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Abstract

We introduce a multiple testing method that controls the median of the proportion of
false discoveries (FDP) in a flexible way. Our method only requires a vector of p-values as
input and is comparable to the Benjamini-Hochberg method, which controls the mean of
the FDP. Benjamini-Hochberg requires choosing the target FDP alpha before looking at
the data, but our method does not. For example, if using alpha=0.05 leads to no discov-
eries, alpha can be increased to 0.1. We further provide mFDP-adjusted p-values, which
consequently also have a post hoc interpretation. The method does not assume indepen-
dence and was valid in all considered simulation scenarios. The procedure is inspired by
the popular estimator of the total number of true hypotheses by Schweder, Spjøtvoll and
Storey. We adapt this estimator to provide a median unbiased estimator of the FDP,
first assuming that a fixed rejection threshold is used. Taking this as a starting point, we
proceed to construct simultaneously median unbiased estimators of the FDP. This simul-
taneity allows for the claimed flexibility. Our method is powerful and its time complexity
is linear in the number of hypotheses, after sorting the p-values.

keywords: control; estimation; false discovery proportion; flexible; post hoc

1 Introduction

Multiple testing is the testing of many hypotheses simultaneously. Multiple testing procedures
have the common aim of ensuring that the number of incorrect rejections, i.e. false positives,
is likely small. The most commonly used multiple testing procedures control either the family-
wise error rate or the false discovery rate (FDR) (Dickhaus, 2014). The false discovery rate
is the expected value of the false discovery proportion (FDP), which is the proportion of
incorrect rejections, i.e. false positives, among all rejections of null hypotheses. Controlling
the FDR means ensuring that the expected FDP is kept below some pre-specified level α
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Goeman and Solari, 2014).

The FDP, i.e., the true, unknown, proportion of false positives, can vary widely about its
mean, when the tested variables are strongly correlated. For this reason, methods have been
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developed that do not control the FDR or estimate the FDP, but rather provide a confidence
interval for the FDP (Hemerik and Goeman, 2018). Some methods provide confidence intervals
for several choices of the set of rejected hypotheses, that are simultaneously valid with high
confidence (Genovese and Wasserman, 2004, 2006; Meinshausen, 2006; Hemerik et al., 2019;
Katsevich and Ramdas, 2020; Blanchard et al., 2020; Goeman et al., 2021; Blain et al., 2022).
There are also procedures, including the methods just mentioned, that ensure that the FDP
remains small with high confidence (van der Laan et al., 2004; Lehmann and Romano, 2005;
Romano and Wolf, 2007; Guo and Romano, 2007; Farcomeni, 2008; Roquain, 2011; Guo et al.,
2014; Delattre and Roquain, 2015; Ditzhaus and Janssen, 2019; Döhler and Roquain, 2020;
Basu et al., 2021; Miecznikowski and Wang, 2022).

Methods that ensure that the FDP remains small with high confidence can provide very
clear and useful error guarantees. The downside of these methods, however, is that under
dependence, they do not always have sufficient power to reject any hypotheses, even if there
is substantial signal in the data. The reason is that these methods do not merely require that
the FDP is small on average, but small with high confidence. As a result, users may prefer
approaches with weaker guarantees, such as FDR methods.

The most popular FDR method is the Benjamini-Hochberg method (BH) (Benjamini and
Hochberg, 1995). FDR methods generally require the user to choose α before looking at the
data. Common choices for α are 0.05 and 0.1. The methods guarantee that the FDR is kept
below α. However, researchers would often like to change α post hoc. For example, if no
hypotheses are rejected for α = 0.05, a researcher may want to increase α to 0.1, changing the
FDP target in order to obtain more rejections. However, this would violate the assumption
that α is chosen before seeing the data. Moreover, the user may want to report results for
several values of α, while providing a simultaneous error guarantee. There is a need for
methods that allow for these types of inference.

