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Abstract

Election forensics are a widespread tool for diagnosing electoral manipulation out of statisti-

cal anomalies in publicly available election micro-data. Yet, in spite of their popularity, they

are only rarely used to measure and compare variation in election fraud at the sub-national

level. The typical challenges faced by researchers are the wide range of forensic indicators

to choose from, the potential variation in manipulation methods across time and space and

the difficulty in creating a measure of fraud intensity that is comparable across geographic

units and elections. This paper outlines a procedure to overcome these issues by making

use of directly observed instances of fraud and machine learning methods. I demonstrate

the performance of this procedure for the case of post-2000 Russia and discuss advantages

and pitfalls. The resulting estimates of fraud intensity are closely in line with quantitative

and qualitative secondary data at the cross-sectional and time-series level.
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1 Introduction

The last decades have seen a continued rise in quantitative analyses of election fraud.1

While many studies have sought to explain differences between countries, recent research

is increasingly focusing on the drivers of manipulation at the sub-national level within a

single country.2 A significant challenge of such analyses is the lack of reliable data. The

perpetrators of election fraud, understood here as “clandestine and illegal efforts to shape

election results” (Lehoucq, 2003), naturally try hiding their actions. Furthermore, the

data sources used in country-level datasets such as newspaper articles and election ob-

server reports typically do not have sufficient coverage across sub-national units. Forensic

methods, in theory, provide a way to circumvent these issues as they allow generating

evidence for or against fraud in the above sense out of statistical anomalies in publicly

available election micro-data with often universal coverage. The potential of these meth-

ods, however, is typically limited by 1) the wide array of available indicators a researcher

may choose from, 2) the potential variation in manipulation methods applied across lo-

calities and elections and 3) that forensic indicators as such typically do not constitute a

comparable measure of fraud intensity.

This article proposes a context-independent, data-driven procedure seeking to over-

come the above problems. The key novelty is leveraging data from crowd-sourced election

monitoring (CSEM) to train a machine learning (ML) model which flexibly approximates

the relationship between observed instances of fraud and a set of forensic indicators for

1 For an overview, see the articles by Lehoucq (2003), Gandhi and Lust-Okar (2009) and Mares and

Young (2016) as well as the books by Alvarez et al. (2008) and Simpser (2013).

2 See, for instance, Callen and Long (2015), Sjoberg (2014) and Cantú (2019).
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the country of interest.3 One can then use the trained model to diagnose irregularities

and estimate fraud also for other parts of the country or time periods where only election

micro-data is available. I demonstrate the procedure with data from post-2000 Russia and

discuss advantages and pitfalls. Since election micro-data is getting increasingly easier to

access (Rueda et al., 2023) and CSEM is becoming more widespread through increased

internet access in developing countries (Grömping, 2017), my approach is potentially ap-

plicable to several other contexts with limited data.

Methodologically, I follow earlier work at the country-level by Montgomery et al.

(2015a) which makes use of Bayesian Additive Regression Trees (BART) – an ensemble

ML method combining elements of decision trees and boosting. For my analysis of Russia,

I obtained about 5,600 reports of observed electoral law violations during the elections

2011 and 2012 from GOLOS, an independent election monitoring NGO. Using BART

allows me to estimate the relation between reported fraud and 14 forensic indicators from

the relevant literature with a high degree of flexibility and without imposing any functional

form. Having trained the model, I can predict fraud for each of Russia’s roughly 2,700

districts in all 10 national elections between 2000 and 2021 using only forensic indicators

calculated from official election micro-data.

Accurately quantifying the extent of election fraud across an entire country over several

elections based on official election data and a few thousand fraud reports for two elections

is necessarily associated with some challenges. The most important ones are related to

limitations of the fraud report data. For instance, reporting was very high in metropolitan

areas, whereas the vast majority of the country, especially the notoriously fraud-ridden

rural parts in the Southwest, often did not even record a single act of fraud. As a result,

3 CSEM are digital platforms set up by activists or non-governmental organizations (NGOs) which allow

citizens to collect and share evidence of manipulation.
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the ML algorithm may wrongly end up predicting knowledge or usage of GOLOS instead

of electoral manipulation. Furthermore, a very skewed distribution of outcomes in the

training data, as in this case, may lead to over-predicting the majority class.

I address the above issues in several ways: first, I only use information on whether

districts detected any fraud at all instead of report frequency. Second, I establish outcome

balance in the training data by applying the Synthetic Minority Oversampling Technique

(SMOTE) by Chawla et al. (2002). Finally, and most importantly, I create three al-

ternative sets of predictions by restricting the training data in different ways with the

aim of excluding mis-classified observations: the first one exploits that many reports did

not concern fraud in the sense of hidden, illegal actions aimed at directly influencing the

results but more innocuous violations of electoral law such as the presence of campaign

materials in polling stations. Comparing only Reporting districts with an actual fraud

report to those with only a non-fraud report should purge many false negatives from the

data. The second restricted sample includes only Switcher districts which reported fraud

in either the 2011 or the 2012 election but not the other one. This isolates variation within

areas and assures that fraud status is independent of fixed area characteristics. The last

restricted sample combines the two previous approaches and only makes use of Reporting

Switchers.

While the internal validity of the different BART models can be assessed by com-

paring predictions and test data, this necessarily assumes the absence of mis-classified

observations. Benchmarking the models’ actual performance thus is not feasible without

making use of reliable, secondary data. The most useful information in this regard are

scores of electoral fairness from Petrov and Titkov (2013) for a cross-section of 83 regions,

the next-highest unit in Russia’s administrative system, and a time-series of country-level
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fraud estimates based on the NELDA dataset by Hyde and Marinov (2012). Since none of

these series is available at the district-level, I first aggregate predictions and then bench-

mark them against the aforementioned secondary sources by comparing their bivariate

correlations. I find that, overall, the Reporting Switcher sample outperforms the other

strategies. Using this sample, I also provide fraud estimates at the regional level from

2000 to 2021 and document a high degree of congruence between with qualitative accounts

of electoral manipulation from the Organization for Security and Co-operation in Europe

(OSCE) and other sources. Omitting the country’s two largest cities, Moscow and St.

Petersburg, results in very similar estimates.

Finally, in the last part of the analysis, I seek to understand which forensic indicators

have the highest predictive power and whether their relationship with reported fraud

is in line with their theoretical premises. A straightforward metric to address the first

question are inclusion rates, i.e. the share of a full BART model’s splitting rules in

which a particular variable is used. I find that the most relevant forensic indicators

in my setup are the resampled kernel density method (RKD) by Rozenas (2017), the

integer percentage approach (IP-TURN) by Kobak et al. (2016a) and the excess turnout-

vote share correlation (TVSC-XS) popularized by Myagkov and Sobyanin (1996). For the

second question, I look at partial dependence (PD) plots which show the average outcome

prediction at specific quantiles of the three aforementioned variables. The graphs reveal

that, while all three variables are roughly in line with theoretical expectations, the effect

of IP-TURN also exhibits some contradictory patterns.

This paper makes two main contributions. The methodological one is presenting a

procedure which leverages ML methods, CSEM data and election forensics to estimate

electoral manipulation for a particular country at the sub-national level using only election
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micro-data. This procedure is an extension of Montgomery et al. (2015a), which is also

the most closely related work in this area. Their analysis uses BART to estimate the

relationship between a national-level fraud measure constructed from the NELDA dataset

and several forensic indicators as well as contextual risk factors. My study also draws

on pioneering work by Cantú and Saiegh (2011) who train a Naive Bayes classifier on

synthetic data containing instances of vote stealing to detect cases thereof in Buenos

Aires between 1931 and 1941 using Benford’s law (BL). Levin et al. (2016) and Zhang

et al. (2019) apply Random Forests, another ML ensemble method, to synthetic data with

instances of vote stealing and ballot stuffing. Having trained the model using turnout and

vote shares as input, they predict the likelihood of local-level fraud in the 2013 and 2015

elections in Argentina.

