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a b s t r a c t 

Several proposals for the reform of the euro area advocate the creation of a market in synthetic securities 

backed by portfolios of sovereign bonds. Most debated are the so-called European Safe Bonds or ESBies 

proposed by Brunnermeier et al. (2017). The potential benefits of ESBies and other bond-backed securities 

hinge on the assertion that these products are really safe. In this paper we provide a comprehensive 

quantitative study of the risks associated with ESBies and related products, using an affine credit risk 

model with regime switching as vehicle for our analysis. We discuss a recent proposal of Standard and 

Poors for the rating of ESBies, we analyse the impact of model parameters and attachment points on the 

size and the volatility of the credit spread of ESBies and we consider several approaches to assess the 

market risk of ESBies. Moreover, we compare ESBies to synthetic securities created by pooling the senior 

tranche of national bonds as suggested by Leandro and Zettelmeyer (2019). The paper concludes with a 

brief discussion of the policy implications from our analysis. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Synthetic securities backed by portfolios of sovereign bonds

rom the euro area have recently been proposed as a tool to im-

rove the stability of the European monetary union and to in-

rease the amount of safe assets in the euro area, see for instance

 Dombrovskis and Moscovici, 2017 ) or Bénassy-Quéré et al. (2018) .

he most debated proposal is due to Brunnermeier et al. (2017) ,

ho advocate the creation of a market in so-called European

afe Bonds or ESBies. In credit risk terminology, ESBies form

he senior tranche of a CDO backed by a diversified portfolio of

overeign bonds from all members of the euro area. According to

runnermeier et al. (2017) , ESBies would be standardized and is-

ued by tightly regulated private institutions or by a public agency.

he junior tranche of the underlying bond portfolio would be sold

n the form of European Junior Bonds (EJBies) to investors tra-

itionally bearing default risk, such as hedge funds or insurance

ompanies. 

Brunnermeier et al. (2017) argue that a liquid market in ESBies

ould enhance the stability of the euro area in a number of ways:
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rst, it would increase the supply of safe assets in the euro area;

econd, it would help to break the vicious circle between bank sol-

ency and the credit quality of sovereigns created by the fact that

ost euro area banks hold large amounts of risky sovereign bonds

f the nation state in which they reside; third, it might reduce the

istortions on bond markets caused by the flight-to-safety behavior

f investors in crisis times. Moreover, ESBies respect the no-bailout

lause and their introduction would not distort market discipline , as

he agency issuing ESBies would buy these bonds at market prices

nd as sovereigns would remain responsible for their own bonds,

hich exerts discipline on borrowing decisions. Another important

pproach for creating a safe asset for the euro area consistent with

he no-bailout clause is to issue national sovereign bonds in several

eniority levels and to pool the bonds from the senior tranche, see

or instance ( Leandro and Zettelmeyer, 2019 ). These products and

SBies are therefore different from eurobonds that are currently

iscussed in the context of the Corona crisis. Eurobonds are jointly

ssued and guaranteed by all euro area member states so that ev-

ry member state is liable for the entire issuance. Loosely speak-

ng, ESBies are designed for improving the functioning of the euro

rea “in normal times”, whereas eurobonds are crisis-intervention

nstruments. 

The potential benefits of ESBies hinge on the assertion

hat these products are really safe. To address this issue,

runnermeier et al. (2017) carry out a simulation study in an one-

eriod mixture model where defaults are independent given the

ggregate state of the euro area economy. They find that, with
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reasonably high levels of subordination, the expected loss of ES-

Bies is comparable to that of triple-A rated bonds. However, their

model is calibrated in a fairly ad hoc manner. More importantly,

Brunnermeier et al. (2017) do not study the market risk of ES-

Bies (the risk of a change in the market value of these products

due to changes in the credit quality of the underlying bonds or in

the state of the euro area economy). Now, the bad performance

of many highly rated rated senior CDO tranches during the finan-

cial crisis has shown that the market risk of such products can be

substantial. Clearly, a high amount of market risk is inappropriate

for a safe asset intended to serve as collateral in security market

transactions, as an investment vehicle for money market funds or

as a crisis-resilient store of value on the balance sheet of banks. A

thorough quantitative analysis of the risks associated with ESBies

is thus needed to assess if these securities can in fact perform the

function of a safe asset for the euro area. This is the aim of the

present paper. 

We propose to work in a novel dynamic credit risk model that

captures salient features of the credit spread dynamics of euro area

member states and that is at the same time fairly tractable. Such

a model is a prerequisite for the analysis of the market risk asso-

ciated with ESBies. In mathematical terms, we consider a reduced-

form model with conditionally independent default times; the haz-

ard rate or default intensity of the different obligors is modelled

by CIR-type processes whose mean-reversion level is a function of

a common finite state Markov chain. Considering a Markov modu-

lated mean-reversion level permits us to model different regimes,

such as a crisis regime where the default intensity of all sovereigns

is high and an expansionary regime where all default intensities

are low. This generates default dependence in a natural way. We

successfully calibrate the model to a time series of euro area CDS

spreads over the period January 2009 until September 2018. The

main part of the paper is devoted to the risk analysis of ESBies

and EJBies. We begin by discussing a recent proposal of S&P for

the rating of ESBies, see Kraemer (2017) . Using novel results on

model-independent price bounds for ESBies, we show that the S&P

proposal is ultra-conservative in the sense that it attributes to an

ESB the worst rating that is logically consistent with the ratings

attributed to the euro area sovereigns. As a next step, we study

the robustness of the credit spread (or equivalently the risk-neutral

expected loss) of ESBies and EJBies with respect to subordina-

tion levels and model parameters. In particular, we consider sev-

eral parameterizations for the transition intensities of the common

Markov chain, as these largely drive the default dependence in our

model. It turns out that, from this perspective, ESBies are very safe

already for low subordination levels (around 15%), in line with the

findings of Brunnermeier et al. (2017) . 

We use several approaches to gauge the market risk of ESBies.

First, we compute spread-trajectories for ESBies via historical sim-

ulation, using as input the calibrated trajectories of the default in-

tensities and of the common Markov chain, and we analyse the

relation between the attachment point of an ESB and the volatility

of the ESB-spreads. Second, we carry out a scenario analysis and

study how the risk-neutral default probability of these products is

affected by changes in the underlying risk factors. To robustify our

conclusions, we consider also various contagion scenarios. The re-

sults of this analysis are more nuanced. For low subordination lev-

els and adverse scenarios (such as the case where the default of a

major euro area sovereign leads to a recession in the euro area),

the loss probability of ESBies can be fairly large and spread trajec-

tories can be quite volatile. For high subordination levels exceed-

ing 30–35%, on the other hand, ESBies remain ‘safe’ even in these

adverse scenarios. Third, we compare the risk characteristics of ES-

Bies to those of a safe asset created by pooling the senior tranche

of national bonds. Finally, we use simulations to compute value at

risk and expected shortfall for the return distribution of ESBies. For
his we need to estimate the historical dynamics of the default in-

ensities and the common Markov chain which is done via a suit-

ble variant of the EM algorithm. From this perspective, the mar-

et risk of ESBies is fairly low. Summarizing, we find that while

n normal times ESBies are indeed very safe (in fact safer than as-

ets created by pooling the senior tranche of national bonds), they

ay become risky under extreme circumstances and in contagion

cenarios, in particular if the attachment point is not sufficiently

igh. 

We continue with a discussion of the relevant literature. The

eport of the ESRB (2018) extends the quantitative analysis of

runnermeier et al. (2017) and considers risk and return charac-

eristics of ESBies and EJBies in various stress scenarios for de-

ault correlation and loss given default; similar issues are stud-

ed in Barucci et al. (2019) in the context of standard cop-

la models for defaults. The relevance of market risk for ES-

ies is discussed verbally in de Grauwe and Ji (2019) . An in-

eresting quantitative analysis of the market associated with ES-

ies is de Sola Perea et al. (2019) . They compute hypothetical

pread trajectories for tranches of sovereign bond-backed securi-

ies in a copula framework, using observed bond spreads as in-

ut. Techniques from time series analysis (a VAR for VaR analysis

nd multivariate GARCH modelling) are used to compute value at

isk and marginal expected shortfall for the daily spread change

f these tranches. Further interesting contributions on sovereign

ond-backed securities for the euro area are Langfield (2020) or

ronin and Dunne (2019) . 

Our work is also related to other strands of the literature

n sovereign credit risk, securitization and financial innovation.

ng and Longstaff (2013) and Aït-Sahalia et al. (2014) carry

ut interesting empirical work on euro area credit spreads.

rigo et al. (2010) give an extensive discussion of CDO pricing

odels and their empirical properties before and during the finan-

ial crisis, see also McNeil et al. (2015) . We also use insights from

ennaioli et al. (2012) or Golec and Perotti (2015) regarding safe

ssets and financial innovation. Mathematical results on affine pro-

esses with Markov modulated mean reversion level can be found

n Elliott and Siu (2009) and in van Beek et al. (2020) . 

The remainder of the paper is structured as follows. In

ection 2 we formally introduce the model and the relevant credit

roducts. Section 3 outlines the calibration of our model to mar-

et data. The main part of the paper is Section 4 where we

arry out a thorough analysis of the risks associated with ES-

ies: in Section 4.1 we discuss the S& P proposal for the rating

f ESBies and we relate this to model-independent price bounds,

ection 4.2 focuses on expected loss, while Sections 4.3 to 4.6 deal

ith the market risk of ESBies. In Section 5 we summarize the

ndings from the risk analysis and discuss policy implications. 

. The setup 

Default model. Throughout we consider a portfolio of

 sovereigns with default times τ j and default indicators 1 { τ j ≤t} ,
 ≤ j ≤ J , defined on a probability space (�, F , Q ) with filtration

 = (G t ) t≥0 . G is the global filtration, that is all processes intro-

uced are G adapted. In financial terms the σ -field G t describes

he information available to investors at time t . We assume that

(�, F , Q ) supports a J -dimensional standard Brownian motion

 = (W 

1 
t , . . . , W 

J 
t ) t≥0 and a finite-state Markov chain X , indepen-

ent of W , with state space S X = { 1 , 2 , . . . , K} and generator matrix

 = (q kl ) 1 ≤k,l≤K . The chain X will be used to model transitions

etween K different states or regimes of the euro area economy,

nd for k � = l, q kl gives the intensity of a jump from state k to

tate l . The measure Q is the risk-neutral measure used for the

aluation of ESBies; price dynamics under the historical measure P

re considered in Section 4.6 . In the analysis of the model we also
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1 Without conditional independence, the price of single-name credit derivatives 

depends on the default state and the hazard rate of other sovereigns in the port- 

folio, and the calibration of the model to single-name CDS spreads is practically 

possible only for very small portfolios. For instance, in the Hawkes process model 

of Aït-Sahalia et al. (2014) spillover effects are only studied for the bivariate case. 
2 We prefer to work with (2.2) instead of the more standard definition L j t = 

1 { τ j ≤t} δ j (X τ j ) as (2.2) is more convenient for CDS pricing. In any case, for (t n − t n −1 ) 

small the two definitions of L j are close to each other. 
se the filtration F = (F t ) t≥0 that is generated by the Brownian

otion W and the Markov chain X . 

