordered logit (!$��)) model as a parametric benchmark for comparison.

To account for non-linearities in 6 (·), the parametric methods !$��) , "!1, and $!1

employ different linear-in-parameter models such as (2.7). Three different specifications are

considered. The first specification consists of a model with only the raw covariates, that is,

with -8 = ,8. The second specification introduces third-order polynomials for continuous

covariates, leading to a set of 12 covariates. The third specification enlarges this set by

adding all the two-way interactions between the raw covariates, resulting in a total of 27

covariates. In contrast, the forest-based estimators "'�, $'�, $��
�
, and $��

�
are fed

with only the raw covariates without adding any polynomials, interaction terms, or other

transformations of the covariates, as these estimators can naturally handle non-linearities

in 6 (·). To implement $��
�
, we randomly split S into a training sample SCA used to

construct the trees and an honest sample Sℎ>= used to compute the leaf predictions. We

choose |SCA | = |Sℎ>= | = |S|/2.

We rely on an external validation sample SE0; of size |SE0; | = 10, 000 to assess the

predictive performance of the estimators. This large number of observations helps minimize

the sampling variance. For each replication A = 1, . . . , ', we calculate the mean squared

error, mean absolute error, and ranked probability score for each estimator:

MSEA =
1

|SE0; |

∑

8∈SE0;

"∑

<=1

[
?< (,8) − ?̂<,A (,8)

]2
(4.1)

MAEA =
1

|SE0; |

∑

8∈SE0;

"∑

<=1

��?< (,8) − ?̂<,A (,8)
�� (4.2)

RPSA =
1

|SE0; |

∑

8∈SE0;

1

" − 1

"∑

<=1

[
`< (,8) − ˆ̀<,A (,8)

]2
(4.3)
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with ?̂<,A (·) the estimated conditional probabilities in the A-th replication, and ˆ̀<,A (F) =

∑<
9=1 ?̂ 9 ,A (F) the estimated cumulative distribution function. Notice that, by simulation

design, we can compute the true probabilities as in (2.6). We summarize these performance

measures by averaging over the replications.7

Table 4.1 displays the results obtained with ' = 2, 000 replications. The simulation

shows that OCF outperforms all other forest-based estimators uniformly across all considered

scenarios. In particular, OCF consistently achieves lower MSE and MAE than "'� and

$'�, and minimal disparities in RPS are observed. An exception arises in Design 3 where,

for the two smallest sample sizes, OCF and "'� show similar performance.

The simulation also shows that OCF maintains a competitive performance when com-

pared to the parametric estimators !$��) , "!1, and $!1. As expected, when fed with

only the raw covariates, !$��) and $!1 perform best in Design 1 since they correctly

specify the parametric model and the distributional assumption of the error term. These

estimators are closely followed by "!1 in terms of performance. However, the performance

of !$��) , "!1, and $!1 fed with only the raw covariates deteriorates when non-linearities

in 6 (·) are introduced, causing them to rank among the worst estimators. For the smallest

sample size, the performance gap with respect to OCF is relatively substantial in Design 2

(between 26–36% in terms of MSE, between 8–16% in terms of MAE, and between 43–48%

in terms of RPS) and moderate in Design 3 (around 11% in terms of MSE and around 17%

in terms of RPS, with minimal disparities in MAE observed). However, in larger samples,

this performance gap becomes more pronounced, with the MSE of !$��) , "!1, and $!1

reaching values up to 165% larger than that of OCF, MAE up to 61%, and RPS up to 232%.

Adding constructed covariates when the model for 6 (·) is linear and the raw covariates

enter without transformation (Design 1 ) deteriorates the performance of !$��) and $!1,

as this primarily inflates the variance of the estimation. This effect becomes less relevant in

7 The objective of this subsection is to evaluate the prediction accuracy of each estimator. Thus, we do
not consider the variance or the actual coverage rates of confidence intervals as performance measures, as
these aspects are not relevant when the interest lies in prediction accuracy.
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Design 1 Design 2 Design 3