My approach differs from this work in few aspects: first, I use crowd-sourced fraud

reports as an outcome variable. This is because data sources like NELDA are not avail-

able for sub-national units in this and most other contexts.4 I also do not use synthetic

data but, rather, rely on forensic indicators, which implicitly compare realized election

outcomes with a simulated benchmark. Second, I use a wide array of forensic tools

as explanatory variables, covering 14 indicators in total and spanning turnout-inflating,

number-manipulating as well as rounding fraud. Third, I do not use contextual variables

to fit the BART model. This is less problematic in my case since I am analysing localities

within a single country with a more uniform political context instead of comparing coun-

tries across the globe. In fact, many contextual variables could be related to an area’s

propensity to report fraud and may thus additionally bias predictions in that direction.

4 There are few cases where primary, disaggregated evidence is available like as in the studies by Cantú

(2019) and Callen and Long (2015). However, this evidence typically only concerns one particular type

of fraud.
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Furthermore, contextual variables are, in practice, often not available at the sub-national

level.

The second, substantive contribution of this paper is providing comparable estimates

of election fraud in Russia at the national and sub-national level for all country-wide elec-

tions from 2000 to 2021. Existing research has documented turnout-inflating (Myagkov

et al., 2009; Enikolopov et al., 2013), number-manipulating (Skovoroda and Lankina,

2016) as well as rounding fraud (Kobak et al., 2016b; Rozenas, 2017). However, no work

so far has sought to combine several forensic indicators into a single metric and measure

election fraud across manipulation methods at the district- or regional level.5 An advan-

tage of my estimates is that they are designed to mimick voting patterns in districts where

citizens have in fact reported fraud. Furthermore, they correlate strongly with near-ideal,

aggregate secondary data and qualitative evidence.

My estimates naturally also have limitations. First, they assume that reporting and

forensic indicators in the training sample are only linked through fraud and not a third

variable that could bias the estimates. Second, they require that all fraud methods applied

between 2000 and 2021 were also used in the training elections 2011/2012 and, at least

to some extent, detected. Lastly, since the district-level predictions can only approximate

whether fraud occurred, their regional aggregates can consequentially only measure the

maximum share of votes potentially affected by manipulation. Hence, while my predic-

5 To the best of my knowledge, there exists also no work for other countries. Leemann and Bochsler

(2014) apply several number-based tests for a referendum in Switzerland but do not combine their

results into single metric.
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tions can give a good sense about the intensity of fraud, they cannot quantify how much

election outcomes were actually shifted by it.6

This article proceeds as follows: Section 2 introduces the data sources, followed by Sec-

tion 3 which provides an overview of the forensic indicators used in the analysis. Section 4

discusses the methodology. Section 5 presents the main empirical results and Section 6

evaluates the performance of the individual fraud indicators. Section 7 concludes.

2 Data

2.1 Election data

In this paper, I exclusively focus on national elections for the Russian president and the

State Duma parliament. Their organization strongly corresponds to Russia’s adminis-

trative divisions: the Central Election Commission (CEC) is the highest authority and

coordinates Russia’s 89 Regional Election Commissions (RECs).7 The RECs, on the

other hand, coordinate the work of the roughly 2,700 Territorial Election Commissions

(TECs). The TECs’ territories typically coincide with those of districts (rayons), which

are the second-level of Russia’s administrative divisions.8 Finally, the organization of the

individual voting stations is carried out by about 95,000 precinct election commissions

(PECs). For my analysis I use publicly available PEC-level data for five presidential and

five Duma elections in Russia from 2000 to 2021 compiled by Sergey Shpilkin from the

6 Importantly, this caveat also applies to forensic indicators producing an estimate of fraud levels like

the RKD measure by Rozenas (2017) and the Finite mixture model/eforensics approach in Mebane Jr.

et al. (2022).

7 I assume that Russia kept its original 2014 borders over the entire study period 2000 to 2021.

8 In the case of larger cities and detached settlements, districts may host several TECs. For simplicity,

I use the names district and TEC interchangeably.
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Central Election Commission website.9 The main variables of interest are the size of the

electorate, turnout and votes for incumbent candidates and parties. The incumbent is

defined as United Russia in parliamentary elections (2003, 2007, 2011, 2016 and 2021) and

Vladimir Putin (2000, 2004, 2012 and 2018) and Dmitry Medvedev (2008) in presidential

races.10

2.2 Fraud reports

The invitation of foreign election observers has become almost a standard practice since

the 1990s, even for non-democratic regimes (Kelley, 2012). Domestic monitoring through a

country’s own citizens, on the other hand, is a more recent, yet fast-growing, phenomenon

(Grömping, 2017). The global spread of internet access and smartphones has made the

mobilization and coordination of observers substantially easier for domestic actors engaged

in election monitoring. One particularly powerful innovation has been the usage of CSEM

which allows virtually any citizen to become an election observer and submit evidence of

manipulation via social media, text message, email or a website to activist groups and

non-governmental organizations (NGOs). To give a broad idea about the scope and spread

of CSEM, Table 1 provides a non-exhaustive overview of its application in recent elections.

While a comprehensive evaluation is still missing, anecdotal evidence suggests that CSEM

may indeed be an efficient tool at deterring, or at least displacing, fraudulent activities

9 The data is nearly complete for all elections, apart from 2000 where no PEC data is available for the

Republic of Sakha and Chechnya. For further details, see Shpilkin (2021) and Kobak (2023).

10 Turnout is defined as the sum of votes cast over electorate size. For calculating the indicator by

Kobak et al. (2016b), I apply the turnout definition used in their paper. I also follow their example

by considering only the proportional votes in 2003, 2016 and 2021 when State Duma members were

elected in a mixed system with half of the 450 seats allocated via majoritarian single-member districts

and the other half proportionally through regional party lists.
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Table 1: Examples of CSEM around the world

Country Year Indicative references Name of crowd-sourcing platform
Armenia 2013 Vardanyan (2013) Iditord
Guinea 2010 Bott et al. (2014) Guinée Vote 2010 Témoin
Honduras 2013 Arias et al. (2015) VotoSocial
Indonesia 2019 Gunawan and Ruldeviyani (2020) KawalPilpres
Kenya 2008 Ajao (2022) Ushahidi
Kenya 2013 Ajao (2022) Ushahidi
Mexico 2009 Salazar and Soto (2011) ¡Cuidemos El Voto!
Nigeria 2011 Bailard and Livingston (2014) ReVoDa
Russia 2011 Bader (2013) GOLOS
Russia 2012 Bader (2013) GOLOS
Uganda 2011 Hellström (2015) UgandaWatch
Ukraine 2012 Herron and Sjoberg (2016) Maidan-Monitoring
Ukraine 2014 Herron and Sjoberg (2016) Maidan-Monitoring
Tanzania 2015 Shayo (2021) Uchaguzi Wetu

(Grömping, 2017). My empirical results demonstrate another, so far overlooked, benefit

of CSEM: helping to identify fraud in non-monitored areas and elections.

In my analysis, I use fraud reports collected by GOLOS, an independent Russian

NGO specialized in election monitoring.11 During the 2011 parliamentary and the 2012

presidential elections, the association ran the CSEM project Karta Narusheniy (map of

violations) which provided a platform for citizens to anonymously report incidents of fraud

and send reports of observed electoral law violations via phone, internet, and text message.

Users could also provide information about the time and type of irregularity observed.12

Of particular interest for this analysis are categories of election-day irregularities closely

linked to fraud in the sense of “clandestine and illegal efforts to shape election results”

(Lehoucq, 2003): 1) violation of observers’ rights (incl. those of committee members and

media), 2) illegal voting (incl. irregularities in home or absentee votes) and 3) counting

irregularities (or other aspects of falsely processing of results). Lastly, the reporters could

also provide the location where the action was witnessed which allows matching them to

districts.

11 My study is not the first to use this data source. See, for instance, Bader (2013), Bader and Schmeets

(2013) and Skovoroda and Lankina (2016)

12 For a more detailed description of the Karta Narusheniy data, see Bader (2013).
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a. Reported fraud 2011 b. Reported fraud 2012

Figure 1

Notes: Maps of the Russian Federation showing reported fraud in the elections 2011 and 2012 across regions (thick lines)
and districts (thin lines). White areas with thick black borders denote missing data.