Our default model under the pricing measure Q is outlined in

he following two assumptions. 

A1) The default times τ 1 , . . . , τ J are conditionally independent

doubly stochastic default times with F adapted hazard rate

processes γ 1 , . . . , γ J , see for instance ( McNeil et al., 2015 ,

Chapter 17). In mathematical terms, for all t 1 , . . . , t J > 0 it

holds that 

Q 

(
τ 1 ≥ t 1 , . . . , τ

J > t j | F ∞ 

) = 

J ∏ 

j=1 

exp 

(
−

∫ t j 

0 

γ j 
s ds 

)
. 

A2) The processes γ 1 , . . . , γ J follow CIR-type dynamics with

Markov modulated and time-dependent mean-reversion 

level, that is 

dγ j 
t = κ j (μ j (X t ) e 

ω j t − γ j 
t ) dt + σ j 

√ 

γ j 
t dW 

j 
t , 1 ≤ j ≤ J, 

(2.1) 

for constants κ j , σ j > 0, ω j ≥ 0 and functions μj : S X → (0,

∞ ). For notational convenience, we introduce the vector pro-

cess γ = (γ 1 
t , . . . , γ

J 
t ) t≥0 . 

Discussion. For small �t the quantity 1 { τ j >t} γ
j 

t �t gives the

robability that firm j defaults in the period (t , t + �t ] , that is γ j is

he default intensity of firm j . Assumption A1 implies that given the

ath ( γ s (ω)) ∞ 

s =0 
of the hazard rate process, τ 1 , . . . , τ J are indepen-

ent default times. Dependence of default events is caused by the

pecial form of the hazard rate dynamics in A2. More precisely, the

ssumption that the mean-reversion levels μ1 , . . . , μJ of the hazard

ate processes depend on the common finite-state Markov chain X

reates co-movement in the hazard rate of different sovereigns, so

hat, unconditionally, default times are dependent. Our setup per-

its also country-specific fluctuations in hazard rates; these are

enerated by the independent Brownian motions W 

1 , . . . , W 

J driv-

ng the hazard rate dynamics. Adding the factor e ω 
j t implies that

he mean-reversion level of the hazard rates is upward-sloping be-

ween transitions of X . This helps to calibrate the model to the ob-

erved term structures of sovereign CDS spreads which are typi-

ally upward-sloping as well; see Section 3 for details. 

Following ( Brunnermeier et al., 2017 ), we usually consider K =
 states of the euro area economy. In the model calibration in

ection 3 we find that, for the vast majority of euro area members,
j (1) < μj (2) < μj (3); that is, the mean reversion level of the haz-

rd rates of euro area members is lowest in state one and highest

n state three. This allows us to interpret these states as expansion

state one), mild recession (state two) and strong recession (state

hree). A statistical analysis in Section 4.6 shows that a model of

he form (2.1) with K = 3 states can also be used to describe the

volution of the calibrated hazard rates under the historical mea-

ure P . 

The default model outlined in Assumptions A1) and A2) is well-

uited for a risk analysis of ESBies. In contrast to the copula mod-

ls used for instance in Barucci et al. (2019) or in the work of the

SRB (2018) , we model the dynamic evolution of hazard rates and

redit spreads. This allows us to generate future spread trajecto-

ies, which is important in the analysis of market risk. By assum-

ng that the hazard rates depend on the common state of the Euro

rea economy we generate default dependence in a natural way.

his gives a lot of flexibility for the valuation of ESBies. In fact, the

hole range of arbitrage-free prices of ESBies and EJBies consistent

ith observed CDS spreads can be obtained within our model if

arameters are chosen appropriately; see Section 4.1 for details. At

he same time the model is fairly tractable: due to the conditional
ndependence assumption it is possible to calibrate the model si-

ultaneously to CDS spreads of all euro area sovereigns 1 and the

orm of hazard rate dynamics allows for a fairly efficient computa-

ion of credit derivative prices. 

On the other hand, our pricing model with conditionally in-

ependent defaults does not allow for contagion effects (upward

umps in the credit spreads of non-defaulted sovereigns in reac-

ion to a default event in the euro area), which might arise if

nsufficient measures are taken to mitigate the economic fallout

rom the default of a major euro area member, see Bénassy-Quéré

t al. (2018) . This is, however, not an issue for studying the risks

ssociated with ESBies. In fact, with appropriately chosen hazard

ate dynamics our pricing model is able to generate arbitrarily con-

ervative (low) valuations for ESBies. Moreover, contagion matters

ost in the analysis of short term price fluctuations and market

isk in Section 4.4 , and we do consider contagion scenarios in that

ontext. 

Loss process and credit default swaps. The payoff of credit default

waps (CDSs), ESBies and EJBies depends on the exact form of the

osses generated by defaults in the underlying sovereign-debt port-

olio. Next we therefore describe the mathematical model for the

oss processes that we use in our analysis. We fix a horizon T > 0

nd a set T of payment dates 0 = t 0 < t 1 < . . . < t N = T which, in

ractical applications, usually correspond to quarterly payments.

e define for 1 ≤ j ≤ J the cumulative loss process L j of sovereign

 by 

 

j 
t = 

N ∑ 

n =1 

1 { t n −1 <τ j ≤t n } 1 { t≥t n } δ
j 
t n 
, t ∈ [0 , T ] , (2.2)

here the random variable δ j 
t n 

gives the loss given default (LGD)

f sovereign j at time t n . 
2 We assume that, given F t n , the LGD

j 
t n 

is beta distributed with E 
(
δ j 

t n 
| F t n 

)
= δ j (X t n ) for a function δj :

 

X → (0, 1]. We further assume that, given X t n , δ
j 
t n 

is independent

f all other model quantities. Working with a random LGD is re-

listic and, at the same time, helps to robustify our analysis with

espect to the exact values chosen for δj . Given portfolio weights

 

j > 0 such that 
∑ J 

j=1 
w 

j = 1 , we define the portfolio loss by 

 t = 

J ∑ 

j=1 

w 

j L j t , t ≤ T . (2.3)

he cash flow stream of the protection-buyer position in a CDS on

overeign j with spread x and premium payment dates T can be

escribed in terms of the process L j ; it is given by 

 

j 
t −

∑ 

t n ≤t 

x (t n − t n −1 ) 1 { τ j >t n } , 0 ≤ t ≤ T . (2.4)

ESBies and EJBies. ESBies have not been issued so far, so there

s no description of the payment structure of an actual product

nd no term sheet. Therefore, we consider stylized versions of ES-

ies and EJBies that capture the essential features of every CDO

tructure, namely pooling and tranching of default risk, so they

uffice to analyze the qualitative properties of ESBies. Denote by

 T = 1 − L T the normalized value of the asset pool and note that

 T = 1 if there are no defaults in the portfolio. The constant κ ∈ (0,

) denotes the lower (upper) attachment point of the senior (ju-

ior) tranche. Then the payoff of a stylized ESB respectively a styl-
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Table 1 

Calibration error in basis points for maturities of one and five years. 

Mat. AUT BEL DEU ESP FIN FRA IRL ITA NLD PRT 

RMSE (bp) 

1 6.36 8.70 4.73 39.72 3.58 6.75 4.58 0.45 2.90 1.49 

5 15.58 15.30 9.26 45.41 6.73 13.07 40.10 34.76 10.60 66.56 

MAPE (%) 

1 27.25 27.48 20.55 34.47 29.60 23.94 5.27 0.45 6.17 1.86 

5 26.29 24.36 20.85 20.11 15.79 21.62 28.54 15.38 20.74 27.59 

Table 2 

Calibration results: parameters of hazard rate dynamics. 

Param. AUT BEL DEU ESP FIN FRA IRL ITA NLD PRT 

μ(1) 0.0049 0.0044 0.0027 0.0053 0.0047 0.0051 0.0177 0.0710 0.0045 0.0656 

μ(2) 0.0049 0.0128 0.0001 0.0189 0.0048 0.0085 0.0746 0.0727 0.0049 0.2030 

μ(3) 0.0424 0.0486 0.0338 0.0558 0.0209 0.0502 0.2498 0.4099 0.0458 0.2115 

κ 0.1000 0.1000 0.1076 2.6879 0.1000 0.1000 0.1920 0.1215 0.1197 0.1181 

ω 0.1730 0.1924 0.1534 0.0826 0.1592 0.1916 0.0004 0.0011 0.0994 0.0219 

σ 0.1447 0.1152 0.0872 0.2472 0.0639 0.1075 0.1994 0.2113 0.0925 0.3162 

, 
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Table 3 

Calibration results: generator matrix Q of X . 

State 1 State 2 State 3 

State 1 (expansion) -0.1421 0.1421 0.0000 

State 2 (mild recession) 0.5843 -1.1685 0.5843 

State 3 (strong recession) 0.0000 0.9630 -0.9630 
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3 The parametrization in terms of mean and concentration parameter is a use- 

ful alternative to the standard representation of the beta distribution. Denote by 

g(x ; a, b) = β(a, b) x a −1 (1 − x ) b−1 1 { x ∈ [0 , 1] } the beta density for given parameters a, 

b > 0. Then the mean is given by a/ (a + b) and the concentration parameter is 

ν := a + b. A high value of ν implies that the LGD is very concentrated around its 

conditional mean. 
4 In fact, ν cannot be calibrated from CDS spreads, since model CDS spreads de- 

pend only on the conditional mean of the LGD. 
ized EJB at T is defined to be 

ESB T = min (V T , 1 − κ) = V T −(V T −(1 −κ)) + = (1 −L T ) −(κ − L T ) 
+ 

(2.5)

EJB T = (V T − (1 − κ)) + = (κ − L T ) 
+ . (2.6)

In this way, the EJB bears the first 100 κ percent of the loss in the

portfolio, if the loss exceeds κ , the ESB is affected as well. While

stylized ESBies and EJBies are path independent, in the sense that

their payoff is a function of the portfolio loss at the maturity date

T only, our analysis is easily extended to path dependent payoffs. 

Note that, by definition, we have the following put-call-parity-

type relation for the payoff of a stylized ESB and a stylized EJB

with identical attachment point κ

ESB T + EJB T = V T and hence ESB T = (1 − L T ) − EJB T . (2.7)

Pricing. For simplicity, we assume that the risk-free short rate

is constant and equal to r ≥ 0. We introduce the money market

account B t,s = exp (r(s − t)) , s > t , so that B −1 
t,s is the discount factor

at time t for a payoff due at time s . We use standard risk-neutral

valuation for the pricing of credit derivatives. Hence the price at

t of any integrable G s measurable contingent claim H is equal to

H t = E 
(
B (t, s ) −1 H | G t 

)
, where the expectation is taken under the

risk-neutral measure Q . 