In this paper, we propose a multiple testing method that allows to choose the threshold
freely after looking at the data. Our procedure only requires a vector of p-values as input. Our
method controls the median of the FDP rather than the mean. For this and other reasons,
we denote the threshold by γ ∈ [0, 1] instead of α (inspired by Romano and Wolf, 2007; Basu
et al., 2021). Controlling the median means that the procedure ensures that the FDP is at
most γ with probability at least 0.5. We will refer to this as mFDP control. Further, our
procedure is adaptive, in the sense that it does not necessarily become conservative if the
fraction of false hypotheses is large. We prove that our method is valid under a novel type
of assumption on the joint distribution of the p-values. Moreover, the method was valid in
all simulation settings considered. Our methodology has been implemented in the R package
mFDP, available on CRAN.

Our method is partly inspired by an existing estimator of the fraction π0 ∈ [0, 1] of true
hypotheses among all hypotheses. This estimator is mentioned in Schweder and Spjøtvoll
(1982) and advocated in Storey (2002). We will refer to it as the Schweder-Spjøtvoll-Storey
estimator. Some publications refer to it as Storey’s estimator or the Schweder-Spjøtvoll
estimator (Hoang and Dickhaus, 2022). The literature proposes multiple π0 estimators based
on p-values (Rogan and Gladen, 1978; Hochberg and Benjamini, 1990; Langaas et al., 2005;
Meinshausen et al., 2006; Rosenblatt, 2021). As a side result of our investigation of π0 and
FDP estimation, we add to this literature a novel π0 estimator that is slightly different from
Schweder-Spjøtvoll-Storey, unless its tuning parameter is 0.5.

The proposed method also draws from an idea in Hemerik et al. (2019), which is to con-
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struct simultaneous FDP bounds, called confidence envelopes, in a manner that is partly
data-based and partly reliant on a pre-specified family of confidence envelopes. The simul-
taneity of the constructed bounds allows for post hoc selection of rejection thresholds and
hence post hoc specification of γ. The method proposed here is applicable in many situations
where the method in Hemerik et al. (2019) is not. The reason is that the latter method is
based on permuting data, which entails specific assumptions.

Our mFDP controlling approach conceptually relates to recent methods that bound the
FDR by α by finding the largest p-value threshold for which some conservative estimate of
the FDP is below α (Barber and Candès, 2015; Li and Barber, 2017; Luo et al., 2020; Lei
et al., 2021; Rajchert and Keich, 2022). Those methods do not offer the simultaneity provided
in the present paper.

This paper is built up as follows. In Section 2 we propose simple, non-uniform, median
unbiased estimates of π0 and the FDP. Taking the simple estimate as a starting point, in
Sections 3.1-3.3 we proceed to construct simultaneous FDP bounds. We then use these simul-
taneous bounds for mFDP control in Sections 3.4 and 3.5. In Section 4 we use simulations
to investigate properties of our method. We find that the method was valid in all considered
simulation settings. In Section 5 we apply our method to RNA-Seq data. We end with a
discussion.

2 Median unbiased estimation of the FDP

Throughout this paper we consider hypothesesH1, ...,Hm and corresponding p-values p1, ..., pm,
which take values in (0, 1]. Write p = (p1, ..., pm). Let N = {1 ≤ i ≤ m : Hi is true} be the
set of indices of true hypotheses and let N = |N | be the number of true hypotheses, which we
assume to be strictly positive for convenience. The fraction of true hypotheses is π0 = N/m.
Let q1, ..., qN denote the the p-values corresponding to the true hypotheses (in any order).
Write q = (q1, ..., qN ).

If t ∈ (0, 1), we write R(t) = {1 ≤ i ≤ m : pi ≤ t}. We will call R = R(t) the set of
rejected hypotheses, since t will usually denote the p-value threshold. Write R = |R|. Let
V = |N ∩R| be the number of true hypotheses in R, i.e., the number of false positive findings.
We write a ∧ b for the minimum of number a and b.