2.3 Caveats

While crowd-sourced fraud reports are a highly valuable data source, they also have

important drawbacks. The key issue is under-reporting which may stem from social

pressure, fear of retaliation, lack of information or technical issues. Fraud may have also

been more difficult to detect in rural areas than in densely populated cities. Consistent

with this, 43% of election-day irregularities in 2011 and 26% in 2012 came from Moscow

and St. Petersburg rather than the the notoriously fraud-ridden ethnic republics in the

Southwest (Lukinova et al., 2011). Consequently, I do not use the frequency of reports

but a binary variable Fraud which classifies a specific district-election cell as manipulated

if any fraudulent action has been reported. This new binary variable thus captures the

extensive rather than the intensive margin of fraud, i.e. the difference between final

election outcomes and voters’ actual choices on election day. Furthermore, Moscow and

St. Petersburg still make up about 25% of the district-election cells reporting fraud. I

will revisit this issue in Section 5.1.

Comparing only TECs with and without a report, however, does not suffice to com-

pensate the data’s shortcomings as illustrated by Figure 1 which shows the geographic
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distribution of Fraud across districts in 2011 and 2012. Even though both elections were

widely denounced for their high degree of manipulation, no single fraud report was filed

in the vast majority of districts (84% in 2011, 81% in 2012). Those districts with a fraud

report, were predominantly located in urban areas, in particular the cities of Moscow

and St. Petersburg depicted in the bottom left of each map (OSCE, 2012b,a). Fraud

reports were also more likely to come from the more densely populated Western part of

the country rather than the more rural districts in the Far East.13

These patterns point towards two general issues in the prediction of election fraud

highlighted by Cantú and Saiegh (2011): first, the number of clean cases typically strongly

outnumbers the manipulated ones. Training an ML model on such data is likely to lead to

predictions biased towards correctly predicting the majority class. The second is the high

degree of mis-classified cases which may induce an ML model trained to predict fraud

to, mistakenly, predicting correlates of reporting, such as development and urbanization,

or of particular forensic measures.14 I tackle these concerns in two ways: first, I use

SMOTE to balance the distribution of outcomes in the training data. Second, I train the

BART model also on three restricted samples which, to varying degrees, attempt to purge

potentially mis-classified observations from the training data.

13 In fact, Skovoroda and Lankina (2016) show that reports are correlated with a regions’ education level

and distance from Moscow.

14 Rozenas (2017) shows that the occurrence of natural spikes in the vote share distribution at focal

percentages decreases in the amount of voting stations. The TVSC indicator, on the other hand, relies

on area homogeneity and could thus also be influenced by voters’ geographical segregation.
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2.4 Secondary data

To assess how well my fraud estimates capture cross-sectional variation across regions, I

use data by Petrov and Titkov (2013) on regions’ electoral fairness between 2006—2010

based on experts’ assessments. I use the inverse of the original variable to impose a positive

correlation with reliable proxies of fraud intensity. I also create a national-level time-

series of manipulation levels in Russia based on the National Elections Across Democracy

and Autocracy (NELDA) dataset by Hyde and Marinov (2012) which provides detailed

information on the context, proceeding and outcomes of all national elections across the

world. To construct a measure of electoral manipulation, I follow Montgomery et al.

(2015a) and aggregate seven variables particularly related to fraud into a single measure

through a standard three-parameter item response theoretic (IRT) model estimated on the

full dataset. Using the most recent NELDA version 6.0 from 2021 provides information

for Russia up to the 2018 election (Hyde and Marinov, 2021).

3 Forensic indicators

3.1 Selection criteria

For selecting the forensic indicators evaluated in the BART model, I applied the following

criteria. First, the indicator should be forensic, i.e. seek to detect a statistical anomaly,

rather than merely an extreme election outcome like very high turnout or incumbent vote

share. Second, for very similar forensic tools, I selected the more recent or empirically

tested one. Third, when different variants of an indicator were offered by the authors and

none of them was ex-ante clearly superior or inferior, I typically included all of them.
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3.2 Simulations

Several indicators in this section are using a Pearson’s chi-squared test to compare the

discrete distribution of digits in election outcomes within a particular area to a theoretical

benchmark such as BL. This approach is problematic in my setup: first, the theoretical

distributions only hold asymptotically whereas the number of precincts within a particular

TEC ranges between 1 and 438 with a median of 30. In addition, the assumptions of the

Pearson’s chi-squared test break down if the expectation for any of the ten digits is

less than one or below five for more than two digits (Cochran, 1954). For the BL2-test

described below, this would apply to all TECs with less than 57 precincts, which is almost

twice the median.

To sidestep the above issues, I perform the TEC-level digit distribution tests as fol-

lows: first, I do not rely on theoretical counter-factual distributions but on Monte-Carlo

simulations following Kobak et al. (2016b). More precisely, I draw for each precinct 10,000

simulated totals of incumbent votes or absolute turnout from a binomial distribution with

the number of draws equal to absolute turnout or the electorate size and a success proba-

bility equal to the actual incumbent share or turnout rate. I then extract from all draws

the relevant digits and derive simulated distributions over the digits 0 to 9 for each TEC

in every election. Second, for TECs which do not satisfy the criterion defined by Cochran

(1954), I use an exact multinomial test. In both cases, low p-values indicate a significant

deviation between the two and a high likelihood of manipulation.15

15 To speed up the computation of multinomial tests, I make use a recent algorithm by Resin (2023).
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3.3 Turnout-vote share correlation (TVSC)

The TVSC is one of the oldest and most widely used tools for detecting election fraud in

Russia (Myagkov and Sobyanin, 1996). The core idea is that, absent manipulation, the

correlation between how many people vote and their choice across sub-units of a particular

area should be close to the area’s average support of the respective candidate or party. An

implausibly high TVSC or one in excess of the candidate’s vote share (TVSC-XS) are thus

potential signs of turnout-inflating fraud like ballot-stuffing or multiple voting (Myagkov

et al., 2009). Enikolopov et al. (2013) have also shown that the TVSC in Moscow voting

stations 2011 decreased when election observers were randomly deployed. The TVSC’s

main prerequisite is area homogeneity and the absence of any other systematic correlation

between turnout and candidate preferences. In my analysis, I use highly disaggregated

data and exploit variation across PECs within individual districts, which is the most

granular analysis possible with existing data. — Fraud indicators used: TVSC and TVSC-

XS.

3.4 BL2 test

A widely used forensic tool is the BL2 (or 2BL) test which posits that, absent fraud, the

second digits of election outcomes like incumbent votes and turnout numbers should follow

Benford’s distribution (Mebane Jr., 2008). However, Deckert et al. (2011) and Rozenas

(2017) show that the BL2 test tends to produce false positives and Mebane Jr. (2015)

demonstrates that the test may also be sensitive to strategic voting. Past work has applied

the BL2 test to Russian elections in the 2000s but only at the national rather than the

sub-national level (Mebane Jr., 2013). Following Section 3.2, the BL2-test in my analysis

uses simulated distributions of second digits rather than the theoretical ones implied by
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BL. — Fraud indicators used: p-value of BL2-test for incumbent vote (BL2-INC) and

turnout (BL2-TURN).

3.5 Last-digit (LD) test

In a seminal article, Beber and Scacco (2012) argue that, under fairly general assump-

tions, the last digits in reported election outcomes should follow a uniform distribution.

Due to human preferences for specific numbers, man-made or manipulated election out-

comes should thus be tilted towards particular digits and significantly deviate from this

benchmark. Skovoroda and Lankina (2016) applied a variant of this test to recent Rus-

sian elections with a focus on the excessive occurrence of zeroes in turnout counts across

voting stations. For my analysis, I use simulated LD distributions as a benchmark and

allow biases to vary across numbers and TECs.16 — Fraud indicators used: p-value of

LD test for incumbent vote (LD-INC) and turnout (LD-TURN).