For further use we introduce some notation related to the pric-

ing of ESBies. Let L t = (L 1 t , . . . , L 
J 
t ) . The price of an ESB at time

 ∈ { t 0 , t 1 , . . . , t N } is given by 

E 
(
B 

−1 
t,T ((1 − L T ) − (κ − L T ) 

+ ) | G t 
)

=: h 

ESB ,κ ( t, X t , γ t , L t ) (2.8)

for a suitable function h ESB ,κ . This follows from the fact that the

processes (X t n , γ t n 
, L t n ) 

N 
n =0 

are jointly Markov; we omit the details.

Similarly, the price of an EJB is given by 

h 

EJB ,κ ( t, X t , γt , L t ) := E 
(
B 

−1 
t,T (κ − L T ) 

+ ) | G t 
)
. (2.9)

The key tool for the numerical computation of derivative prices is

the extended Laplace transform of the hazard rates. For Markov

modulated CIR processes this transform is available in almost

closed form; see Appendix A for details. 

3. Calibration 

Data and calibration design. The available data consist of weekly

CDS spread quotes from ICE data services for ten euro area

sovereigns and times-to-maturity equal to 1, 2, 3, 4 and 5 years

over the period January 7, 2009 until September 3, 2018, giving

rise to 510 observation dates. The sovereigns used in our analysis
re Austria (AUT), Belgium (BEL), Germany (DEU), Spain (ESP), Fin-

and (FIN), France (FRA), the Republic of Ireland (IRL), Italy (ITA),

he Netherlands (NLD) and Portugal (PRT), making up more than

0% of the euro area GDP in 2018. Table 4 (in Appendix C ) reports

ummary statistics (sample mean, sample standard deviation, min-

mum and maximum) of the CDS spreads, together with the most

ecent Standard & Poor’s credit-rating of the ten sovereigns. Aver-

ge spreads vary considerably across countries and, with the ex-

eption of Ireland, the term structures of the average spreads is

pward sloping. 

We calibrate the model by minimizing the sum of squared dif-

erences between the CDS spreads observed on the market and

he spreads generated by the model. In order to reduce the di-

ension of the parameter space, we fix the mean function and

he concentration parameter of the beta distribution of the loss

iven default δ j 
t n 

at the outset. 3 The distinct values for the mean

unction δj ( · ) can be found in Table 5 (in Appendix C ). Follow-

ng ( Brunnermeier et al., 2017 ) we assume that the mean LGD is

ighest in state 3 (the recession state) and lowest in state 1. More-

ver, we work with a concentration parameter ν = 1 . 5 ; this is a

onservative choice as it leads to a fairly widespread LGD distribu-

ion (and we will see in Section 4 that a widespread LGD distri-

ution makes ESBies riskier). While the order of magnitude of the

ean LGD is in line with the sovereign-debt literature, the exact

umerical values for the mean LGD and the concentration param-

ter ν were handpicked by the authors. 4 In Section 4.5 we there-

ore study the robustness of our risk analysis with respect to the

arameters of the LGD distribution. 

In the calibration we work with K = 3 states of X and we use

he EONIA at date t as a proxy for r t . We have to determine
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he trajectories of X and γ and the parameters ( �j , σ j , Q ) with
j = (μ j (1) , μ j (2) , μ j (3) , κ j , ω 

j ) . We impose the restriction that

ll parameters are nonnegative, and, to preserve the interpreta-

ion of μj ( · ) as mean-reversion level, we impose the uniform

ower bound κ j > 0.1 for all j . We use s 0 < s 1 < . . . < s M 

to de-

ote the observation dates and we write { γ s m 
} = { γ s 0 

, . . . , γ s M 
}

nd { X s m } = { X s 0 , . . . , X s M } for trajectories of γ and X . Denote by

ds 
j 
s m ,u 

the market CDS spread with time to maturity u at time s m 

nd by ̂ cds (u, γ j 
s m , �

j , σ j , Q, X s m ) the corresponding model spread

s function of γ j 
s m , X s m and of the model parameters. We determine

he model parameters and the realized trajectories { γ s m 
} and { X s m }

y minimizing the global calibration error 

M ∑ 

 =1 

J ∑ 

j=1 

(
cds 

j 
s m ,u 

− ̂ cds (u, γ j 
s m , �

j , σ j , Q, X s m ) 
)

2 , 

sing a set of modern optimization algorithms. For this we use an

terative approach which is described in detail in Appendix C . 

Results. We implement the calibration methodology on the full

ime series of available CDS data. We use maturities of one and

ve years since one-year CDS spreads are particularly informative

egarding the current value of the hazard rates whereas five-year

DS markets are most liquid. To assess the quality of the calibra-

ion, we report in Table 1 the root mean squared error (RMSE) for

ll countries and both maturities. As RMSE is scale-dependent, we

lso report a relative measure for the calibration error, namely the

ean absolute percentage error (MAPE). The quality of the calibra-

ion is illustrated further in Fig. 9 in Appendix C , where we plot

he time series of CDS spreads together with the model prices and

he absolute pricing errors for the Germany and Italy. Given the

omplexity of the calibration task, we conclude that the calibrated

odel fits the observed CDS spreads reasonably well. 

Tables 2 and 3 report the parameter values resulting from the

alibration. First, note that μj (1) < μj (2) < μj (3) for all sovereigns

xcept Germany, where μ(1) ≥ μ(2). 5 The uniform ordering of the

ean-reversion levels allows us to interpret the states of X as ex-

ansion, mild and strong recession, and it provides clear evidence

hat there is strong co-movement in the market’s perception of

he credit quality of euro area members. The resulting ordering of

he mean reversion levels is also in line with the empirical find-

ngs of Altman et al. (2005) , who show that the LGD of corpo-

ate bonds is typically positively correlated with their respective

efault rates (recall that the mean function of the LGD satisfies
j (1) ≤ δj (2) ≤ δj (3) for all sovereigns). The mean reversion speed
j is quite low for all countries, and for four of them (Austria, Bel-

ium, Finland and France) it is equal to the exogenously imposed

ower bound of 0.1. Consequently, market participants expect id-

osyncratic credit shocks to have a long-lasting effect across the

erm structure of CDS spreads. The motivation for including the pa-

ameter ω 

j is to better capture the upward sloping term structure

f most of the CDS series. In fact, for ω 

j = 0 and unrestricted κ j ,

he calibration frequently leads to negative values for κ j — a com-

on phenomenon also reported e.g. in Ang and Longstaff, 2013 .

able 3 reports the estimate of the generator matrix Q . Note that,

or the estimated Q , transitions to non-neighbouring states have

ero probability. 

Fig. 1 plots the calibrated hazard rates together with the cali-

rated trajectory of the Markov chain X . The process X remains in

tate one for most of the sample period, the only exceptions occur

t the height of the European sovereign debt crisis from mid-2010

ntil late 2013, when the chain visits states two and three before

ettling in state one again. In general, the paths of the hazard rates
5 This reverse ordering is easily explained by Germany’s prominent role as the 

uro area’s safe haven in times of financial distress. 

i  

 

p  

t  
re in line with the movement of the Markov chain; exceptional

ndividual events such as the rise of the Portuguese hazard rates

t the beginning of 2016 or the sudden upward movement of Ital-

an rates during mid-2018 are of idiosyncratic nature. 

. Risk analysis 

After the successful calibration of our model, we may now an-

lyze the risks associated with ESBies. We begin with a short

verview. In Section 4.1 we discuss a recent proposal of the rat-

ng agency Standard and Poors (S&P) for the rating of ESBies

 Kraemer (2017) ) and we relate the S&P proposal to a worst-case

efault scenario where the arbitrage-free price of ESBies attains its

ower bound. In Section 4.2 we compute the risk-neutral expected

oss (or equivalently the credit spread) of ESBies as a function of

he attachment point κ for different parameter sets. We consider

 base parameter set corresponding largely to the parameters ob-

ained in the model calibration of Section 3 , two crisis sets with

igher default correlation and an extremal distribution that corre-

ponds to the worst-case default scenario. 

The subprime credit crisis has shown that the expected loss at

aturity gives only limited information regarding the riskiness of

ranched credit products such as ESBies. In fact, the market value

f AAA-rated senior tranches of mortgage backed securities (MBS)

ell sharply during the crisis (some were even downgraded), creat-

ng huge losses for many MBS investors. To analyze if ESBies can

erform all functions of a safe asset, we thus need to take a closer

ook at the associated market risk. We do this in several ways.

irst, we use a historical simulation approach and compute credit

pread trajectories of ESBies for different attachment points, using

s input the calibrated trajectories { X s m } and { γ s m 
} from Section 3 .

his analysis gives useful information on the relation between κ
nd the volatility of ESB credit spreads. Second, many potential

SB investors, such as managers of money market funds, are ex-

remely risk averse so that “behavior in (quasi) safe asset mar-

ets may be subject to sudden runs when new information sug-

ests even a minimal chance of a loss” Golec and Perotti (2015) . In

ection 4.4 we therefore study how the risk-neutral loss probability

 (L T > κ) of ESBies is affected by changes in the underlying risk

actors. To guard against model misspecification and to incorpo-

ate stylized facts regarding investor behavior on markets for safe

ssets, we include various contagion scenarios into this analysis.

hird, we compare the risk profile of ESBies to that of a safe as-

et created by pooling the senior tranche of national bonds and

e study the robustness of both product classes with respect to

he LGD distribution, see Section 4.5 . In Section 4.6 we finally use

imulations to study Value at Risk and Expected Shortfall for the

ark-to-market loss of ESBies. For this we resort to the model dy-

amics under the real-world measure. 

.1. The weak-link approach of S&P and worst-case default scenarios 

In a recent technical document, Kraemer (2017) discusses how

he rating agency Standard and Poors (S&P) would determine a rat-

ng for ESBies and EJBies. The proposed methodology is termed

eak-link approach . The S&P proposal has led to a lot of discus-

ion since it associates a BBB- rating to an ESB with attachment

oint κ = 30% (given sovereign-bond ratings of 2017), which is at

dds with the idea that ESBies are safe assets meriting top ratings.

To facilitate the description of the approach, we assume that

he sovereigns are ordered according to their rating, so that

overeign one has the best rating and sovereign J has the worst rat-

ng. Given an ESB with attachment point κ , define the index j ∗ by

j ∗ = max { 1 ≤ j ≤ J : 
∑ J 

i = j w 

i ≥ κ} . Then, under the weak-link ap-

roach, the ESB is assigned the rating of sovereign j ∗. The assump-

ion underlying this approach is that “sovereigns will default in the
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Fig. 1. Time series plots of the estimated hazard rates and the calibrated Markov chain. Note that we graph 
√ 

γt as this is the natural scale for a CIR process. 
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order of their ratings, with lowest rated sovereigns defaulting first”

(Kraemer, 2017, Page 4) and that the LGD of all sovereigns is equal

to one, so that the ESB incurs a loss as soon as the sovereign j ∗

defaults. 

In this section we show that the weak-link approach is ex-

tremely conservative in various respects. We begin by a concise

mathematical description. We drop the time index and consider

sovereign debt portfolios with generic loss variables L j = δ j 1 { τ j ≤T } ,
1 ≤ j ≤ J , with values in the interval [0,1]. We assume that the

expected loss of each sovereign is fixed, that is E 
(
L j 

)
= 
̄ j for a

constant 
̄ j ∈ [0 , 1] . This is a stylized way of calibrating the model

to given ratings or credit spreads of the sovereigns. We order the

sovereigns by their credit quality and assume that 
̄ 1 ≤ 
̄ 2 · · · ≤ 
̄ J .