500 1,000 2,000 4,000 500 1,000 2,000 4,000 500 1,000 2,000 4,000

Panel 1: MSE

!$��)A0F 0.005 0.002 0.001 0.001 0.050 0.048 0.046 0.046 0.060 0.058 0.056 0.056

!$��)?>;H 0.009 0.004 0.002 0.001 0.029 0.025 0.022 0.021 0.051 0.046 0.043 0.042

!$��)8=C 0.020 0.010 0.005 0.002 0.041 0.030 0.025 0.023 0.035 0.023 0.018 0.016

"!1A0F 0.014 0.011 0.009 0.008 0.051 0.048 0.047 0.046 0.058 0.054 0.051 0.050

"!1?>;H 0.015 0.010 0.007 0.006 0.033 0.027 0.024 0.022 0.051 0.045 0.042 0.040

"!18=C 0.016 0.009 0.005 0.003 0.040 0.031 0.026 0.024 0.038 0.026 0.020 0.016

$!1A0F 0.009 0.005 0.002 0.001 0.054 0.050 0.047 0.046 0.061 0.056 0.053 0.052

$!1?>;H 0.012 0.006 0.003 0.002 0.039 0.030 0.025 0.023 0.054 0.046 0.042 0.040

$!18=C 0.016 0.008 0.004 0.002 0.048 0.036 0.029 0.025 0.048 0.032 0.023 0.018

"'� 0.045 0.035 0.028 0.022 0.046 0.037 0.029 0.022 0.055 0.043 0.034 0.026

$'� 0.050 0.044 0.040 0.036 0.054 0.048 0.043 0.040 0.061 0.050 0.042 0.037

$��
�

0.044 0.038 0.035 0.032 0.046 0.040 0.037 0.034 0.054 0.044 0.037 0.033

$��
�

0.035 0.025 0.018 0.014 0.040 0.030 0.022 0.017 0.054 0.041 0.030 0.022

Panel 2: MAE

!$��)A0F 0.093 0.065 0.045 0.032 0.296 0.289 0.286 0.284 0.310 0.304 0.301 0.300

!$��)?>;H 0.118 0.082 0.057 0.040 0.206 0.189 0.181 0.176 0.274 0.261 0.255 0.252

!$��)8=C 0.176 0.120 0.083 0.058 0.244 0.208 0.190 0.181 0.226 0.184 0.163 0.153

"!1A0F 0.153 0.131 0.118 0.111 0.306 0.296 0.291 0.289 0.326 0.313 0.307 0.303

"!1?>;H 0.160 0.128 0.109 0.097 0.241 0.217 0.204 0.196 0.300 0.280 0.269 0.261

"!18=C 0.171 0.128 0.094 0.068 0.267 0.235 0.216 0.204 0.262 0.217 0.189 0.171

$!1A0F 0.127 0.090 0.063 0.045 0.317 0.301 0.292 0.288 0.327 0.310 0.302 0.298

$!1?>;H 0.145 0.102 0.073 0.052 0.261 0.225 0.204 0.191 0.306 0.278 0.263 0.253

$!18=C 0.169 0.121 0.086 0.062 0.294 0.249 0.220 0.202 0.288 0.230 0.192 0.168

"'� 0.285 0.253 0.224 0.196 0.292 0.260 0.230 0.201 0.316 0.277 0.243 0.212

$'� 0.303 0.283 0.268 0.256 0.318 0.298 0.283 0.271 0.331 0.298 0.274 0.255

$��
�

0.284 0.266 0.252 0.241 0.292 0.275 0.262 0.251 0.312 0.281 0.258 0.241

$��
�

0.257 0.216 0.184 0.160 0.273 0.235 0.203 0.178 0.325 0.278 0.236 0.199

Panel 3: RPS

!$��)A0F 0.002 0.001 0.001 0.001 0.023 0.022 0.022 0.021 0.027 0.026 0.025 0.025

!$��)?>;H 0.004 0.002 0.001 0.001 0.013 0.011 0.010 0.009 0.022 0.020 0.019 0.019

!$��)8=C 0.008 0.004 0.002 0.001 0.018 0.013 0.011 0.010 0.014 0.010 0.007 0.006

"!1A0F 0.004 0.003 0.002 0.002 0.024 0.022 0.022 0.021 0.026 0.024 0.023 0.022

"!1?>;H 0.005 0.003 0.002 0.002 0.014 0.012 0.010 0.010 0.022 0.019 0.018 0.017

"!18=C 0.006 0.003 0.002 0.001 0.018 0.014 0.012 0.010 0.015 0.010 0.007 0.006

$!1A0F 0.003 0.001 0.001 0.001 0.024 0.023 0.022 0.021 0.027 0.025 0.024 0.024

$!1?>;H 0.004 0.002 0.001 0.001 0.016 0.012 0.011 0.010 0.023 0.020 0.019 0.018

$!18=C 0.005 0.003 0.001 0.001 0.019 0.015 0.012 0.011 0.017 0.011 0.008 0.006

"'� 0.015 0.012 0.009 0.007 0.016 0.013 0.010 0.008 0.020 0.015 0.012 0.009

$'� 0.016 0.013 0.012 0.011 0.017 0.015 0.013 0.012 0.021 0.016 0.013 0.011

$��
�

0.015 0.013 0.011 0.010 0.016 0.014 0.012 0.011 0.019 0.015 0.013 0.011

$��
�

0.013 0.009 0.007 0.005 0.016 0.012 0.009 0.006 0.023 0.017 0.012 0.008

Table 4.1: Comparison with alternative estimators. The three panels report the average over the
replications of MSEA (MSE), MAEA (MAE), and RPSA (RPS). The labels in the subscript of
the parametric estimators !$��) , "!1, and $!1 refer to the employed specification: A0F for
only raw covariates, ?>;H for raw covariates plus third-order polynomials for continuous covariates,