3.6 Digit-distance (DD) test

Beber and Scacco (2012) also propose a forensic indicator based on the distance between

the last and second-last digit. This test is motivated by proven biases in human random

number generation which often result in too few digit repetitions and excessive use of

adjacent digits. In theory, the absolute distance in the last two digits of an election

outcome should follow that of two uniformly distributed numbers. To the best of my

knowledge, the DD test has so far not been applied to Russian elections. Again, I use

simulated DD distributions as a benchmark. — Fraud indicators used: p-value of DD test

for incumbent vote (DD-INC) and turnout (DD-TURN).

16 For an extension and experimental evaluation of the last-digit test, see Medzihorsky (2015) and Mack

and Stoetzer (2019).
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3.7 Integer percentages (IP)

Kobak et al. (2016b,a) look at human biases in the creation of relative numbers, i.e. per-

centages. More precisely, they document a rising amount of precincts in Russia’s national

elections 2000 to 2020 reporting turnout or incumbent vote shares with an integer per-

centage (IP) (Kobak et al., 2018, 2020). Following their definition, an IP is any reported

percentage at most 0.05 percentage points away from an integer.17 The underlying as-

sumption is that manipulating election officials have a target percentage in mind and then

tweak absolute numbers to match this as closely as possible. Their method compares the

amount of actual IP precincts with those arising from Monte Carlo simulations. For my

analysis, I use a one-sided t-test for the null hypothesis whether the simulated number of

IP precincts could be larger than the observed ones. — Fraud indicators used: p-value of

IP-test for incumbent vote (IP-INC) and turnout (IP-TURN).

3.8 Resampled kernel density (RKD)

A salient feature of Russia’s recent election results are abnormal spikes at focal percentages

like 60% or 75% in the distribution of turnout and incumbent party vote share across

precincts. The RKD method proposed by Rozenas (2017) aims to quantify the extent of

this phenomenon. To avoid the detection of statistical artefacts unrelated to fraud, the

RKD method first calculates a smooth counter-factual distribution from the data before

comparing it to the actual outcome. The share of precincts positively deviating from the

counter-factual then provides an approximation of the extent of fraud. — Fraud indicator

used: Estimated share of fraudulent precincts (RKD).

17 Similar indicators of fraud have been used by Rundlett and Svolik (2016) and Kalinin (2022).
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3.9 Finite mixture model/eforensics (FMM)

Similar to RKD, the finite mixture model proposed by Mebane Jr. et al. (2022) tries to

infer the share of fraudulent precincts within a given locality from distributional anomalies.

The FMM method, however, distinguishes itself from other forensic measures by building

on earlier work in Klimek et al. (2012) and explicitly modeling the process of stealing and

manipulating votes in favor of the incumbent. The FMM procedure then estimates both

the extent of incremental (π2) and extreme fraud (π3) via Markov Chain Monte Carlo.

— Fraud indicators used: Estimated shares of extreme fraud (FMM-EXTR), incremental

fraud (FMM-INCR) and the sum of both (FMM-SUM).

4 Approach

4.1 Institutional background

In line with the literature and anecdotal evidence, I assume that the decision about

whether, where and how much to manipulate the results of national elections is made

at the region-level by Russia’s 83 governors (Myagkov et al., 2009; Bader and van Ham,

2014; Kobak et al., 2016b; Moser and White, 2017; Kalinin, 2022).18 Governors’ main

power lies in controlling the composition of the TECs whereas the members of the RECs

are appointed by recommendation of the federal government and PECs are formed ad-

hoc close to the election upon nomination by the electorate (OSCE, 2000b, 2004a,b,

2012a,b). Since also all forensic indicators require variation in election outcomes within

some higher-level unit of aggregation and PECs are the most granular unit in the election

18 For a more detailed discussion of governors’ motives for manipulation, see Reuter and Robertson

(2012).
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process, TECs are naturally the most sensible unit of observation to study election fraud

in the Russian context. Using the precinct-level data, I thus compute each of the forensic

indicators presented above for each district in every election.

4.2 Bayesian Additive Regression Trees

To learn about the relationship between reported fraud and forensic measures in a flexible

way without imposing any functional form, I use BART which is an ensemble ML method

and is closely related to tree-based methods. Broadly speaking, these methods seek to

explain variation in an outcome Y by successively splitting the sample into sub-regions

where an explanatory variable Xj is below a threshold s or not. Xj is taken from a pre-

defined set of variables X, along with s, chosen to minimize the residual sum of squares

(RSS) in Y after the split. Subsequent splits are chosen to minimize the RSS for the

sub-samples created in the previous step and so on.

BART improves on this basic approach by creating K trees and using their average

prediction to impute Y as is also done in other ML methods such as random forests.

Furthermore, similar to boosting, each tree in a BART model is successively updated by

randomly perturbing the one from the previous step. These perturbations can encompass

different prediction values at the terminal nodes or using more or less complex tree struc-

tures. Preference, however, is given to those tree versions which capture variation in Y

not yet accounted for by all other trees in the last step. After B iterations of this kind,

where the first one is simply the mean of Y , one obtains B average predictions across K

trees and the final model is obtained by taking again the average across these. However,

since iterations at the beginning are less reliable, one typically drops the first L burn-in

samples from B (James et al., 2021). For my analysis, I set the main BART parameters
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as K = 100, B = 5, 000 and L = 50, 000 to assure comparability with Montgomery et al.

(2015b).

4.3 Training samples

A fundamental concern for any ML approach is mis-classification which may induce bias

in model predictions. A rather common remedy in the ML literature is removing the

observations causing this bias from the training data (see the overview by Hort et al.,

2023). For my analysis, I thus run the BART model not only on the Full sample but also

on three restricted samples which each seek to isolate parts of the data less affected by

under-reporting and thus more informative about the true relationship between forensic

indicators and electoral manipulation.19

The first strategy tackles reporting bias by exploiting the fact that many submitted

reports did not fall under the definition of fraud in this paper but oftentimes only pro-

cedural irregularities, such as illegal campaigning. The Reporting sample includes only

district-election cells where at least one report of any sort had been filed and should thus

remove a large number of false negatives due to lack of knowledge or repression from the

estimation. The second approach addresses the possibility that the correlation between

fraud reports and forensic indicators could be driven by unobservable area characteristics.

Since the 2011 and 2012 elections were only four months apart, such features were likely

constant between these two ballots. Akin to a fixed-effects regression model, one can

thus eliminate the influence of constant area characteristics by including only Switchers

19 My data and methodology do not allow applying an automated, data-driven procedure to identify

influential mis-classified observations like the one proposed by Verma et al. (2021). Pratola et al.

(2023) propose methods to identify such influential observations in BART models with continuous

outcomes, whereas my analysis uses categorical ones.
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Table 2: Balance across samples

Total Training data Test data

Sample All Fraud=1 Fraud=0 All Fraud=1 Fraud=0 All Fraud=1 Fraud=0

Full 5, 462 950 4, 512 4, 369 776 3, 593 1, 093 174 919
Reporting 1, 370 950 420 1, 096 781 315 274 169 105
Switcher 872 436 436 698 349 349 174 87 87
Reporting Switcher 218 109 109 174 87 87 44 22 22

in fraud reporting status between those two elections in the training data. These switches

could be driven by different incentives for fraud, which are typically lower in presiden-

tial elections, as well as turnover among governors or changes in their rigging strategies.

Since some of switching could also be driven by false negatives in the 2011 election, when

GOLOS was less known, I also use a third approach which combines the previous two

strategies. This Reporting Switcher sample only includes districts which filed any kind of

report in both elections but only once reported election fraud.