Next, we define loss variables that represent the default scenario of

the weak link approach. Fix some standard uniform random vari-

able U and define the loss vector L ∗ = (L ∗1 , . . . , L 
∗
J ) by 

L ∗j = 1 { U> 1 −
̄ j } , 1 ≤ j ≤ J (4.1)

Clearly, E 
(
L ∗

j 

)
= Q (L ∗

j 
= 1) Q (U > 1 − 
̄ j ) = 
̄ j , so that L ∗ respects

the expected-loss constraint. Moreover, under (4.1) sovereigns de-

fault exactly in the order of their credit quality with sovereign J de-

faulting first and δ j = 1 for all j , that is L ∗ is indeed a mathematical

model for the weak link approach. Note that the loss vector L ∗ is

comonotonic since its components are given by increasing functions

of the same one-dimensional random variable U , see ( McNeil et al.,

2015 , Chapter 7). Hence, under the weak-link approach, diversifica-

tion effects between euro area members are ignored completely. 

The next result shows that the loss variables in (4.1) can be

interpreted as worst-case default scenario in the sense that they

minimize the value of ESBies over all loss variables that respect

the expected loss constraints. Hence, the price of an ESB under the
orst-case scenario is a lower bound for the arbitrage-free price

f that bond in any model consistent with these constraints. In the

ating context this means that the weak link approach associates

ith an ESB the worst rating logically consistent with the ratings

f the individual euro area sovereigns. 

roposition 4.1. Define for generic loss variables L = (L 1 , . . . , L J )

uch that L j takes values in the interval [0,1] and E 
(
L j 

)
= 
̄ j and

xed weights w 

1 , . . . , w 

J summing to one the portfolio loss by L =
 J 
j=1 

w 

j L j . Then it holds for κ ∈ [0, 1] that 

 

(
1 − L ∗ −

(
κ − L ∗

)+ 
)

≤ E 

(
1 − L −

(
κ − L 

)+ 
)
. (4.2)

The proof can be found in Appendix B . 

We now discuss several economic implications. First, under the

orst-case default scenario the LGD of all sovereigns is almost

urely equal to one. Note that under constraints on the expected

oss a high LGD implies a low value for the default probability of a

iven sovereign, so that L ∗ corresponds to a default scenario with

few but large losses’. Second, the worst-case default scenario max-

mizes the probability of large default “clusters” given the expected

oss constraints. This is explained in detail in Appendix B where

e discuss properties of the distribution π ∗ of L ∗. Third, note

hat it is possible to approximate the worst-case default scenario

y properly parameterized versions of the model introduced in

ection 2 ; a precise construction is given in Appendix B . This

hows that it is possible to generate arbitrarily conservative val-

ations for ESBies in our setup. 

The qualitative properties of L ∗ suggest that, in the dynamic

efault model from Section 2 , an ESB is more risky for a given

xpected-loss level of the sovereigns if one chooses high values for

he mean reversion level of the default intensities in the recession
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Fig. 2. Average expected loss of ESBies (top) and of EJBs (bottom) for different thresholds and parameterizations (in %). Note that both graphs use a logarithmic scale on the 

y -axis. 
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tate K , so that many defaults are quite likely in that state; at the

ame time the generator matrix has to be parameterized in such a

ay that state K is visited relatively infrequently in order to meet

he expected loss constraints. This intuition underlies the construc-

ion of the crisis scenarios in the numerical experiments reported

n the next sections. More generally, Proposition 4.1 gives a the-

retical justification for the qualitative properties of ESBie prices

bserved in Section 4.2 and in the work of Barucci et al. (2019) ,

runnermeier et al. (2017) or ESRB (2018) : for a given expected-

oss level of the sovereigns higher default correlations and a higher

GD leads to a higher expected loss for ESBies. 

.2. Expected loss of ESBies 

From now on we consider ESBies with a time to maturity

f five years and, for simplicity, a risk free interest rate r = 0 .

n order to make the prices of ESBies with different attachment

oints κ comparable, we consider normalized ESBies with payoff
1 

1 −κ min (V T , 1 − κ) , so that the payoff of a normalized ESB is equal

o one if there is no default, i.e. for L ≤ κ . Moreover, we introduce
T 
he risk-neutral expected tranche loss 

 

ESB ,κ (0 , X 0 , γ0 , L 0 ; Q, μ) = 1 − 1 

1 − κ
h 

ESB ,κ (0 , X 0 , γ0 , L 0 ; Q, μ) . 

(4.3) 

ere μ = { μ j (k )) , 1 ≤ k ≤ 3 , 1 ≤ j ≤ J} , Q is the generator matrix

f X and the function h ESB ,κ ( t, X t , γ t , L t ; Q, μ) gives the price of

n ESB with attachment point κ at time t , see equation (2.8) . We

ave made the parameters Q and μ explicit in (4.3) since we want

o study how variations in their values affect the expected loss of

SBies. Note that we may interpret the annualized expected loss
1 
T 
 

ESB ,κ as credit spread c ESB ,κ (0 , T ) of a normalized ESB with at-

achment point κ . In fact, since r = 0 and since for x close to one

n x ≈ x − 1 , it holds that 

 

ESB ,κ (0 , T ) = 

−1 

T 
ln 

(
1 

1 − κ
h 

ESB ,κ
)

≈ 1 

T 

 ESB ,κ . 

Parameters. As before, we work with K = 3 states of X . We

hoose the portfolio weights w 

j according to the GDP proportions

ithin the euro area; numerical values are given in Table 6 in
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Appendix C . We use the mean LGD from Table 5 , the volatil-

ity parameters σ j and the calibrated trajectories { γ s m 
} and { X s m }

obtained in Section 3 . In our numerical experiments we con-

sider three different parameter sets and the worst-case distribu-

tion π ∗ (the distribution of the worst case default scenario from

Proposition 4.1 ). In the base parameter set we use the generator

matrix from Section 3 . We take ω 

j = 0 6 and calibrate μ and κ j to

the full CDS term structure at the valuation date, so that the pa-

rameterized model accurately reflects the market’s expectation at

that date. 7 

The generator matrix Q is hard to calibrate from historical data,

essentially since products depending on the default correlation of

euro area countries are not traded. To deal with the ensuing model

risk, we introduce two crisis parameter sets . In these parameteriza-

tions the recession state (state three) occurs less frequently than

under the base parametrization, but if it occurs default intensities

are (on average) substantially larger than for the base parameter

set. To achieve this, we consider two generator matrices ˜ Q 1 and˜ Q 2 chosen such that, on average, X spends less time in state three

than under the base parametrization. The corresponding mean re-

version levels ˜ μ1 and 

˜ μ2 and are determined from the constraint

that the expected loss E(L 
j 
T 
) is identical for all parameter sets; this

typically leads to μ j (3) < ̃

 μ j 
1 
(3) < ̃

 μ j 
2 
(3) . The entries of ˜ Q 

1 , ˜ Q 

2 are

provided in Table 7 . 

Results. In the top panel of Fig. 2 , we graph the average ex-

pected loss 8 of ESBies over the period from 2014 to September

2018 as a function of the threshold κ . We do this for the base

parametrization, the two crisis parameterizations and the worst-

case distribution from Proposition 4.1 . The scale for the y -axis is

logarithmic and values are given in percentage points. In addi-

tion, we consider AAA- and A- rated sovereigns (DEU, NLD and

IRL, ESP, respectively) and compute the 1%- and 99%-quantile of the

risk-neutral expected loss over the period from 2014 to September

2018. Those quantiles form the boundaries of the colored areas in

Fig. 2 ; they are supposed to give an indication of the credit quality

for the ESBies on a rating scale. 9 

From Fig. 2 we draw the following conclusions. First, the av-

erage risk-neutral expected loss of ESBies is indeed small. For ex-

ample, the average expected loss corresponding to the proposed

attachment point of 0.3 is below 0.1%. Most strikingly, except for

the worst-case distribution, the average expected loss of ESBies

with thresholds of 0.15 or higher is well below the lower bound

of the AAA-region. Second, the expected loss is lowest for the base

parameters, followed by crisis parameterizations 1 and 2; this is

fully in line with the economic intuition underlying the construc-

tion of these parameter sets. Third, the expected loss for the worst-

case distribution (which is highest by construction) is substantially

higher than the expected loss in the crisis parameterizations, un-

derlining the fact that the worst-case distribution, and the associ-

ated weak-link approach of Kraemer (2017) , are extremely conser-

vative. Nonetheless, for κ > 0.25 the average expected loss for the

worst-case distribution is still comparable in size to that of AAA-

rated sovereigns. Fourth, the expected loss of an ESB is decreas-
6 Using a different value for ω 

j has only a very minor impact on the spread and 

the loss probability of ESBies. 
7 The calibration in Section 3 , on the other hand, yields a fixed set of parameters 

giving a reasonable fit throughout the entire observation period. This provides evi- 

dence for the good performance of our model in explaining market data, but is of 

course subject to small pricing errors at any given date. 
8 Here the term “average” refers to the average over observation dates, but 

with a fixed time to maturity of five years, that is we plot the function κ �→ 

1 
M 

∑ M 
m =1 
 

ESB ,κ (0 , X s m , γ s m 
, 0 ; Q, μ) . 

9 We stress that these indicative ratings should not be taken as actual ratings 

of ESBies, since they are computed from risk-neutral expected losses and not from 

historical ones, and since a rating is more than a mechanical mapping of expected 

loss to some rating scale. 

f  

i  

l  

p  

i  

i  

γ  

u

(

e

e

ng approximately at an exponential rate in κ in all four parameter

ets (recall that we use a logarithmic scale for the y -axis). Summa-

izing, these findings show that an investor willing to hold ESBies

ith an attachment point of 0.15 or higher until maturity faces lit-

le risk of default-induced losses, which is in agreement with the

nalysis of Brunnermeier et al. (2017) or Barucci et al. (2019) . 

The bottom panel of Fig. 2 shows the average expected loss of

JBies for varying attachment points. With five-year expected loss

evels ranging from 6% to around 15% (and hence annualized credit

preads between 1.2% and 3%) the risk of EJBies is comparable to

hat of lower-quality euro area sovereigns. Comparing the expected

oss of ESBies and EJBies, we see that, in line with the proposal

f Brunnermeier et al. (2017) , EJBies bear the bulk of the credit

isk associated to the eurozone sovereigns. Note that the reverse

rdering of the lines in the two panels of Fig. 2 is an immediate

onsequence of the put-call parity relation (2.7) . 