2.1 The Schweder-Spjøtvoll-Storey estimate

The first results in this paper follow from a reinvestigation of the Schweder-Spjøtvoll-Storey
estimator of π0 (Schweder and Spjøtvoll, 1982; Storey, 2002). The estimator depends on a
tuning parameter in (0, 1) that is usually denoted by λ. For practical reasons we will write
the estimator in terms of t := 1− λ. The estimator is

π̂′0 :=
|{1 ≤ i ≤ m : pi > λ}|

m(1− λ)
=
|{1 ≤ i ≤ m : pi > 1− t}|

mt
(1)

The heuristics behind this estimate are as follows. The non-null p-values, i.e., the p-values
corresponding to false hypotheses, tend to be smaller than 1− t, so that most of the p-values
larger than 1 − t are null p-values. Since for point null hypotheses the null p-values are
standard uniform, one expects about t · 100% of the null p-values to be larger than 1 − t.
Hence, a (conservative) estimate of the number of null p-values is t−1|{i : pi > 1− t}|. Thus,
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π′0 is an estimate of π0. Storey’s estimator is related to the concept of accumulation functions,
used to estimate false discovery proportions (Li and Barber, 2017; Lei et al., 2021).

Storey (2002) notes that π′0 is usually biased upwards, unless π0 = 1 and all p-values
are standard uniform. It that case, E(π̂′0) = π0. (It is also unbiased if the non-null p-values
cannot exceed 1− t.) A way to decrease the upward bias of π̂′0 is usually to take t very close to
0. This often increases the variance of π̂′0, however, so that there is a bias-variance trade-off
(Storey, 2002; Black, 2004).

Note that π̂′0 can be larger than 1. Consequently, researchers often use

π̂0 := π̂′0 ∧ 1,

the minimum of π̂′0 and 1. This estimate is usually no longer biased upwards, but downwards
for large values of π0, in particular π0 = 1.

2.2 Median unbiased estimation of π0

We introduce the following assumption, which allows us to say more about the Schweder-
Spjøtvoll-Storey estimate.

Assumption 1. The following holds:

P
{∣∣{1 ≤ i ≤ N : qi ≤ t

}∣∣ > ∣∣{1 ≤ i ≤ m : pi ≥ 1− t
}∣∣} ≤ 0.5. (2)

Note that this assumption is satisfied in particular if

P
{∣∣{1 ≤ i ≤ N : qi ≤ t

}∣∣ > ∣∣{1 ≤ i ≤ N : qi ≥ 1− t
}∣∣} ≤ 0.5. (3)

Further, note that the probability (3) is equal to

P
{∣∣{1 ≤ i ≤ N : qi ≤ t

}∣∣ > ∣∣{1 ≤ i ≤ N : 1− qi ≤ t
}∣∣}. (4)

If the null p-values q1, ..., qN are independent and standard uniform, then Assumption 1
is clearly satisfied. As another example, suppose (q1, ..., qn) is symmetric about 1/2, i.e.,

(q1, ..., qN )
d
= (1− q1, ..., 1− qN ). (5)

Then Assumption 1 also holds. The symmetry property (5) holds for instance if q1, ..., qN are
left- or right-sided p-values from Z-tests based on test statistics Z1, ..., Zm with joint N (0,Σ)
distribution.

Note that if t is used as a rejection threshold, the number of false positive findings is

V (t) :=
∣∣{1 ≤ i ≤ N : qi ≤ t

}∣∣.
Hence, under Assumption 1, with probability at least 0.5, we have

V (t) ≤ V ′(t) := |{1 ≤ i ≤ N : pi ≥ 1− t}|. (6)

In other words, V
′
(t) is a 50%-confidence upper bound for V (t). We will refer to such bounds

as median unbiased estimators for brevity, although writing ‘not-downward biased’ instead of
‘unbiased’ would be more precise.
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This result also leads to a median unbiased estimator of π0. Indeed, if V ≤ V
′
, then R

contains at least R− V ′ false hypotheses, so that π0 is at most

m− |R|+ V
′

m
=
m− |{1 ≤ i ≤ m : pi ≤ t}|+

∣∣{1 ≤ i ≤ m : pi ≥ 1− t
}∣∣

m
.