Table 2 shows the distribution of the main outcome variable Fraud in the four samples

which are randomly divided each into a 80% training and a 20% test set. The Full sample

covers 2,731 TECs for the elections 2011 and 2012 with more than 80% not reporting any

fraud. Looking at the Reporting sample, total observations drop by about 75% and those

without fraud report by 90%. About two thirds of this sample documented at least one

instance of manipulation. In the Switcher sample, the number of observations shrinks

further to 16% of the initial data. By construction, the outcome is perfectly balanced in

this sample. The same also applies to the Reporting Switcher sample which features only

4% of the original data.20

20 For the two Switcher samples, I choose test and training sets by randomly selecting among districts

rather than district-election cells to ensure that district pairs are not separated in the randomization

process which would reduce the small sample size even further.
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4.4 Balancing

Table 2 highlights another potential issue: the outcome imbalance for the Full and Re-

porting sample. Since ML methods like BART are designed to explain as much of the

variation in the data as possible, the predictions from models trained on such skewed

datasets will be systematically biased towards correctly predicting the majority class and

significantly underperform for the minority class (Chawla et al., 2002). The ML liter-

ature has suggested various techniques to overcome this issue, which typically involve

over-sampling the minority or under-sampling the majority class. For the purpose of this

article, I rely on a widely used technique called SMOTE for the creation of the training

data. SMOTE combines under-sampling with an over-sampling technique which creates

perturbed synthetic replications of individual observations rather than identical copies

thereof (Fernandez et al., 2018).21 As shown in Chawla et al. (2002), this approach out-

performs mere replication of minority class data in terms of predictive performance.

To decide on the optimal degree of SMOTEing, I proceed as follows: first, for a given

over-sampling rate of N for the minority class, I under-sample the majority class so that

perfect balance across both groups is automatically assured. Then, the BARTmodel is run

on the augmented training dataset and calculate its predictive performance for the 20%

test data set aside before applying SMOTE.22 Next, I compare the predictive performance

for over-sampling degrees from 0% (the original data) up to 1000% in increments of 100%

(with k = 5 following Chawla et al. (2002)). Finally, I choose the final degree of over-

sampling samples based on the N which maximizes the average predictive performance

21 Synthetic data points of the minority class are created by randomly interpolating the other variables’

values between an observation and a random subset of its k nearest neighbors.

22 Note that, as the degree of over-sampling the minority class becomes larger, this may actually also

imply over-sampling the majority group.
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across the two outcome groups to avoid favoring any group due to outcome imbalance

in the non-SMOTEd test data. For the two Switcher samples, which are balanced by

construction, I use the original data without applying SMOTE.

Importantly, this procedure seeks to maximize the BART models’ internal validity

and implicitly assumes that the samples are not affected by any of the issues discussed

in Section 2.3. This makes external validation through secondary data a particularly

important part of my analysis.

4.5 Aggregation

As described above, I use data for the elections 2011 and 2012 to train individual BART

models which seek to capture the TEC-level relationship between reported fraud and

forensic indicators. After estimation, assuming that the uncovered relationships remain

constant over time, each model can be used to predict fraud for all elections in my sample.

The predicted values from the model are by default continuous in the interval of 0 and 1

and transformed into binary form if they cross some threshold value. For my calculations,

I use a threshold of 0.5 in line with common practice in the literature. Analogous to

the original outcome variable, one can interpret the resulting values as the predicted

occurrence of fraud for the respective sample.

These district-level predictions have two shortcomings. First, the secondary data on

electoral integrity presented in Section 2.4 is only available for a cross-section of regions

and as country-level time-series. Hence, there is no natural data source to benchmark

the estimates against to judge their performance and to evaluate the different approaches

to handling mis-classification. The second issue is that the predictions can only credibly
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provide information on the occurrence of fraud rather than its intensity like the GOLOS

reports used as input variable.23

A simple solution to both of the above problems would be to aggregate the TEC-level

predictions to higher administrative units. This could be done, for instance, by averaging

the binary fraud predictions for each region or the entire country. On the one hand,

this would bring the estimates to a level of aggregation where they can be compared

with secondary data sources. On the other hand, this variable can be regarded at least

as an imperfect proxy of fraud intensity since it is equivalent to the share of districts

affected by fraud and provides information about how widespread manipulation was in a

particular election. This approach, however, does not consider how many votes came from

a particular area and the share of electorate represented by it. Using weighted averages

offers a way to take these margins of heterogeneity into account. The resulting measure

provides an even closer proxy of fraud intensity as it can be interpreted as an upper bound

of the estimated shares of votes or the electorate affected by manipulation.

Since it is ex-ante unclear whether votes or electorate size are the more suitable

weights, I calculate higher-level aggregates of the binary predictions not only for each

of the four samples but also using as weights the number of votes as well as the electorate

size. In total, I thus obtain 8 different aggregate fraud measures. I calculate these for

the region- and the country-level and benchmark them by evaluating their correlational

strength with region-level ratings of electoral integrity and the country-level manipulation

proxy developed by Montgomery et al. (2015b).

23 This makes them also less valuable for further studies into the drivers of election fraud since they

implicitly assume that the perpetrators have no control over the extent of manipulation.
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Table 3: Predictive power across BART models

Test data Full data

Over- Observations % Predictions Correct % Predicted
samp- Fraud

Sample ling

All Fraud No All Fraud No Ave- 2011 2012
Fraud Fraud rage

Full 100 1, 093 174 919 73.65 63.22 75.63 69.42 29.16 33.17
Reporting 300 274 169 105 64.23 73.37 49.52 61.45 57.19 54.23
Switcher None 174 87 87 54.02 56.32 51.72 54.02 39.77 56.54
Reporting Switcher None 44 22 22 65.91 72.73 59.09 65.91 53.79 50.60

5 Results

5.1 Internal validity

I start by evaluating the predictive power and internal validity of the four different BART

models. Table 3 shows for each sample the chosen optimal degree of SMOTE over-

sampling, the composition of the test data and the percentage of correct predictions.24

The last two columns display the predicted share of fraudulent districts for the election

covered by GOLOS. For these final predictions, I re-train the BART models on the full

data, including the 20% test data. The geographical distribution of these four different

binary district-level fraud predictions is displayed in Figure 2.25

According to Table 3, the Full sample achieves the highest specificity with almost 76%

correctly classified no-fraud cases while detecting more than 63% of the fraud observations.

Unsurprisingly, the corresponding maps in Figure 2 also show a strong resemblance with

the original fraud data in Figure 1. While this shows a high degree of internal validity,

these predictions are at odds with reality and illustrate how mis-classified training data

can tilt the model towards predicting the propensity to report fraud rather than its actual

24 See Appendix Section A.1 for the detailed SMOTE results.

25 Appendix Figure C.3 shows the corresponding maps for the continuous, non-binarized prediction values.
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occurrence. Even though both elections were widely denounced for their high degree of

manipulation, the estimates suggest this affected only about 30% of districts and took

place predominantly in the two largest cities and their surroundings as well as smaller,

urban districts in other regions.26

When using the Reporting sample, BART’s ability to predict the fraud cases in the test

data increases to about 73%. For the no-fraud class, instead, predictive power plummets

to 50%. One very likely explanation for this finding is that conditioning on reporting

status discards many false negatives but not all. Hence, even though the model does

a good job at detecting manipulation, it also correctly assigns the fraud category to

many incorrectly classified no-fraud observations. In line with this reading, also the

geographical distribution shown in the two corresponding maps seems more credible in

the sense that fraud was more pervasive overall, not restricted to urban areas and slightly

more concentrated in the Southwest where many ethnic republics are located. Curiously,

manipulation is also predicted to be less common in the two largest cities compared to

the Full sample. Lastly, predicted manipulation levels are higher in 2011 as suggested by

the NELDA fraud measure (1.75 in 2011, 1.32 in 2012) and qualitative assessments in the

OSCE observer reports (OSCE, 2012b,a).

The Switcher sample fares worse for both groups (56% and 52%, respectively). Looking

at the data reveals the share of districts with predicted fraud to be about 40% in 2011 and

57% in 2012 which is at odds with the conclusions from secondary data mentioned above.