.3. Spread trajectories of ESBies 

In Fig. 3 we plot trajectories of the annualized credit spread

 

ESB ,κ of ESBies over the whole sample period for different lev-

ls of κ . These spreads were computed from our model by a

istorical simulation approach using the calibrated trajectories

 γ s m 
} and { X s m } as input. The solid line gives the spread of

n ESB with attachment point κ = 0 . 3 (the value proposed by

runnermeier et al. (2017) ); the colored lines correspond to dif-

erent attachment points κ ∈ [0.2, 0.4]. The simulated ESB spreads

eak in 2009 (the height of the financial crisis) and in the period

011–2013 (the height of the European sovereign debt crisis). We

ee that the attachment point has a large impact on the volatility

f ESB spreads. In particular for κ close to 0.2 spreads are very

olatile; for κ > 0.3 on the other hand spread fluctuations are

uite small. 

.4. Market risk analysis via scenarios 

In this section, we analyze how the risk-neutral loss probabil-

ty Q (L T > κ) of ESBies is affected by changes in the underlying

isk factors X 0 , γ0 and L 0 . In mathematical terms, we consider the

unction 

�→ p κ (X 0 , γ0 , L 0 ; Q, μ) := Q (L T > κ | X 0 , γ0 , L 0 ; Q, μ) . 

e consider different sets of risk factor changes or scenarios . First

e study scenarios which are included in the support of the de-

ault model from Section 2 , such as a change in the state of X .

oreover, we consider several contagion scenarios where, in reac-

ion to a default of Italy, 10 the market becomes more risk averse

nd changes its perception of the state of X and the parameter

et used to value ESBies. In fact, investors on markets for (quasi)

afe assets frequently change their expectations in reaction to ad-

erse events, putting more mass on bad outcomes; see for in-

tance Gennaioli et al. (2012) . 

Non-contagion scenarios. In the left panel of Fig. 4 , we graph the

unction p κ on a log-scale using the parameters of the base scenar-

os and the calibrated values of γ and X for September 3, 2018 (the

ast observation date in our sample). The full circles give the loss

robability for varying κ for the base scenario , where the chain is

n state one (the good economic state) and no euro area member

s in default (in mathematical terms this is the function κ �→ p κ (1,

0 , L 0 ; Q , μ)). Moreover, we consider four types of changes in the

nderlying risk factors: 
10 We consider a default of Italy since on the day we used for this analysis 

September 3, 2018, the last observation date in our sample) Italy had the high- 

st CDS spread of all major euro area economies. A default of another major ‘risky’ 

uro area sovereign would yield similar results. 
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Fig. 3. Spread trajectories of ESBies with varying threshold levels. The black line represents the reference threshold of 0.3. 

Fig. 4. Loss probability of ESBies for different κ and various scenarios. Note that the plot uses a logarithmic scale on the y -axis. 
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11 We found this exponential decay for a wide range of parameter values, but we 

do not have a fully convincing theoretical justification for this effect. 
(i) the scenario where all hazard rates experience an upward

jump of 10%, that is we plot the function κ �→ p κ (1, γ0 × 1.1,

L 0 ; Q , μ); 

(ii) the scenario where the economy moves to a light recession,

corresponding to the function κ �→ p κ (2, γ0 , L 0 ; Q , μ); 

(iii) the scenario where the economy moves to a severe recession

( κ �→ p κ (3, γ0 , L 0 ; Q , μ)); 

(iv) the scenario where Italy defaults with random LGD δITA .

We assume that δITA is beta distributed with mean

0.5, i.e. the loss vector at t = 0 takes the form L 0 =
(0 , . . . , 0 , δITA , 0 , . . . , 0) , but all other risk factors stay un-

changed. 

The horizontal dashed lines correspond to the risk-neutral five

ear default probabilities of Germany, Belgium and Ireland under

he base parametrization. 

Inspection of the left panel of Fig. 4 shows first that a change

n the hazard rates has only a small impact on the loss probabil-

ty of ESBies. The default of a major euro area sovereign such as
taly has a stronger effect, but for κ > 0.25, the loss probability

emains small even after a major default. The most important risk

actor changes are clearly changes in the state of the economy. For

nstance, for κ = 0 . 3 the loss probability of an ESB in state three is

lightly larger than the risk-neutral default probability of Belgium,

hereas in state one the loss probability is considerably smaller

han the risk-neutral default probability of Germany. Second, we

bserve that for the given range of κ the threshold probabilities

re decreasing in κ roughly at an exponential rate, similarly as the

xpected loss does. 11 In fact, the loss probability is quite sensitive

ith respect to the choice of the attachment point (to see this, one

ay compare the values of p κ for κ = 0 . 35 and κ = 0 . 3 in scenario

iii)). 

Contagion scenarios. In the right panel of Fig. 4 we graph the

unction p κ (again on a log-scale) for the base parametrization and

or three different contagion scenarios, namely 
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n

(i) the case where Italy defaults and where, as a reaction, X

jumps to state two (mild recession); 

(ii) the case where Italy defaults and where, as a reaction, X

jumps to state three (strong recession); 

(iii) the case where Italy defaults and where, as a reaction,

X jumps to state three and the market uses the crisis

parametrization two (instead of the base parameter set).

This scenario is motivated by the observation that, in the

subprime crisis, investors used much more conservative as-

sumptions for default dependence than before the crisis, see

for instance ( Brigo et al., 2010 ) for details. 

We see that, for an attachment point κ ≤ 0.3, the change in

the loss probability caused by one of the contagion scenarios is

quite substantial. For instance, in the extreme scenario (iii), the

risk-neutral loss probability is of the order of 5%. For attachment

points κ > 0.35 the impact is less drastic. However, under sce-

nario (iii), even for κ = 0 . 35 we get a risk-neutral threshold prob-

ability of around 2%, which is definitely non-negligible for a safe

asset. This is in stark contrast to the analysis of the expected loss

in Section 4.2 , where ESBies appeared ‘safe’ already for κ > 0.15. 

4.5. Pooling senior national tranches and robustness with respect to 

the LGD distribution 

Leandro and Zettelmeyer (2019) and a few other recent contri-

butions suggest an alternative approach for constructing a safe as-

set for the euro area. In these proposals, the euro area sovereigns

issue national bonds in (at least) two tranches, a senior and a ju-

nior tranche. A safe asset is then formed by pooling the senior

tranche of the national debt, so that we use the acronym PSNT

(pooled senior national tranche) for these products. 12 In this sec-

tion we compare the risk-neutral expected loss and the risk-neutral

loss probability of PSNTs to those of ESBies. In particular, we focus

on the impact of the random LGD since we cannot fully calibrate

the distribution of the LGD from available market data. 

We begin with a formal description of the payoff of PSNTs.

Given some attachment level κ that marks the split between the

junior and the senior national bond tranches, we model the pay-

off of the senior tranche issued by sovereign j as L 
j,κ
T 

:= (1 − κ) −
(L 

j 
T 

− κ) + . Note that the senior national tranche suffers a loss if L 
j 
T 

exceeds the threshold κ . For fixed weights w 

1 , . . . , w 

J , the payoff

of the PSNT is then given by 

J ∑ 

j=1 

w 

j L j,κ
T 

= (1 − κ) −
J ∑ 

j=1 

w 

j (L j 
T 

− κ) + . 

Hence the PSNT consists of a safe payment of size 1 − κ and a

short position in a weighted portfolio of options on the national

losses. The normalized risk-neutral expected loss or equivalently

the non-annualized credit spread of a PSNT is given by 

1 

1 − κ

J ∑ 

j=1 

w 

j E 
(
(L j 

T 
− κ) + 

)
. 

It follows that the credit spread of PSNTs is independent of the de-

pendence structure of the national losses L 1 
T 
, . . . , L 

J 
T 

. Assumptions

on the distribution of the loss given default, on the other hand,

have a huge impact on the spread of PSNTs. We begin with a

few qualitative observations: first, it is easily seen that for fixed

expected loss E(L 
j 
T 
) , the option price E 

(
(L 

j 
T 

− κ) + 
)

is maximal if

L 
j 
T 

∈ { 0 , 1 } . Hence, for fixed expected loss level of the sovereigns,
12 From a financial engineering viewpoint also the E-Bonds of Monti (2010) fall in 

the category of national tranching followed by pooling; ESBies on the other hand 

correspond to pooling followed by tranching. 

 

p  

(  

c  
he expected loss of a PSNT is maximal if the LGD of all sovereigns

s equal to one. In fact, in that case the tranching on the national

evel offers no additional protection for the PSNT compared to sim-

ly pooling the national bonds. Second, if the LGD of all sovereigns

s almost surely smaller than κ , the PSNT is entirely riskless. Fi-

ally, due to the convexity of the function 
 �→ (
 − κ) + the ex-

ected loss of the PNST increases with increasing variance of the

GD distribution (keeping E(L 
j 
T 
) fixed). 

Next, we provide quantitative results comparing the behav-

or of PSNT credit spreads to that of ESBies. Throughout this

ection, whenever we vary the mean of the random LGD, we

lso recalibrate the remaining model parameters such that any

onsidered LGD setup is still in line with market data. Fig. 5

hows the average spread for ESBies (grey) and for PSNTs (black)

ver the period 2014–2018 for three different LGD distributions

ith identical mean function given in Table 5 and different vari-

nce/concentration parameter. We make the following observa-

ions. First, the spread of PNSTs is very sensitive to assumptions

n the variance of the LGD distribution whereas the spread of ES-

ies is comparatively stable. Second, for the given mean function

he spread of PNSTs is substantially higher than for ESBies. In fact,

ven with deterministic LGD the expected loss of an ESBie with

= 0 . 3 equals the expected loss of a PNST with κ ≈ 0.6; with

igher LGD variance the two expected losses are equal only if the

ttachment point of the PSNT is close to one. The difference be-

ween the spreads of ESBies and of PSNTs is due to the fact that

he default of a single euro area sovereign is sufficient to cause a

oss for a PSNT, whereas ESBies are only affected in a severe de-

ault scenario with multiple defaults. Moreover, for the payoff of a

SNT it makes a substantial difference if a sovereign defaults only

n its junior bond tranche or on both tranches which explains the

ensitivity with respect to the LGD variance. 

Finally, we consider the risk-neutral loss probability. Note first

hat the risk-neutral loss probability of PSNTs is affected by the de-

endence structure of L 1 
T 
, . . . , L 

J 
T 

(other than the spread). In fact, for

xed marginal distributions of the sovereign losses, the risk-neutral

oss probability of PSNTs decreases with increasing default correla-

ion. This is akin to the behaviour of the equity tranche in standard

DO structures. In Fig. 6 we graph the risk-neutral loss probabil-

ty of ESBies and PSNTs for various values of the mean and the

oncentration parameter of the LGD distribution. We observe the

ollowing: first, for the parameter values considered the loss prob-

bility of PSNTs is substantially higher than that of ESBies. Second,

hanges in the mean and in the concentration parameter have a

rofound impact on the loss probability of PSNTs; for ESBies these

ffects are less pronounced. For a κ = 0 . 3 , the loss probability of

n ESB increases from 0.0043 in the base setup to 0.0072 for the

igher mean case (which is still below the loss probability of a

erman bond, cf. Section 4.4 ). In comparison, for a relatively high

= 0 . 9 , the risk-neutral loss probability of an PSNT increases from

.089 to 0.142. 