and 8=C for raw covariates plus third-order polynomials for continuous covariates plus all two-way
interactions between the raw covariates.
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larger samples. In contrast, when non-linearities in 6 (·) are introduced - either via transfor-

mations of the covariates (Design 2 ) or by employing a non-linear regression model (Design

3 ) - adding polynomials and interactions of the covariates significantly improves the per-

formance of the parametric estimators. In particular, in Design 2, !$��) , "!1, and $!1

achieve their best performance by introducing third-order polynomials, with their perfor-

mance deteriorating when interactions between covariates are also included, although this

deterioration is substantially attenuated in larger samples. However, in Design 3, where more

complex non-linearities are introduced, including the interactions is necessary to achieve the

best possible performance.

When constructed covariates are included in their specifications, !$��) , "!1, and

$!1 generally exhibit lower MSE, MAE, and RPS than OCF. However, in Design 2, OCF

outperforms all the parametric methods in larger samples, with advantages over the best

parametric specification ranging between 22–31% in terms of MSE, 7–10% in terms of MAE,

and 47–55% in terms of RPS. An exception arises in the largest sample where !$��) and

OCF tie in terms of MAE. Moreover, in Design 3, the performance gap appears to narrow as

the sample size increases, suggesting that OCF might outperform the parametric methods

if enough observations are used to train the model.

Finally, we compare the adaptive and the honest versions of OCF to quantify the price

to pay for valid inference. Surprisingly, the honest version $��
�

performs better than

the adaptive version $��
�
in almost all scenarios despite using half of the observations to

construct the forests. Honesty reduces the bias of the forests’ estimates but generally comes

at the expense of a higher variance. In this simulation, the reduction in bias appears to

outweigh the increase in variance, resulting in improved prediction performance.

4.3 Marginal Effects

After drawing a sample S, we split it into a training sample SCA and an honest sample

Sℎ>= of equal size. Then, we use SCA to construct the forests, and Sℎ>= to estimate honest
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marginal effects at the mean and median of the covariates as in equation (3.14). Additionally,

we use the sample analog of equation (3.15) to get standard errors for the estimated effects.8

To assess the performance of the estimator, we calculate the squared bias and variance

for each marginal effect, as well as the actual coverage rates of their corresponding 95%

confidence intervals. Notice that, by simulation design, we can compute the true marginal

effects. We summarize these performance measures by averaging across all marginal effects.

Table 4.2 displays the results obtained with 2, 000 replications. Overall, the simulation

shows the ability of OCF to conduct asymptotically valid inference about marginal effects.

The estimated squared bias consistently remains close to zero, indicating that the estimator

is approximately unbiased. In smaller samples, the actual coverage rates of the confidence

intervals tend to fall below the nominal rate and can be as low as 70%. However, as the

sample size increases, the coverage rates gradually converge to the nominal level. In Design 2

and Design 3, more observations are required to reach the nominal rate compared to Design

1.