This is most likely due to the disproportionate inclusion of mis-classified no-fraud cases

26 For the 2011 elections, the executive summary of the OSCE report notes “frequent procedural vi-

olations and instances of apparent manipulation, including several serious indications of ballot box

stuffing” (OSCE, 2012b), whereas for 2012 it states that “voting was assessed positively overall; how-

ever, procedural irregularities were observed” (OSCE, 2012a).
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a. Prediction Full 2011 b. Prediction Full 2012

c. Prediction Reporting 2011 d. Prediction Reporting 2012

e. Prediction Switcher 2011 f. Prediction Switcher 2012

g. Prediction Reporting Switcher 2011 h. Prediction Reporting Switcher 2012

Figure 2: Predicted election fraud 2011/2012 resulting from different training samples

Notes: Maps of the Russian Federation showing binary fraud predictions for the elections 2011 and 2012 across regions
(thick lines) and districts (thin lines). White areas with thick black borders denote missing data.
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from the 2011 elections when GOLOS was still less widely known.27 On the one hand, this

makes the comparison between fraud and no-fraud instances less informative and limits

the potential for the BART model to learn. On the other hand, this prevents the BART

model from detecting fraud types that were more frequently used in 2011 compared to

2012. The Reporting Switcher sample, in turn, achieves a sensitivity of about 73% and

a specificity of 59% which are the best results among the three restricted samples. The

corresponding predictions also yield the highest prevalence of fraud across the four samples

with about 54% in 2011 and 51% in 2012 and show a strong concentration of predicted

fraud in the Southwest.

These results are better than they may seem at first. The country-level BART model

by Montgomery et al. (2015a), for instance, which also featured several contextual vari-

ables was able to predict 61% of fraud cases correctly. On the other hand, their model

achieved a specificity of almost 94% compared to a maximum of 59% across the three

restricted samples. Later, I turn towards secondary data to understand whether this is

due to remaining instances of mis-classification in the outcome variable or low explanatory

power of the forensic indicators and to accurately benchmark the models’ performance.

Lastly, one may worry that the BART estimates are predominantly driven by data

from Russia’s two largest cities, Moscow and St. Petersburg, which make up about 25%

of the fraud-reporting observations. Reassuringly, I find a high correlation between the

original estimates for 2011 and 2012 and alternative ones after excluding those cities from

the training process of the four samples.28

27 20% of districts submitted any type of report (fraud or no fraud) in 2011, compared to 29% in 2012.

28 The correlations are 0.7087 (Full sample), 0.5545 (Reporting), 0.8252 (Switcher) and 0.6777 (Reporting

Switcher). These correlations are even higher after aggregating to the region-level.

28



Table 4: Performance across BART models

Cross-section: Correlation of avg. fraud intensity 2007/08 with expert ratings of regions’ electoral corruption 2006-10

Weights/Sample Full Reporting Switcher Reporting Switcher

Votes −0.2203 0.4926 0.1617 0.5102
Electorate −0.2082 0.4800 0.1558 0.5043

Time-series: Correlation of aggregate fraud intensity with NELDA-based fraud measure at the country-level

Weights/Sample Full Reporting Switcher Reporting Switcher

Votes −0.4193 0.4961 0.4424 0.7587
Electorate −0.3667 0.3708 0.3941 0.7125

5.2 External validity

In this part of the analysis, I evaluate the congruence of the fraud intensity measures

resulting from the 8 different combinations of sample and aggregation weights with sec-

ondary data introduced in Section 4.5. The top panel in Table 4 shows the correlation of

the mean estimated fraud intensity in the elections 2007 and 2008 aggregated by region

for each configuration with expert assessments of a regions’ electoral corruption.

The first thing to note is that fraud intensity based on the Full sample shows a negative

correlation with electoral corruption. Again, a very likely explanation for this counter-

intuitive finding is that, without accounting for reporting bias, the BART model predicted

the propensity to report which was highest in progressive areas where people were either

informed about GOLOS or not afraid to report fraud. In the Reporting and Switcher

samples, the correlations are positive throughout. The fact that those correlations are

consistently stronger in the former, suggests that reporting bias is more problematic than

time-invariant unobservables. The Reporting Switcher sample performs even better and

provides for both aggregation configurations the highest correlation with expert ratings

of electoral manipulation. Compared to the impact of the training sample, aggregating

by votes or electorate size seems to matter very little in general. The highest correlation
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coefficient with a value of 0.5102 is obtained for the Reporting Switcher sample when

aggregating the estimates via the number of votes cast in each TEC.

The second panel in Table 4 assesses the correspondence of the 8 fraud intensity

measures with aggregate country-level trends in manipulation from 2000 to 2018. Con-

sequently, I also aggregate my TEC-level fraud estimates for the entire country instead

of the region. The time-series correlations have the expected direction for all fraud esti-

mates and are, on average, stronger than at the cross-sectional level. This is particularly

reassuring since changes in the usage of particular manipulation techniques could have

rendered the BART predictions less relevant over time. Again, the Reporting Switcher

sample emerges as strongest in both setups and attains the highest correlation overall for

the aggregates using the number of votes with a value of 0.7587. In light of these results,

I proceed with the Reporting Switcher sample as my baseline measure of fraud intensity

for the remainder of the paper.

5.3 Fraud estimates across regions and elections

The benchmarking exercise in Section 5.2 established a high degree of congruence of the

predicted fraud levels with secondary data. However, this data was only available at

the national level over time and for regions during the time period 2006–2010. In the

following, I discuss the changes in predicted manipulation according to the baseline mea-

sure from Section 5.2 across regions and elections for the entire sample period. Absent

any quantitative benchmarks for this time period, I compare them with qualitative as-

sessments from official OSCE election observer reports and, where necessary, by other

sources.
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The first graph in Figure 3 shows a series of boxplots which provide a quick overview

of the distributional changes in predicted election fraud over time. One can immediately

see that predicted fraud levels have notably increased from a mean of 32% in 2000 to

49% in 2008. In terms of the median, fraud estimates nearly doubled during this time

period from 27% to 50%. After this initial surge, manipulation broadly remained stable

until 2021 with a slight dip in 2016. The remaining graphs in Figure 3 show the spatial

distribution of the election-specific boxplots. Looking at the first map for 2000, when

Vladimir Putin was elected president for the first time, we can see that most regions on

this map retain a rather light color, with low levels of predicted manipulation inspite of

some high-intensity regions located in the Southwest. While the OSCE regarded these

elections overall as “consistent with international democratic standards”, it also acknowl-

edges complaints about manipulation filed by the largest opposition party in the aftermath

of the voting. The complaint mentions several regions which also score among the highest

in my fraud predictions: Kabardino-Balkariya (90%), Mordoviya (81%), Saratov (76%),

Bashkortostan (63%), Tatarstan (67%) and Karachayevo-Cherkessiya (52%) (Belin, 2000;

OSCE, 2000a).

In 2003, the mean intensity slightly drops to 30% but fraud remains high in the South-

western area as well as Chukotka in the Northeast. The OSCE report highlights issues

with campaigning, but found that the elections were “generally well-administered” and

irregularities in the vote counting process “appeared to be motivated by a desire to speed

up the process” (OSCE, 2004a). The report, however, also explicitly discusses instances

of carousel voting in the region of Bashkortostan which ranks as one of the highest in

terms of estimated fraud intensity in 2003 with a value of 65%. Only three months later,

in the presidential elections of 2004, manipulation levels across the country rise substan-
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tially to an average of 42%. This deterioration is also reflected in the OSCE report which

now states that “the process overall did not adequately reflect principles necessary for a

healthy democratic election” and notes cases of falsification and “unauthorized persons

apparently directing the work of polling stations” (OSCE, 2004b). The OSCE also explic-

itly names several regions with implausible, likely fraudulent results which also rank high

on my intensity measure: Mordovia (90%), Kabardino-Balkaria (82%), Tatarstan (68%),

Karachayevo-Cherkessia (52%), North Ossetia-Alania (48%) and Ingushetia (42%).

For the Duma elections 2007 and the presidential elections 2008 won by Dmitry

Medvedev, the average level of predicted fraud rises further to 45% and 50%, respec-

tively. From the maps, one can see that fraudulent (darker) areas start to spread across

the country and further intensify in the Southeast, which is in line with observations

made in Lukinova et al. (2011). Unfortunately, there was no OSCE mission for 2007 and

2008 due to observers’ visa denials and excessive restrictions by the authorities (OSCE,

2007, 2008). The congruence of these estimates with secondary data, however, has been

established by their correlation with the expert ratings from Petrov and Titkov (2013) in

Section 5.2.