.6. Market risk analysis via loss distributions 

So far we were concerned with the value of ESBies and EJBies

n different scenarios. Since values are computed using the risk-

eutral measure Q , model parameters were derived via calibration .

n the other hand, for computing measures of market risk for the

eturn of ESBies, we have to simulate their loss distribution under

he historical measure P , so that we need to estimate the P dy-

amics of X and γ using statistical methods. This issue is addressed

ext. 

EM estimation of hazard rate dynamics. In this section, we re-

ort the results of an empirical study where a model of the form

2.1) is estimated from the calibrated hazard rates of the euro area

ountries (the trajectories { γs m } generated in the calibration pro-
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Fig. 5. Spread of ESBies (grey) and of PSNTs (black) for varying κ and different value for the concentration parameter of the LGD distribution. The graph labelled base case 

corresponds to ν = 1 . 5 (the same value as in Fig. 2 ); the low variance case corresponds to the higher value ν = 3 . 3 of the concentration parameter. We fix T = 5 . Note that 

the plot uses a logarithmic scale on the y -axis. 

Fig. 6. Loss probability of PSNTs (black) and ESBies (grey) for varying κ and different value for the mean of the LGD distribution (left) and for the concentration parameter 

ν of the LGD distribution (right). The graph labelled base case corresponds to ν = 1 . 5 and expected loss as in Table 5 . For the higher mean setup, we increase the mean LGD 

of state 2 (state 3) by 0.2 (by 0.3) for all countries. The lower variance case uses the base mean and ν = 3 . 3 . We fix T = 5 . The plot uses a logarithmic scale on the y -axis 

and different scales on the x axis (grey for ESBies and black for PSNTs). 
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Fig. 7. Filtered ( E P 
(
X t |F γt 

)
) and smoothed ( E P 

(
X t |F γT 

)
) estimates of the Markov chain trajectory. 
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cedure of Section 3 ). Here we assume that the trajectory of the

Markov chain is not directly observable; rather, the available infor-

mation is carried by the filtration F 

γ = (F 

γ
t ) t≥0 generated by the

hazard rates process γ . This assumption is motivated by the fact

that the calibration of the trajectory { X s m } in Section 3 is quite

sensitive with respect to the chosen model parameters, whereas

the calibration of { γ s m 
} is very robust (essentially due to the close

connection between hazard rates and one-year CDS spreads). 

Using stochastic filtering and a version of the EM algorithm

adapted to our setting, we obtain the filtered and smoothed esti-

mate for the trajectory of X , an estimate of the generator matrix of

X and of country-specific parameters such as mean reversion lev-

els and speed, all under the real-world measure P . In the EM al-

gorithm we use robust filtering techniques, which perform well in

a situation where observations are only approximately of the form

(2.1) . For further details on the methodology see Elliott (1993) or

Damian et al. (2018) . 

We consider K = 3 possible states of X , corresponding to a ex-

pansionary regime, a light recession and a strong recession, respec-

tively. The EM estimates for the generator matrix Q of X are given

in Tables 8 and 9 in Appendix C , together with country-specific pa-

rameters such as mean reversion speed and levels. Note that we do

not estimate the volatility, but we work with quadratic variation

instead. 13 Overall the estimates appear reasonable. In particular,

the estimated mean reversions levels for most countries respect

the ordering μj (1) < μj (2) < μj (3), supporting the interpretation

of the states of X . 14 As expected, for any given state of the economy

the estimated levels are lowest for the stronger euro area coun-

tries. In Fig. 7 , we give a trajectory of the filtered and the smoothed

state of X , that is we plot the trajectories t �→ E P (X t | F 

γ
t ) and

 �→ E P (X t | F 

γ
T 
) . These results show that the proposed model de-

scribes the qualitative properties of euro area credit spreads and, in

particular, the co-movement of spread levels of the weaker euro-

area members reasonably well. The frequent transitions in and out

of the middle state are not surprising, given that this state reflects

a situation where only a few countries experience a rise in default

intensities. 

Measures of market risk. We use two popular risk measures,

Value at Risk ( VaR α) and Expected Shortfall ( ES α) at confidence

level α, to study the tail of the loss distribution of ESBies over a

horizon of three months. Denote by γ0 and X 0 the calibrated haz-

ard rates and the state of X for September 3, 2018. We generate
13 In order to robustify the EM estimation procedure, we scale the quadratic vari- 

ation of the strong euro area countries slightly upward. 
14 For Spain and Portugal, the highest mean reversion level is estimated for 

state 2, which is probably due to the idiosyncratic behavior these two countries, 

particularly Portugal, exhibit in the first months of 2012. 

c  

a  

p  

p

 = 10 0 0 0 0 realizations of the hazard rates and the Markov chain

ith initial values γ0 and X 0 over a three-month horizon, using

he P -parameters estimated in the previous paragraph, and we in-

ex the simulation outcome by i ∈ { 1 , . . . , N} . We then compute the

orresponding relative loss 

 

κ,i := 1 − h 

ESB ,κ (0 . 25 , X 

(i ) 
0 . 25 

, γ (i ) 
0 . 25 

, L 0 ) 

h 

ESB ,κ (0 , X 0 , γ0 , L 0 ) 
. 

aR and expected shortfall are then computed from the empirical

istribution of the sampled relative losses { R κ,i , i = 1 , . . . , N} , see

 McNeil et al., 2015 , Section 9.2.6) for details. 

Fig. 8 summarizes our analysis. We plot estimates of VaR α (left)

nd of ES α (right) for the three-month distribution of negative

SB-returns for different κ and confidence levels α = 0 . 95 (points)

nd α = 0 . 99 (crosses). We see that both risk measure estimates

ecrease approximately at an exponential rate in κ . The horizon-

al lines in each plot represent the 95% and 99% level of the cor-

esponding risk measure estimate for a German zero coupon bond.

e observe that both the VaR α and the ES α of ESBies with κ ≥ 0.2

re considerably smaller than the German benchmark. We con-

lude that, from the viewpoint of a standard market risk analy-

is, ESBies appear safe and that very low risk capital levels are

equired to back these products. This observation is fully in line

ith the market risk analysis of de Sola Perea et al. (2019) , who

nd that “(spread changes for) senior tranches have low tail risk

xposure, often lower than the tail risk of lowest-risk euro area

overeigns.” This coincidence is interesting since the analysis of

e Sola Perea et al. (2019) uses a completely different methodol-

gy, namely a time-series approach based on GARCH models and a

AR for VaR analysis. 

. Summary and policy implications 

We draw the following key conclusions from the risk analysis of

SBies and PSNTs. Both the static risk analysis of Section 4.2 and

he investigation of the loss distribution in Section 4.6 suggest that,

n normal circumstances, diversification works and ESBies with

> 0.25 are indeed very safe products. 15 In line with this find-

ng, we showed that the weak link approach for the rating of ES-

ies proposed by S&P is extremely conservative as it corresponds

o a worst-case default scenario. We have also seen that for typi-

al parameter values, the spread and the loss probability of ESBies

re substantially lower than those of PSNTs (securities created by

ooling the senior tranche of national debt). Moreover, for PSNTs,
15 In fact, from the perspective of an expected loss analysis, already an attachment 

oint κ = 0 . 15 might suffice to make ESBies safe. 
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Fig. 8. Risk measure estimates VaR α (left) and ES α (right) for the three-month distribution of negative ESB-returns for different κ and confidence levels α ∈ {0.95, 0.99}. 

Note that risk measures are given in percent and that the plot uses a logarithmic scale on the y -axis. 
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pread and loss probability are more sensitive to changes in the

GD distribution than for ESBies. This shows that from a risk per-

pective ESBies might be preferable to PSNTs. 

However, considering solely the results of Section 4.2 and

ection 4.6 could lead to an overly optimistic picture. The analysis

f credit spread trajectories in Section 4.3 and the scenario based

nalysis of Section 4.4 show that the attachment point κ needs to

e chosen more conservatively in order to make ESBies robust with

espect to fluctuations in the underlying risk factors or to changes

n the market perception of default dependence. In fact, one has

o take attachment points κ > 0.35 for ESBies to be safe even in

ery adverse scenarios. Moreover, ESBies are most likely to gener-

te large market losses in the aftermath of severe economic shocks

nd in contagion scenarios. 

From a policy perspective, it is therefore important that a large-

cale introduction of ESBies is accompanied by appropriate pol-

cy measures to limit the economic implications of external shocks

nd default events in the euro area (and thus default contagion).

uch measures include a substantial weakening of the sovereign-

ank nexus; a completion of the banking and capital markets

nion and the creation of a European deposit insurance scheme to

mprove risk sharing; more flexible forms of ESM (European Sta-

ility Mechanism) lending to countries in financial difficulties and

ond clauses to allow for an orderly restructuring of sovereign debt

nd a bail-in of private investors, and perhaps even limited direct

ransfers to countries hit by severe economic shocks, see Bénassy-

uéré et al. (2018) for details. In conjunction with these measures,

he introduction of ESBies would be a useful step in improving the

nancial architecture of the euro area. 

ppendix A. Pricing methodology 

Our main tool for computing prices of credit derivatives is the

ollowing extended Laplace transform for Markov modulated CIR
rocesses. A related result was derived in Elliott and Siu (2009) for

he case a single CIR-type process, see also van Beek et al. (2020) 

roposition A.1. Denote by F = (F t ) t≥0 the filtration generated by

he Brownian motion W and the Markov chain X. Consider vectors

 , u ∈ R 

J 
+ and a function ξ : S X → R . Fix some horizon date s ≤ T.

hen it holds that for 0 ≤ t < s 

E 

(
ξ (X s ) exp 

(
−

∫ s 

t 

a 

′ γθ dθ

)
e −u ′ γ s | F t 

)
= v (t, X t ) exp 

(
β(s − t, u ) ′ γ t 

)
. (A.1) 

ere β(·, u ) = (β1 (·, u ) , . . . , βJ (·, u )) ′ and the functions β j ( · ,

 ), 1 ≤ j ≤ J, solve the Riccati equation 

 t β j (t, u ) = −κ j β j (t, u ) + 

1 

2 

(σ j ) 2 β2 
j (t, u ) − a j , 0 < t ≤ s , (A.2) 

ith initial condition β(0 , u ) = −u . Moreover, with v (t) =
v (t, 1) , . . . , v (t, K) 

)′ , the function v : [0 , s ] × S X → R satisfies

he linear ODE system 

d 

dt 
v (t) − diag ( ̄μ1 (t ) , . . . , μ̄K (t ) ) v (t) = Q v (t) , on [0 , s ] , 

(A.3) 

ith terminal condition v (s ) = ξ and with μ̄k (t) =
 J 
j=1 

e ω 
j t κ j μ j (k ) β j (s − t, u ) . 