A rewrite gives the following result.

Theorem 1. Suppose Assumption 1 is satisfied. Then V
′
(t), defined at (6), is a median

unbiased estimate of V (t). As a consequence, π0 := π′0 ∧ 1, where

π′0 =
|{1 ≤ i ≤ m : pi > t}|+

∣∣{1 ≤ i ≤ m : pi ≥ 1− t
}∣∣

m
,

is a median unbiased estimate of π0. Further, if t = 0.5 and no p-value equals t, then π′0 is
equal to the Schweder-Spjøtvoll-Storey estimate π̂′0.

Thus, if the p-values are continuous and t = 0.5, then π′0 = π̂′0 with probability 1. For
other values of λ, we obtain a median unbiased estimate π′0 that is slightly different from π̂′0.
In the supplemental information we obtain the estimate π′0 in an alternative way, which will
lead to a broader class of π0 estimators.

The following result says that often, E(π′0) ≥ E(π̂′0) if t ∈ (0, 0.5) and E(π′0) ≤ E(π̂′0) if
t ∈ (0.5, 1). The difference between the expected values is often small, but usually strictly
positive. All proofs are in the appendix.

Proposition 1. Assume that all p-values have non-increasing densities or that both E|{i :
pi = 1− t}| = 0 and

E
(
|{1 ≤ i ≤ m : pi > 1− t′}|

)
t′

≤
E
(
|{1 ≤ i ≤ m : pi > t′}|

)
1− t′

, (7)

where t′ = min{t, 1−t} Then, E(π′0) ≥ E(π̂′0) if 0 ≤ t < 1/2 and E(π′0) ≤ E(π̂′0) if 1/2 < t ≤ 1.
These inequalities are strict if the inequality (7) is strict.

We write π0 = min{π′0, 1}. In Example 1 and the corresponding Figure 1, the Schweder-
Spjøtvoll-Storey method is applied to 500 simulated p-values.

Example 1 (Running example, part 1: estimating π0 and V ). As a toy example we generated
500 independent p-values, 400 of which were uniformly distributed on [0, 1] and 100 of which
were subuniform on [0,1]. Thus, we can say that N = 400. A scatterplot of the sorted p-
values is shown in Figure 1, as well as a visual illustration of how Storey’s estimate π̂0m of
the number of true hypothes is computed, in case λ = 1 − t = 0.8. Often λ is taken smaller,
but considering small t instead will turn out to be useful. In this example, Storey’s estimate
π̂0 · m was 410 and our estimate, which is less easy to visualize, was π0 · m = 402. Thus,
the estimates were close, as is often the case. Since property (5) and hence Assumption 1 is
satisfied, we know that π0 is a median unbiased estimator of π0. In particular, we know with
50% confidence that there are at least 500− 402 = 98 false hypotheses in total.

As explained in this section, we can make this statement stronger by noting that R(t) = 180
and V (t) = 82. The latter means that we know with 50% confidence that there are at least
180− 82 = 98 false hypotheses among the hypotheses with p-values below t = 0.2.
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Figure 1: Illustration of the computation of the Schweder-Spjøtvoll-Storey estimate π̂0, based
on 500 sorted simulated p-values. The dashed, straight line is constructed in such a way
that it goes through both (500,1) and the point where the dotted line intersects the curve of
p-values, roughly speaking.

2.3 Median unbiased estimation of the FDP

Define the FDP to be the proportion of false positives,

FDP =
V

R
, FDP (t) =

V (t)

R(t)
,

which is understood to be 0 when R = 0. The median unbiased estimate V immediately
implies a median unbiased estimate of the FDP.