In 2011, the mean fraud estimates remain high at 49%. This mimicks also the increas-

ingly negative assessment by the 2011 OSCE mission which, while not listing particular

regions, generally notes “frequent procedural violations and instances of apparent manip-

ulation, including several serious indications of ballot box stuffing” (OSCE, 2012b). The

corresponding map shows that, in spite of a constant average, manipulation polarized

in the Western part whereas in Central Russia and the Far East several regions flipped

their status from high to low intensity and vice versa. For 2012, which marked the return

of Vladimir Putin as president, a similar picture emerges with a slightly lower average
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Figure 3: Estimated fraud intensity across regions and elections 2000–2021

Notes: Maps of the Russian Federation showing fraud intensity for the elections 2000 to 2021 across regions. White areas with thick black borders denote missing data. The boxplots in the
first subgraph show the distribution of fraud intensity over time displayed in the election-specific maps.
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intensity of 48%. Also the OSCE arrives at a slightly more positive assessment but still

notes “procedural irregularities observed” (OSCE, 2012a).

The discrepancy in manipulation levels between parliamentary and presidential elec-

tions observed in 2007/2008 also shows up in the 2016/2018 cycle where my estimates

indicate an average of 42% and 47%, respectively. 2016 shows a general reduction in fraud

intensity, particular in Western and Central Russia and a slight increase in the Far East.

In 2018, fraud levels increased again and became slightly more uniform across the country,

as shown in the boxplot. Both OSCE reports, once again, describe observed instances of

ballot stuffing (OSCE, 2016, 2018). For 2016, the OSCE also mentions questionable and

cancelled results in several regions with above average levels of predicted fraud: Mordovia

(84%), Belgorod (74%), Rostov (71%), Nizhny Novgorod (57%) and Saratov (54%).

The most recent national ballot, the Duma election of 2021, continues the high levels

of manipulation observed in previous elections with an average of 48%. The spatial

distribution of manipulation is also once more strongly concentrated in the Southwest

of the country as well as the border regions in the Southeast. While the OSCE again

did not send a mission due to excessive restrictions on the number of observers by the

Russian authorities, several pieces of evidence support the idea that fraud levels remained

high during this election (OSCE, 2021). First, similar to the elections 2011, 2012 and

2016, with comparably high levels of predicted manipulation, there were public protests

against the apparent manipulation of results (Devitt and Neely, 2021). Second, as noted

by Hutcheson (2022), the decline in citizens’ trust in the fairness of elections continued

after the 2021 ballot.

34



0.000

0.025

0.050

0.075

0.100

R
K

D

IP
-T

U
R

N

T
V

S
C

-X
S

B
L
2

-I
N

C

D
D

-I
N

C

L
D

-I
N

C

T
V

S
C

L
D

-T
U

R
N

IP
-I
N

C

D
D

-T
U

R
N

F
M

M
-E

X
T
R

F
M

M
-I
N

C
R

B
L
2

-T
U

R
N

F
M

M
-S

U
M

Input variable

A
v
e
ra

g
e
 i
n

c
lu

s
io

n
 r

a
te

 /
 9

5
%

 C
I

a. 10 trees

0.000

0.025

0.050

0.075

0.100

IP
-T

U
R

N

T
V

S
C

-X
S

R
K

D

B
L
2

-I
N

C

L
D

-I
N

C

D
D

-I
N

C

L
D

-T
U

R
N

T
V

S
C

D
D

-T
U

R
N

IP
-I
N

C

F
M

M
-E

X
T
R

F
M

M
-I
N

C
R

F
M

M
-S

U
M

B
L
2

-T
U

R
N

Input variable

A
v
e
ra

g
e
 i
n

c
lu

s
io

n
 r

a
te

 /
 9

5
%

 C
I

b. 100 trees (baseline)

Figure 4: Variable inclusion rates

6 Performance of forensic indicators

6.1 Variable importance

The BART model provides a straightforward way to assess the importance of all input

variables which offers a unique opportunity to compare the predictive performance of the

various forensic indicators for the Russian context. To do this, I calculate the share of

splitting rules in the baseline BART model which include a particular forensic measure.

Intuitively, if all variables mattered to the same extent, their inclusion rates should be

equal. Hence, if an input variable is used to split the data more often than others, it also

has comparatively more predictive power. As shown by Chipman et al. (2010), however,

BART tends to include all variables to a similar extent in the splitting rules with a large

number of regression trees K, regardless of their actual relevance. To caution against

this concern, I calculate inclusion rates for an alternative BART model with ten trees

(K = 10) as done in Montgomery et al. (2015b) along with the equivalent for the baseline

specification with K = 100.

Figure 4 shows all forensic indicators, ordered by their inclusion rate, for both specifica-

tions. The dotted, horizontal lines indicate the average inclusion rate 1/14 if all variables
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mattered the same. Comparing the two figures, one can see that the number of trees

does not strongly affect the results and ordering of variables. In both specifications, the

indicators with clearly above-average inclusion rates are RKD, IP-TURN and TVSC-XS.

This suggests that during the 2011/2012 elections, results were in fact not manipulated

by one single method throughout the entire country but, instead, in some areas through

means such as carousel-voting or ballot stuffing whereas in others the votes were likely

invented or tweaked to meet particular vote shares and turnout rates.

While the three indicators mentioned above are the best performers, the evidence

seems to suggest that also the indicators close to and below the dotted line still hold

some explanatory value. The lowest values are attained by FMM-SUM for K = 10 and

BL2-TURN for K = 100 with 0.060 each. If these forensic measures were completely

dominated by the ones above the dotted line, one would expect inclusion rates much

farther away from the average. In sum, while RKD, IP-TURN and TVSC-XS outperform

the other variables in terms of their inclusion rates, the results do not indicate that the

other forensic measures can be generally dismissed.

6.2 Effect plausibility

The previous section has shown that some variables correlate more strongly with reported

instances of election fraud than others. The precise nature of this relationship, however,

could not be revealed in the variable inclusion plots. From a theoretical perspective, the

direction of the effects are unequivocal. The RKD and FMM variables are designed to

measure shares of fraud among precincts and votes, respectively, and should thus increase

with reports of manipulation. This holds also true for TVSC and TVSC-XS, which are

supposed to increase in the degree of ballot stuffing or other turnout-inflating types of
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Figure 5: Partial dependence plots of the main explanatory variables’ effect on re-
ported fraud

manipulation. All test-based forensic measures consist of a p-value for rejecting the null

hypothesis of no abnormal digit or percentage distributions. Particularly low values are

thus indicative of manipulation.

Given these clear theoretical expectations, understanding whether they are matched

by the empirical relationship estimated in the BART model constitutes a crucial step

in assessing the plausibility of a particular indicator in the studied context. For BART

models we can investigate these relationships through partial dependence (PD) plots. PD

plots show, for a chosen set of quantiles of an explanatory variable, the mean predicted

outcome across all trees in the estimated model while fixing all other variables at their

actual values. They also feature the corresponding 95% confidence intervals which, given

the low amount of observations in the Reporting Switcher sample (N = 218), are in-
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significant throughout. Figure 5 shows the PD plots of the baseline BART model for the

three variables which emerged as particularly relevant in Section 6.1: RKD, IP-TURN

and TVSC-XS.29 The graphs display the partial effect by ventiles between the 5th and

95th percentile of the respective variable to avoid distortions from outliers.

Looking at the top left graph in Figure 5 shows the relationship between RKD and

reported fraud. The higher the share of fraud according to RKD, the more positive the

correlation the correlation with reported fraud. This effect decreases by more than half

for RKD values above 0.038 but remains positive. The top right graph shows the partial

effect of IP-TURN on reported fraud which, as a p-value, should be positively correlated

with fraud for very low values close to zero and exhibit a negative relationship overall.

The results are mixed in that respect. While the effect of IP-TURN on reported fraud is

indeed negative for values above 0.07, there is virtually no effect on fraud close to zero.

For TVSC-XS in the bottom left plot, the direction of the effect on fraud is fully

in line with theory in the sense that it monotonically increases for higher values of the

forensic measure. The effect only starts turning positive for TVSC-XS values above 0.30

which, given that also Myagkov et al. (2009) described this case as more ambiguous, do

not constitute a clear violation of theory.