The functions β j ( t , u ) are known explicitly, see for in-

tance ( Filipovic, 2009 ) for details. Essentially, Proposition Ap-

endix A.1 shows that computing the extended Laplace transform

f γ is not much more complicated than in the classical case of

ndependent CIR processes; the only additional step is to solve the

 -dimensional linear ODE system (A.3) for the function v ( t ), which

s straightforward to do numerically. 

roof. We start by conditioning in (A.1) on F t ∨ F 

X ∞ 

. Due to the

ndependence of the Brownian motions W 

1 , . . . , W 

J , we have con-
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ditional independence of γ 1 , . . . , γ J given F 

X ∞ 

, which in turn leads

to 

E 

(
ξ (X s ) exp 

(
−

∫ s 

t 

a 

′ γθ dθ

)
e −u ′ γ s | F t ∨ F 

X 
∞ 

)
= ξ (X s ) 

J ∏ 

j=1 

E 

(
exp 

(
−

∫ s 

t 

a j γ
j 

θ
dθ

)
e −u j γ

j 
s | F t ∨ F 

X 
∞ 

)
. (A.4)

Conditional on F 

X ∞ 

, the hazard rates γ j are time-inhomogeneous

affine diffusions. Standard references on affine models, such as

Duffie et al. (20 0 0) , consequently give that 

E 

(
exp 

(
−

∫ s 

t 

a j γ
j 

θ
dθ

)
e −u j γ

j 
s | F t ∨ F 

X 
∞ 

)
= exp 

(
α j (t, s ; X ) + β j (s − t, u ) γ j 

t 

)
, (A.5)

where β j solves (A.2) and where d 
dt 

α j (t, s ; X ) =
−e ω 

j t κ j μ j (X t ) β j (s − t) and α j (s, s ; X ) = 0 ; see for instance

( Duffie et al., 20 0 0 ) or Section 10.6 of McNeil et al. (2015) for a

proof. Integration thus gives α j (t, s ; X ) = 

∫ s 
t e ω 

j θ κ j μ j (X θ ) β j (s −
θ ) dθ . By iterated conditional expectation, we hence get 

E 

(
ξ (X s ) exp 

(
−

∫ s 

t 

a 

′ γθ dθ

)
e −u ′ γ s | F t 

)
= exp 

( J ∑ 

j=1 

β j (s − t) γ j 
t 

)
E 

(
ξ (X s ) exp 

(∫ s 

t 

μ̄X θ (θ ) dθ

)
| F t 

)
The Feynman Kac formula for functions of the Markov chain X fi-

nally gives that 

E 

(
ξ (X s ) exp 

(∫ s 

t 

μ̄X θ (θ ) dθ

)
| F t 

)
= v (t, X t ) , 

and hence the result. �

Next we consider the pricing of a survival claim and of a CDS

on sovereign j . 

Survival claim. The payoff of a survival claim on sovereign j

with maturity date s and payoff function f : S X → R is of the form

1 { τ j >s } f (X s ) . Using standard results on doubly stochastic default

times, the price of this claim at time t ≤ s is 

E 
(
B 

−1 
t,s 1 { τ j >s } f (X s ) | G t 

)
= 1 { τ j >t} B 

−1 
t,s E 

(
e −

∫ s 
t γ

j 
s ds f (X s ) | F t 

)
, 

and the expectation on the right can be computed from

Proposition A.1 with a = e j , u = 0 and ξ = f . 

Credit default swap. We briefly discuss CDS pricing in our setup,

since this is crucial for model calibration. From the payoff descrip-

tion (2.4) , pricing a CDS contract amounts to computing the con-

ditional expectation Proposition A.1 

E 

( 

N ∑ 

n =1 

B 

−1 
t,t n 

1 { τ j ∈ (t n −1 ,t n ] } δ
j 
t n 

−
N ∑ 

n =1 

x (t n − t n −1 ) B 

−1 
t,t n 

1 { τ j >t n } | G t 
) 

. (A.6)

Denote by V 
prem 

t and V def 
t the present value of the premium and

the default leg, that is 

 

prem 

t (x ) = 

N ∑ 

n =1 

B 

−1 
t,t n 

x (t n − t n −1 ) E 
(
1 { τ j >t n } | G t 

)
, 

V 

def 
t = 

N ∑ 

n =1 

B 

−1 
t,t n 

E 
(
1 { τ j ∈ (t n −1 ,t n ] } δ

j 
t n 
) | G t 

)
= 

N ∑ 

n =1 

B 

−1 
t,t n 

E 
(
1 { τ j ∈ (t n −1 ,t n ] } δ

j (X t n ) | G t 
)
. (A.7)
o obtain (A.7) , we have used the fact that the default leg of the

DS is linear in the loss given default, so that we can replace δ j 
t n 

ith its conditional expectation. The premium leg is simply the

um of survival claims. The evaluation of (A.7) is more involved,

nd we now show how this can be achieved via Proposition Ap-

endix A.1 . Fix any two consecutive payment dates t n −1 , t n of T

nd assume w.l.o.g. that t ≤ t n −1 . Since 1 { t n −1 <τ j ≤t n } = 1 { τ j >t n −1 } −
 { τ j >t n } , we can write the term E 

(
1 { τ j ∈ (t n −1 ,t n ] } δ j (X t n ) | G t 

)
in the

orm 

 

(
1 { τ j >t n −1 } δ

j (X t n ) | G t 
)

− E 
(
1 { τ j >t n } δ

j (X t n ) | G t 
)
. (A.8)

he second term in (A.8) is a survival claim. By iterated conditional

xpectations, we get that the first term is equal to 

 

(
1 { τ j >t n −1 } E 

(
δ j (X t n ) | G t n −1 

) | G t 
)
. (A.9)

ince X is Markov, it holds that E 
(
δ j (X t n ) | G t n −1 

)
= v δ (t n −1 , X t n −1 

)

or a suitable function v δ : [0 , t n ] × S X → R (given by the so-

ution of an ODE system), so (A.9) reduces to computing

 

(
1 { τ j >t n −1 } v 

δ (t n −1 , X t n −1 
) | G t 

)
, which is a standard pricing prob-

em for a survival claim. 

Finally, we turn to the pricing of ESBies. In order to eval-

ate the function h EJB ,κ we use Monte Carlo simulation. For

he computation of the function h ESB ,κ we use that h ESB ,κ =
 

(
B −1 

t,T 
(1 − L T ) | G t 

)
− h EJB ,κ and we compute the expected dis-

ounted portfolio loss analytically. 

ppendix B. Worst-case default scenario and price bounds 

In this section we provide some additional results underpinning

ur discussion of the worst-case default scenario and lower price

ounds for ESBies in Section 4.1 . 

Proof of Proposition 4.1 . By the put call parity (2.7) for ESBies

nd EJBies, the claim of the proposition is equivalent to showing

hat L ∗ maximizes the value of EJBies. More precisely, we show

hat for any random vector (L 1 , . . . , L J ) ′ ∈ [0 , 1] J with E(L j ) = 
̄ j ,

 ≤ j ≤ J , and any κ > 0, it holds that 

 

(( J ∑ 

j=1 

w 

j L j − κ
)+ 

)
≤ E 

(( J ∑ 

j=1 

w 

j L ∗j − κ
)+ 

)
. (B.1)

e may use call options instead of put options in (B.1) since

( 
∑ J 

j=1 
w 

j L j ) is fixed. To establish the inequality (B.1) we use a re-

ult on stochastic orders from Bäuerle and Müller, (2006) . Accord-

ng to the equivalence ((iii) ⇔ (iv)) in Theorem 2.2 of that paper,

B.1) is equivalent to the inequality 

S α

( J ∑ 

i =1 

w 

j L j 
)

≤ ES α

( J ∑ 

i =1 

w 

j L ∗j 

)
for all α ∈ [0 , 1) , (B.2)

here for a generic random variable Z , ES α(Z) = 

1 
1 −α

∫ 1 
α q u (Z) du

ives the expected shortfall of Z at confidence level α and where

 u ( Z ) denotes the quantile of Z at level u . 

To establish (B.2) we show first that L ∗
j 

maximizes the quan-

ity ES α( L j ) over all rvs L j with value in the interval [0,1] and ex-

ectation E(L j ) = 
̄ j , simultaneously for all α ∈ [0, 1). In fact, the

andom variable L j has to satisfy the constraints q u ( L 
j ) ≤ 1 (since

 

j ∈ [0, 1]) and 

∫ 1 
0 q u (L j ) du = 
̄ j (since E(L j ) = 
̄ j , so that 

S α(L j ) ≤ 1 

1 − α
min { 1 − α, 
̄ j } = ES α(L ∗j ) . 

oreover, we get from the coherence of expected shortfall that 

S α

( J ∑ 

j=1 

w 

j L j 
)

≤
J ∑ 

j=1 

w 

j ES α
(
L j 

)
≤

J ∑ 

j=1 

w 

j ES α
(
L ∗j 

)
= ES α

( J ∑ 

j=1 

w 

j L ∗j 

)
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here the last equality follows since L ∗1 , . . . , L 
∗
m 

are comonotonic.

his gives inequality (B.2) and hence the result. �
Distribution of L ∗. Next we discuss properties of the distribution

∗ of the worst-case default scenario. This distribution is a dis-

rete probability measure on [0, 1] m which charges J + 1 points; it

s given by 

∗((1 , . . . , 1) 
)

= 
̄ 1 , 

∗((0 , 1 , . . . , 1) 
)

= 
̄ 2 − 
̄ 1 , · · · , 

∗((0 , . . . , 0 , 1) 
)

= 
̄ J − 
̄ J−1 , 

∗((0 , . . . , 0) 
)

= 1 − 
̄ J . 

e call π ∗ the worst-case distribution. Note that, under π ∗,

he probability of large default “clusters” is maximal given the

xpected loss constraints. First, under π ∗ the event where all

overeigns default has probability 
̄ 1 . Since 

 (L 1 = · · · = L J = 1) ≤ Q (L 1 = 1) ≤ E(L 1 ) = 
̄ 1 , 

his is the maximum value possible. Next, under π ∗ the default

cenario where all sovereigns except the first default has probabil-

ty 
̄ 2 − 
̄ 1 . It is easily seen that this is the maximum possible value

iven the expected-loss constraints and the probability attributed

o the first cluster (the cluster where all sovereigns default). Simi-

arly, the probability of the ( n + 1 )-th cluster, where all but the first

 sovereigns default, is maximal given the probability attributed to

he first n clusters. 

Finally we sketch an approach for the approximation of the

orst-case distribution π ∗ within our model. Note first that, for
j large and σ j small, the hazard-rate trajectory (γ j 

t ) 0 is essen-

ially determined by the trajectory of X and by the choice of the

ean reversion level μj ( · ), so that we concentrate on these

uantities. We consider a model with K = J + 1 states of X that

orrespond to the different default “clusters” under π ∗. Choose

ome large n and define the mean reversion level μj ( · ) by
1 (1) = · · · = μJ (1) = 

1 
n ; μ1 (2) = · · · = μJ−1 (2) = 

1 
n , μ

J (2) = n ;...;
1 (J + 1) = · · · = μJ (J + 1) = n . Note that in state k the default

robability of obligor 1 to obligor J − k + 1 is small, the default

robability of obligor J + 2 − k up to obligor J is large; that is, the

tate corresponds to the (J + 2 − k ) -th default cluster. 
Table 4 

Summary statistics of CDS spreads (in bp). 