When we compare these results with those presented in Table 4.1, an interesting pattern

Design 1 Design 2 Design 3

500 1,000 2,000 4,000 500 1,000 2,000 4,000 500 1,000 2,000 4,000

Panel 1: Marginal effects at mean

Bias2 0.002 0.001 0.001 0.001 0.010 0.009 0.010 0.011 0.011 0.009 0.009 0.010

Var 0.010 0.012 0.014 0.017 0.012 0.015 0.018 0.022 0.011 0.013 0.016 0.019

Coverage 95% 0.84 0.90 0.93 0.95 0.80 0.85 0.90 0.92 0.71 0.79 0.86 0.91

Panel 2: Marginal effects at median

Bias2 0.002 0.001 0.001 0.001 0.006 0.003 0.001 0.001 0.013 0.009 0.005 0.002

Var 0.010 0.012 0.014 0.017 0.012 0.015 0.018 0.022 0.011 0.013 0.016 0.019

Coverage 95% 0.85 0.90 0.94 0.95 0.81 0.88 0.93 0.95 0.70 0.76 0.83 0.89

Table 4.2: Estimation and inference about the covariates’ marginal effects. The first panel reports
results for the marginal effects at the mean, and the second panel reports results for the marginal
effects at the median.

8 Estimating the mean or the median marginal effect and its standard error would involve computing
the weights ǓCA

<,8
(·, ·) for each prediction point F, which would result in an impractically long computational

time for a Monte Carlo exercise. Therefore, we restrict the analysis solely to the marginal effects at the mean
and median of the covariates.
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emerges: the actual coverage rates of the confidence intervals tend to be worse when the pre-

dictive performance of $��
�
is lower. This pattern aligns with the fact that OCF estimates

marginal effects by post-processing its conditional probability predictions (see equations 3.9–

3.10), meaning that the quality of conditional probability estimation directly impacts the

accuracy of marginal effects estimation. As evident in Table 4.1, $��
�
performs best in

Design 1 and exhibits relatively lower performance in Design 3 compared to Design 2. Con-

sequently, for any given sample size, we observe a larger estimated squared bias in Design 2

and Design 3 relative to Design 1, which explains why more observations are needed to reach

the nominal rate in these designs. However, as the sample size increases, the predictive per-

formance of OCF improves, and thus the estimated bias decays asymptotically. Therefore,

in larger samples, the estimated confidence intervals are more likely to be centered around

the true estimand, resulting in actual coverage rates that converge to the nominal level.

5 Empirical Results

This section uses real data to compare the predictive performance of the ordered corre-

lation forest estimator with the same estimators of Section 4.2.

We utilize the same data sets considered by Janitza et al. (2016), Hornung (2020), and

Lechner and Okasa (2019). These data sets differ in terms of the number of covariates,

observations, and classes of the observed outcome. Table 5.1 provides a summary of the

data sets. For further details on the background of each data set, the reader is referred to

Data Sets

Data set Sample Size Outcome Class range N. Covariates

vlbw 218 Apgar score 1 (Life-threatening) – 9 (Optimal) 10
mammography 412 Last mammography 1 (Never) – 3 (Over a year) 5
support 798 Functional disability 1 (None) – 5 (Fatal) 15
nhanes 1,914 Health status 1 (Excellent) – 5 (Poor) 26
wines 4,893 Quality 1 (Moderate) – 6 (High) 11

Table 5.1: Summary of data sets, sorted in increasing order of sample size.
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Janitza et al. (2016).

To assess the prediction accuracy of each estimator, we employ a ten-fold cross-validation

procedure. Specifically, we randomly divide each data set into ten folds S1, . . . ,S10 with

roughly equal sizes. For each fold 5 = 1, . . . , 10, we fit all the estimators using the obser-

vations from all the other folds except for S 5 . Then, we calculate the same performance

measures of Section 4.2 using the held-out S 5 :

MSE 5 =
1

|S 5 |

∑

8∈S 5

"∑

<=1

[
1 (.8 = <) − ?̂<, 5 (,8)

]2
(5.1)

MAE 5 =
1

|S 5 |

∑

8∈S 5

"∑

<=1

��1 (.8 = <) − ?̂<, 5 (,8)
�� (5.2)

RPS 5 =
1

|S 5 |

∑

8∈S 5

1

" − 1

"∑

<=1

[
1 (.8 ≤ <) − ˆ̀<, 5 (,8)

]2
(5.3)

with ?̂<, 5 (·) the estimated conditional probabilities using all the other folds except for S 5 ,

and ˆ̀<, 5 (F) =

∑<
9=1 ?̂ 9 , 5 (F) the estimated cumulative distribution function. Finally, we

repeat this process ten times. This approach eliminates the dependence of the results on a

particular training-validation sample split.