Taken together, RKD and TVSC-XS emerge as fairly plausible forensic indicators

linked to election fraud in the context of Russia 2000–2021. This does not generally

refute IP-TURN nor any of the other indicators as all have been proven to be powerful

forensic tools in other studies and empirical settings. In addition, one needs to bear in

mind the small sample size and that the entire assessment rests on the assumption that

the BART model results were not systematically distorted in any way.

29 The PD plots for the remaining forensic measures are displayed in Appendix Figure C.4.
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7 Conclusion

This article describes a context-independent, data-driven procedure to estimate fraud

intensity at the sub-national level via forensic methods. Using the case of post-2000

Russia, I show how crowd-sourced reports of election fraud can be combined with ML

methods to train a BART model which is able to predict manipulation in setups where

only forensic indicators derived from election micro-data are available. Bearing in mind

that the fraud report data is likely to contain many mis-classified cases, I use four different

training samples and benchmark these against aggregate secondary data at the cross-

sectional and time-series level. My preferred predictions also match well with qualitative

accounts of regional election fraud between 2000 and 2021. Given the increasing supply of

election micro-data and the spread of CSEM, my approach could potentially be applied in

other empirical contexts with limited data availability. Furthermore, my findings highlight

a so far overlooked positive aspect of CSEM: the detection of election fraud on a broader

scale. International donors may want to consider this insight when deciding whether to

support similar initiatives in the future.
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A Appendix analyses

A.1 SMOTE results

To decide on the optimal degree of SMOTE over-sampling for the Full and Reporting

samples, I evaluate the predictive performance of the BART model for varying degrees

of N . The four lines in the plots of Figure A.1 show the shares of correct predictions by

over-sampling degree for the full data, the two individual classes with and without any

fraud report and the average across the two categories.

The first thing to note is that the bias towards the majority class tackled by SMOTE

is indeed an issue in both datasets. In the Full sample, where most observations count as

no-fraud, using 0% over-sampling results in 97% of all no-fraud instances being correctly

classified as opposed to a meagre 22% of the fraud instances. A similar, yet reversed,

pattern is observed for the Reporting sample, where no-fraud is the minority class. The

second observation is that predictive power increases when applying SMOTE in both

cases, but that higher levels of over-sampling do not lead to notable improvements. The

average accuracy across outcome groups peaks at an over-sampling rate of 100% for the

Full sample and 300% for the Reporting sample.
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Figure A.1: Effect of minority over-sampling on predictive performance
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B Appendix Tables

Table B.1: Summary statistics

Obs Mean Std.Dev. Min Max

Fraud reports (district-level)
Reported fraud 2011 = 1 2, 735 0.16 0.36 0.00 1.00
Reported fraud 2012 = 1 2, 735 0.19 0.39 0.00 1.00

Forensic measures (district-level)
TVSC 30, 086 0.83 1.02 −57.98 132.00
TVSC-XS 30, 086 0.22 0.99 −58.58 131.28
BL2-INC 30, 089 0.76 0.24 0.00 1.00
BL2-TURN 30, 089 0.84 0.20 0.00 1.00
LD-INC 30, 089 0.51 0.29 0.00 1.00
LD-TURN 30, 089 0.52 0.29 0.00 1.00
DD-INC 30, 088 0.51 0.29 0.00 1.00
DD-TURN 30, 087 0.52 0.29 0.00 1.00
IP-INC 30, 204 0.03 0.07 0.00 0.98
IP-TURN 30, 204 0.04 0.09 0.00 0.85
RKD 30, 099 0.02 0.06 0.00 0.98
FMM-EXTR 30, 099 0.07 0.08 0.00 0.48
FMM-INCR 30, 099 0.21 0.12 0.00 0.48
FMM-SUM 30, 099 0.28 0.16 0.01 0.65

Fraud predictions (district-level)
Fraud predicted (Full) = 1 30, 073 0.29 0.45 0.00 1.00
Fraud predicted (Reporting) = 1 30, 073 0.54 0.50 0.00 1.00
Fraud predicted (Switcher) = 1 30, 073 0.46 0.50 0.00 1.00
Fraud predicted (Rep. Switcher) = 1 30, 073 0.46 0.50 0.00 1.00
Fraud predicted 2011 (Full) = 1 2, 726 0.29 0.46 0.00 1.00
Fraud predicted 2011 (Reporting) = 1 2, 726 0.57 0.50 0.00 1.00
Fraud predicted 2011 (Switcher) = 1 2, 726 0.40 0.49 0.00 1.00
Fraud predicted 2011 (Rep. Switcher) = 1 2, 726 0.53 0.50 0.00 1.00
Fraud predicted 2012 (Full) = 1 2, 725 0.34 0.47 0.00 1.00
Fraud predicted 2012 (Reporting) = 1 2, 725 0.55 0.50 0.00 1.00
Fraud predicted 2012 (Switcher) = 1 2, 725 0.57 0.50 0.00 1.00
Fraud predicted 2012 (Rep. Switcher) = 1 2, 725 0.51 0.50 0.00 1.00

Fraud intensity and benchmarks (region-level)
Fraud intensity (Full) 931 0.44 0.20 0.00 0.97
Fraud intensity (Reporting) 931 0.58 0.17 0.00 1.00
Fraud intensity (Switcher) 931 0.46 0.23 0.00 1.00
Fraud intensity (Rep. Switcher) 931 0.43 0.21 0.00 1.00
Electoral corruption rating 89 −3.00 0.94 −5.00 −1.00
Fraud intensity 2007/08 (Full) 83 0.45 0.16 0.00 0.83
Fraud intensity 2007/08 (Reporting) 83 0.57 0.16 0.20 0.95
Fraud intensity 2007/08 (Switcher) 83 0.54 0.13 0.05 0.80
Fraud intensity 2007/08 (Rep. Switcher) 83 0.47 0.17 0.15 0.84
Fraud intensity 2007/08 (Full, Electorate) 83 0.47 0.17 0.00 0.83
Fraud intensity 2007/08 (Reporting, Electorate) 83 0.57 0.16 0.17 0.95
Fraud intensity 2007/08 (Switcher, Electorate) 83 0.54 0.14 0.05 0.80
Fraud intensity 2007/08 (Rep. Switcher, Electorate) 83 0.47 0.17 0.16 0.84

Fraud intensity and benchmarks (country-level)
Fraud intensity (Full) 10 0.53 0.05 0.45 0.59
Fraud intensity (Reporting) 10 0.61 0.03 0.57 0.68
Fraud intensity (Switcher) 10 0.49 0.16 0.20 0.71
Fraud intensity (Rep. Switcher) 10 0.45 0.09 0.29 0.54
Fraud intensity (Full, Electorate) 10 0.56 0.04 0.49 0.61
Fraud intensity (Reporting, Electorate) 10 0.61 0.03 0.56 0.67
Fraud intensity (Switcher, Electorate) 10 0.47 0.17 0.18 0.72
Fraud intensity (Rep. Switcher, Electorate) 10 0.43 0.08 0.26 0.51
NELDA-based fraud measure 9 1.03 0.69 −0.58 1.75
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C Appendix Figures

a. Reporting 2011 b. Reporting 2012

c. Switchers d. Reporting Switchers

Figure C.2: Restricted samples used in BART estmation

Notes: Maps of the Russian Federation showing the districts belonging to particular restricted samples. White areas with
thick black borders denote missing data.
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a. Prediction Full 2011 b. Prediction Full 2012

c. Prediction Reporting 2011 d. Prediction Reporting 2012

e. Prediction Switcher 2011 f. Prediction Switcher 2012

g. Prediction Reporting Switcher 2011 h. Prediction Reporting Switcher 2012

Figure C.3: Predicted election fraud 2011/2012 resulting from different training sam-
ples (continuous)

Notes: Maps of the Russian Federation showing continuous fraud predictions for the elections 2011 and 2012 across regions
(thick lines) and districts (thin lines). White areas with thick black borders denote missing data.
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Figure C.4: Partial dependence plots of remaining explanatory variables’ effect on
reported fraud
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Figure C.4: Partial dependence plots of remaining explanatory variables’ effect on
reported fraud
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