Yrs. AUT BEL DEU ESP FIN 

AA AA AAA A AA 

Panel A

1 31.071 44.063 12.819 113.637 13.273 

2 38.341 54.593 16.700 138.474 17.780 

3 45.016 66.843 21.918 153.769 22.148 

4 54.657 77.339 29.151 165.480 28.219 

5 61.675 85.437 34.562 174.373 33.048 

Panel B: Stand

1 38.589 59.330 12.418 113.398 12.932 

2 42.347 67.134 14.520 129.415 14.257 

3 44.800 74.987 17.157 131.520 15.065 

4 48.974 76.066 21.330 130.483 16.769 

5 51.023 76.099 24.114 129.470 17.407 

Panel C: 

1 4.080 3.840 2.920 10.450 2.250 

2 6.190 7.020 3.980 18.900 3.800 

3 7.820 9.430 6.230 25.050 6.040 

4 9.890 11.910 8.330 30.730 10.290 

5 13.270 16.480 9.510 37.230 13.020 

Panel D: 

1 259.960 301.620 74.840 489.430 66.530 

2 267.440 337.600 81.080 608.330 74.600 

3 269.490 375.700 90.350 619.920 82.550 

4 271.430 379.090 108.250 622.220 90.460 

5 272.180 380.940 119.060 624.290 95.000 
Next we define the generator matrix of X . We assume that

tates 2 to J + 1 are absorbing, so that q ik = 0 for 2 ≤ i ≤ J + 1 and

ll k . Define probabilities p 1 , . . . , p J+1 by p 1 = 1 − l̄ J , p k = 
̄ J+2 −k −
¯
 

J+1 −k for 2 ≤ k ≤ J , and finally p J+1 = 
̄ 1 , that is p k corresponds to

he probability of the (J + 2 − k ) -th default cluster under π ∗. Since

tates 2 , . . . , J + 1 are absorbing, we get for any valid choice for the

rst row of Q that Q (X T = 1) = e q 11 T and 

 (X T = k ) = (1 − e q 11 T ) 
q 1 k 

−q 11 

, k = 2 , . . . , J + 1 , 

recall q 11 = −∑ J+1 

k =2 
q 1 k ). We want to choose q 12 , . . . , q 1 J+1 so that

 (X T = k ) = p k for all k . This gives 

 11 = 

1 

T 
ln p 1 and q 1 k = −p k 

q 11 

1 − p 1 
, k = 2 , . . . , J + 1 . (B.3)

ince 
∑ J+1 

k =1 
p k = 1 , we get that q 11 = − ∑ K+1 

k =2 
q 1 k so that (B.3) de-

nes indeed a valid generator matrix. Moreover, for n → ∞ ,
j → ∞ and σ j → 0, 

 

(
1 { τ 1 ≤T } = · · · = 1 { τ J−k +1 ≤T } = 0 , 1 { τ J−k +2 ≤T } = · · · = 1 { τ J ≤T } = 1 

)
onverges to Q (X T = k ) = p k which gives the result by definition of

he p k . 

ppendix C. Details on Calibration 

1. Data 

In Table 4 below we present summary statistics of the data we

se in the model calibration. 

2. Methodology 

In order to determine the parameters ( �j , σ j ), 1 ≤ j ≤ J , the

enerator matrix Q and the realised trajectories { γ s m 
} and { X s m } ,

e use an iterative approach which is compactly summarized in

lgorithm 1 below. We set � = (�1 , . . . , �J ) and we use { γ t m 
} (i ) ,

 X t m } (i ) and ( �j ) ( i ) to denote the i -th estimate of the distinct vari-

bles within the iteration. 

The assumption of conditionally independent defaults substan-

ially facilitates the calibration procedure: given an estimate for Q
FRA IRL ITA NLD PRT 

AA A BBB AAA BBB 

: Mean 

26.590 204.380 115.934 20.269 307.199 

35.106 220.752 143.971 25.232 346.413 

44.961 224.791 165.881 30.413 352.693 

56.684 223.055 181.786 38.267 354.438 

65.906 222.409 193.090 43.902 359.586 

ard Deviation 

30.303 309.597 110.190 21.720 436.057 

34.529 308.774 113.689 23.782 449.052 

39.920 293.590 115.705 24.563 399.150 

45.769 264.432 113.967 27.595 352.837 

49.149 244.132 112.625 29.439 324.968 

Minimum 

3.550 7.830 21.620 3.120 12.480 

6.570 12.330 33.880 4.840 28.670 

9.620 15.860 48.990 7.230 40.650 

12.630 19.670 56.490 9.140 47.110 

17.400 23.970 59.830 11.240 47.230 

Maximum 

160.660 1629.340 619.540 110.870 2598.930 

177.440 1614.480 591.030 125.040 2494.690 

198.200 1572.800 581.050 130.650 2102.190 

222.510 1419.750 575.930 132.710 1846.700 

237.300 1318.590 573.030 136.960 1802.360 
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Algorithm 1: Detailed description of calibration step. 

Data : Market CDS spreads for maturities u ∈ T for each 

sovereign 1 ≤ j ≤ J 

Result : Estimates for { γ s m 
} , { X s m } and �

1 Initialization for { γ s m 
} (0) , { X s m } (0) , ( �) (0) and Q 

(0) 

2 i = 0 

3 while 
∑ J 

j=1 

∑ M 

m =0 l 
j 
(
(γ j 

s m ) 
(i ) , (� j ) (i ) , (σ j ) (i ) , Q 

(i ) , X (i ) 
s m 

)
≥ ε

do 

4 for j ← 1 to J do 

5 for m ← 0 to M do 

6 (γ j 
s m ) 

(i +1) = argmin γ l 
j 
s m (γ , (� j ) (i ) , (σ j ) (i ) , Q 

(i ) , X (i ) 
s m ) 

7 end 

8 Estimate (σ j ) (i +1) based on the quadratic variation of 

(γ j ) (i +1) 

9 end 

10 for m ← 0 to M do 

11 X (i +1) 
s m = 

argmin x 

∑ J 
j=1 

l 
j 
s m 

(
(γ j 

s m ) 
(i +1) , (� j ) (i ) , (σ j ) (i +1) , Q 

(i ) , x ) 
)

12 end 

13 Estimate Q 

(i +1) via MLE based on X (i +1) 

14 for j ← 1 to J do 

15 (� j ) (i +1) = 

argmin �

∑ M 

m =0 l 
j 
s m 

(
(γ j 

s m ) 
(i +1) , �, (σ j ) (i +1) , Q 

(i +1) X (i +1) 
s m ) 

)
16 end 

17 Set i ← i + 1 

18 end 
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and { X s m } , estimation of { γ j 

t m 
} and of the parameter vector �j can

be done independently for each sovereign j . We initiate the calibra-

tion by applying k -means clustering on the relevant CDS spreads

to get an estimate for X 

(0) . For small maturities T , it holds that̂ cds 
j 

T ≈ δ j (X ) γ j . We use this approximation along with the initial

estimate X 

(0) to get an estimate for ( γ j ) (0) and we consequently

solve the optimization problem of line in Algorithm 1 to obtain

the initial value �(0) . To compute the estimates for σ j , we use that

the quadratic variation of γ j satisfies 

[ γ j , γ j ] t = (σ j ) 2 
∫ t 

0 

γ j 
s ds, 
Table 7 

Generator matrices ˜ Q 1 and ˜ Q 2 for crisis scenarios. 

˜ Q 1 

State 1 State 2 

State 1 (expansion) -0.1421 0.1421 

State 2 (mild recession) 0.5843 -0.8685 

State 3 (strong recession) 0.0000 1.4444 
nd we approximate the integral with Riemann sums. For a

iven (estimated) realisation of the Markov chain, we use the

tandard MLE estimator for continuous-time Markov chains to get

n estimate of Q . 

The main numerical challenge in the application of

lgorithm 1 is to solve the optimization problem 

in 

�

M ∑ 

m =0 

l j 
(
(γ j 

s m ) 
(i +1) , �, (σ j ) (i +1) , Q, X 

(i +1) 
s m ) 

)
. (C.1)

e impose the restriction that all parameters are non-negative

nd, for regularization purposes, we set the lower bound of the

ean-reversion speed κ j to 0.1 for all j . During the first iteration

f Algorithm 1 , we employ an algorithm for constrained optimiza-

ion as presented in Runarsson and Yao (2005) . The algorithm uses

euristics to escape local optima. In order to refine the estimation,

n the subsequent calibration steps (i.e. for steps i > 1) we use the

ocal optimizer of Powell (1994) , which provides a derivative-free

ptimization method based on linear approximations of the target

unction. After successful convergence of Algorithm 1 , we perform

 final refinement step in which we keep all input variables except
j , 1 ≤ j ≤ J , fixed. 

3. Results 

The following figure illustrates the quality of the model fit for

wo different sovereigns. 

Table 5 

Fixed conditional means of LGDs for different sovereigns and varying states. 

State AUT BEL DEU ESP FIN FRA IRL ITA NLD PRT 

1 0.55 0.55 0.50 0.55 0.50 0.50 0.55 0.50 0.50 0.55 

2 0.55 0.55 0.50 0.55 0.50 0.50 0.55 0.50 0.50 0.55 

3 0.65 0.65 0.60 0.65 0.60 0.60 0.65 0.60 0.60 0.65 

4. Parameters used in risk analysis 

Table 6 

Portfolio weights of ESBies and EJBies, based on proportion of sovereigns on euro 

area GDP as of 2018. 

AUT BEL DEU ESP FIN FRA IRL ITA NLD PRT 

0.04 0.04 0.29 0.12 0.02 0.20 0.03 0.18 0.07 0.01 
˜ Q 2 

State 3 State 1 State 2 State 3 

0.0000 -0.1421 0.1421 0.0000 

0.2843 0.5843 -0.7685 0.1843 

-1.4444 0.0000 1.4444 -1.4444 
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C
5. Results of EM estimation 
Fig. 9. Time series plots of market CDS spreads against model values. The solid (dash

Table 8 

Estimation results: parameters of hazard rate dynamics. 

Param. AUT BEL DEU ESP FIN 

μ(1) 0.0023 0.0016 0.0012 0.0013 0.0029

μ(2) 0.0103 0.0054 0.0013 0.0016 0.0196

μ(3) 0.0144 0.0120 0.0116 0.0080 0.0346

κ 6.9584 6.2427 3.1193 6.3241 5.5822
ed) lines correspond to the market (model) values of the distinct CDS spreads. 

FRA IRL ITA NLD PRT 

 0.0220 0.0329 0.0095 0.0136 0.0027 

 0.1391 0.1375 0.0408 0.1231 0.0099 

 0.1219 0.0941 0.0698 0.1245 0.0192 

 3.4718 1.5879 3.2518 2.0640 8.4694 
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Table 9 

Estimation results: generator matrix Q of X . 

State 1 State 2 State 3 

State 1 (expansion) -0.9033 0.9033 0.0000 

State 2 (mild recession) 5.9877 -10.4716 4.4839 

State 3 (strong recession) 4.3316 1.8569 -6.1885 
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