Theorem 2. Suppose Assumption 1 is satisfied. The variable FDP (t) = V (t)/R(t) is a
median unbiased estimator for the FDP, i.e.,

P(FDP (t) ≤ FDP (t)) ≥ 0.5. (8)

To prove this, we only need to remark that if V ≤ V , then FDP ≤ FDP .
A more positive perspective is that we obtain a 50%-confidence lower bound S = R − V

for the number of true discoveries, S = R − V . This estimator satisfies P(S ≤ S) ≥ 0.5.
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Further, the true discovery proportion (Andreella et al., 2020; Goeman et al., 2021; Vesely
et al., 2021; Blain et al., 2022) is

TDP =
S

R
=
m− V
R

.

A 50%-confidence lower bound for the TDP is

TDP =
S

R
=
m− V
R

,

i.e., we have P(TDP ≤ TDP ) ≥ 0.5.

3 Controlling the mFDP

3.1 Overview of our method and comparison with FDR control

In section 2.3 we considered a fixed rejection threshold t and provided a median unbiased
estimate for FDP (t). In many situations, one would like to adapt the threshold t based on
the data, in such a way that one still obtains a valid median unbiased estimate. Note that
naively choosing t in such a way that an attractive (low) estimate of the FDP is obtained,
can invalidate the procedure, in the sense that inequality (8) not longer holds. In the present
section however, we derive a method that provides median unbiased bounds for a large range
of t, in such a way that with probability at least 0.5, the bounds are simultanously valid for
all t .

Specifically, we let the user choose some range T ⊆ [0, 1] of values of t of interest, before
looking at the data. Usually a good choice for T will be [0, 1/2] or a smaller interval starting
at 0. Then we provide 50%-confidence upper bounds B(t) for V (t) that are simultaneously
valid over all t ∈ T:

P
(⋂
t∈T
{V (t) ≤ B(t)}

)
≥ 0.5. (9)

It then immediately follows that B(t)/R(t), t ∈ T, are simultaneously valid 50%-confidence
bounds for FDP (t):

P
(⋂
t∈T
{FDP (t) ≤ B(t)/R(t)}

)
≥ 0.5.

Since the threshold t can be chosen based on the data, it can be picked such that B(t)/R(t)
is low. In particular, one can prespecify a value γ ∈ [0, 1], for example γ = 0.05, and take the
threshold t ∈ T to be the largest value for which B(t)/R(t) ≤ γ, if such a t exists. This means
that our method can be used to reject a set of hypotheses in such a way that the median of
the FDP is bounded by γ:

P(FDP ≤ γ) ≥ 0.5.

In other words, we can control the median of the FDP, which we will call the mFDP. Our
notation ‘γ’ is in line with e.g. Romano and Wolf (2007) and Basu et al. (2021).

Our method is related to the popular BH procedure, which ensures that E(FDP ) ≤ γ
(Benjamini and Hochberg, 1995). BH ensures that the mean of the FDP is controlled, while
we ensure that the median of the FDP, which we call mFDP, is controlled. The mean and
the median of the FDP can be asymptotically equal in some settings where the dependencies
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among the p-values are not too strong (Neuvial, 2008; Ditzhaus and Janssen, 2019), but
there is no general guarantee that they are similar (Romano and Shaikh, 2006; Schwartzman
and Lin, 2011). Especially under strong dependence, mFDP ≤ γ does not need to imply
E(FDP ) ≤ γ, while the converse does hold in many practical situations. Moreover, unlike
mFDP control, FDR control always implies weak control of the family-wise error rate (Romano
et al., 2008, Section 6.4). Note, however, that before applying any multiple testing method,
we could first perform a global test, to enforce weak family-wise error rate control (Bernhard
et al., 2004). Moreover, our method combines good power with simultaneity, as we will now
discuss.