Figure 5.1 reports the results by displaying boxplots showing the median and interquar-

tile range of the estimated MSE, MAE, and RPS, together with their minima and maxima.9

Overall, the results indicate that OCF performs competitively compared to the other esti-

mators, with no substantial differences in performance observed in most data sets. In the

smallest data set under consideration (vlbw), !$��) , "!1, and $!1 perform marginally

better than "'�, $'�, and OCF in terms of MSE, with similar MAE and RPS observed.

However, in the largest data set (wines), OCF emerges as one of the best estimators to-

gether with "'� and $'�. This result highlights the advantage of forest-based methods

over parametric methods in larger samples.

9 The cross-validation exercise yields a smaller sample size compared to the simulation results presented
in Section 4.2. Consequently, estimates of expected MSE, MAE, and RPS can be more imprecise and
influenced by outliers. We report the distribution of the estimated MSE, MAE, and RPS using boxplots to
provide a more robust assessment of the prediction performance of each estimator.
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Figure 5.1: Prediction performance on real data sets. Each row contains boxplots showing the
median and interquartile range of the estimated mean squared error (upper row), mean absolute
error (mid row), and ranked probability score (lower row). Each column refers to a different data
set, with the data set name displayed at the top of each column. Data sets are sorted according to
their sample size.

The addition of constructed covariates deteriorates the performance of !$��) while it

does not substantially change the performance of "!1 and $!1, except in the largest data

set (wines) where it leads to improved performance for all parametric estimators. The dete-

rioration in the performance of !$��) is particularly pronounced in the support and nhanes

data sets. In these data sets, including third-order polynomials for continuous covariates and

all the two-way interactions between the raw covariates results in a total of 324 and 1394

covariates, respectively. Given the moderate sample sizes, the inclusion of the additional

covariates substantially increases the variance of the estimation, causing !$��) to perform

worse compared to a specification with only the raw covariates. In contrast, the performance

of "!1 and $!1 is not substantially affected by the inclusion of the additional covariates, as

these estimators employ regularization techniques that help contain the increase in variance.

24



In contrast to the simulation results, the honest version of OCF does not outperform the

adaptive version. In the two smaller data sets (vlbw and mammography), $��
�
and $��

�

exhibit similar MSE and RPS, with the MAE of $��
�
being slightly larger than that of

$��
�
. However, as the sample size increases, a performance gap in favor of $��

�
emerges

in terms of all performance measures. This gap becomes substantial in the largest data set.

6 Conclusion

This paper proposes a novel machine learning estimator specifically optimized for han-

dling ordered non-numeric outcomes. The proposed estimator adapts a standard random

forest splitting criterion (Breiman, 2001) to the mean squared error relevant to the specific

estimation problem at hand, thus mitigating the biases that traditional methods can intro-

duce. The new splitting rule is then used to build a collection of forests, each estimating

the conditional probability of a single class. A nonparametric approximation of derivatives

is employed to estimate the covariates’ marginal effects (Lechner & Okasa, 2019).

Under an “honesty” condition (Athey & Imbens, 2016), the estimator inherits the asymp-

totic properties of random forests, namely the consistency and asymptotic normality of their

predictions (Wager & Athey, 2018). The particular honesty implementation used by the

ordered correlation forest allows us to obtain standard errors for the covariates’ marginal ef-

fects by leveraging the weight-based representation of the random forest predictions (Athey

et al., 2019). The estimated standard errors can then be used to construct asymptotically

valid symmetric confidence intervals.

Evidence from synthetic data shows that the proposed estimator features a superior

prediction performance than alternative forest-based estimators and demonstrates its ability

to construct valid confidence intervals for the covariates’ marginal effects.
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