The most important advantage of our method over BH, is that it provides simultanous
50% confidence bounds for the FDP. This allows simultaneous as well as post hoc inference, in
the sense that t ∈ T can be chosen after seeing the data. In particular our method adapts to
the amount of signal in the data: if there is much signal, we can find very low upper bounds
for the FDP and if there is little signal, we tend to find higher bounds for the FDP.

The simultaneity of our bounds also has implications for mFDP control. Note that
Benjamini-Hochberg requires fixing the FDR bound beforehand. The FDR bound is often
called α and is analogous to our γ. There is then a risk to reject nothing at all, even if there
is quite some signal in the data. BH does then not allow increasing γ, since γ is required to
be data-independent. Our method, however, allows the user to change γ and still obtain valid
results. mFDP control and mFDP-adjusted p-values are treated in Sections 3.4 and 3.5.

3.2 Simultaneous bounds for the FDP

Let N be the set of natural numbers. We call a function B : T→ N a confidence envelope is it
satisfies inequality (9) (cf. Hemerik et al., 2019). We restrict ourselves to such 50% confidence
envelopes and do not consider e.g. 95% confidence envelopes. Let B be a set of maps T→ N.
Assume that B is monotone, in the sense for all B,B′ ∈ B, either B ≥ B′ or B′ ≥ B. Here
B ≥ B′ means that B(t) ≥ B′(t) for all t ∈ T. We call B the family of candidate envelopes
(cf. Hemerik et al., 2019).

We will obtain a confidence envelope by picking the smallest B ∈ B for which B(t) ≥ V ′(t)
for all t ∈ T. We call this envelope B̃:

B̃ = B̃(p) = min
{
B ∈ B :

⋂
t∈T

{
B(t) ≥ V ′(t)

}}
,

If r is a vector containing, say, lr p-values, then we write R(r, t) = {1 ≤ i ≤ lr : ri < t},
to make the dependence on the p-values explicit. Analogously we define V (r, t), V

′
(r, t) and

B̃(r). We use the convention that R(t) = R(p, t), V (t) = V (p, t), V
′
(t) = V

′
(p, t) and

B̃ = B̃(p).
We will only require Assumption 2 below. Due to the monotonicity of the set B, we always

have either B̃(q) ≥ B̃(1− q) or B̃(q) < B̃(1− q). The assumption is satisfied in particular if
the probability that the latter inequality holds is not larger than the probability of the former.
The assumption is a generalization of Assumption 1, in the sense that if T is equal to the
singleton {t} then Assumptions 1 and 2 will coincide, for most reasonable choices of B.

Assumption 2. The following holds:

P
{
B̃(p) ≥ B̃(1− q)

}
≥ 0.5, (10)
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Note that Assumption 2 is satisfied in particular if P
{
B̃(q) ≥ B̃(1−q)

}
≥ 0.5. Assumption

2 always holds if property (5) is satisfied, hence in particular under independence. However,
property (5) is not necessary for Assumption 2 to hold, as confirmed by all our simulations.

Let [·]+ be the positive part function. The following theorem states that B̃ provides
simultaneously valid 50%-confidence bounds.

Theorem 3. Suppose Assumption 2 holds. Then the function B̃ is a confidence envelope,
i.e.,

P
(⋂
t∈T
{V (t) ≤ B̃(t)}

)
≥ 0.5

and
P
(⋂
t∈T
{FDP (t) ≤ B̃(t)/R(t)}

)
≥ 0.5.

In addition, B̃′ : T→ N defined by

B̃′(t) = R(t)−max{[R(l)− B̃(l)]+ : l ∈ T, l ≤ t)},

which satisfies B̃′ ≤ B̃, is also a confidence envelope and potentially improves B̃.

3.3 A default mFDP envelope

The envelope B̃ depends on a general family B of candidate confidence bounds. The choice
of this family can have a large influence on the bounds obtained (cf. Hemerik et al., 2019).
An important question is thus how to choose this set B in a suitable way. Typically we want
B to contain at least one function B that is a tight upper envelope of the function t 7→ V (t).

Note that between t = 0 and, say t = 0.5, the function V
′
(t) – or at least its expected value

– tends to be roughly linear in t. Thus, it makes sense to also take the candidate envelopes
B ∈ B to be roughly linear. Also, giving them a small positive intercept will often be useful
to avoid that B̃ is too sensitive to p-values near 1.

Further, it is usually suitable to take T = [s1, s2], where s1 ≥ 0 is the smallest threshold
of interest and s2 < 1 is the largest threshold of interest. Based on these considerations, we
propose to use the following default family B of candidate functions:

B = {Bκ : κ ∈ (0,∞]}, (11)

with

Bκ(t) = |{1 ≤ i ≤ m : iκ− c ≤ t}| =
⌊ t+ c

κ

⌋
.

Here, c ≥ 0 is a pre-specified small constant. The discrete function Bκ is roughly linear in t
and has slope 1/κ.

The choice of c influences the slope and intercept of Bκ and hence of the resulting envelope
B̃. Taking c to be 0 or very small tends to lead to tighther bounds B̃(t) for very small t, while
taking c a bit larger tends to lead to tighter bounds for larger t. We found in simulations that
taking c = 1/(2m) usually gave good overall power.

If we take B as in expression (11), then the confidence envelope becomes

B̃ = Bκmax , where κmax = max
{
κ ∈ (0,∞] :

⋂
t∈T

{
Bκ(t) ≥ V ′(t)

}}
. (12)
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For computer programming this method, a useful equivalent formulation is the following, if
T is an interval.

Proposition 2. Suppose T is of the form [s1, s2], with 0 ≤ s1 < s2 ≤ 1. We then have

κmax = κ0 ∧min
{
κi : 1 ≤ i ≤ m and 1− pi ∈ T

}
, (13)

where

κ0 =
s1 + c

V
′
(s1)

=
s1 + c

|{1 ≤ j ≤ m : pj ≥ 1− s1}|

and for 1 ≤ i ≤ m
κi =

1− pi + c

V
′
(1− pi)

=
1− pi + c

|{1 ≤ j ≤ m : pj ≥ pi}|
.

(If the denominator is 0, the expression is interpreted as ∞.)

Note that we can sometimes straightforwardly improve the envelope Bκmax by using the
second part of Theorem 3. In Example rex2, we continue the running example and compute
simultaneous mFDP bounds. Figure 2 shows the confidence envelope and Figure 3 illustrates
how the envelope was determined.

Example 2 (Running example, part 2: Confidence envelopes.). We continue on Example 1
by computing confidence envelopes, i.e., simultaneous 50%-confidence upper bounds for V (t),
the number of false positives, which depends on the threshold t. We took T = [0, 0.2] and
defined B̃ as in (12). We computed B̃ for both c = 0 and c = 2/m = 0.004. These choices
for c were somewhat arbitrary. The number of rejections R(t), as well as the bounds B̃(t) for
both values of c, are plotted in Figure 2. The construction of the confidence envelopes B̃ is
illustrated in Figure 3.

The figure shows that as expected, near t = 0, the number of rejections increases quickly
with t. The reason is that there were many p-values near 0, as seen in Figure 1. By definition
(12), the bounds B̃(t) are roughly linear in t and we see this in the figures. We also see that
for this specific dataset, the bound B̃ depends strongly on c: for c = 0.004, the bound B̃(t) is
lower than for c = 0 if t is close to 0, but much higher otherwise. For most values of t ∈ [0, 1]
the envelope for c = 0.004 is better, i.e. lower, than the envelope for c = 0. On the other
hand, the smallest cutoffs are often most relevant. Finally, we remark that the bounds in the
figures can be somewhat improved using the last part of Theorem 3. This improvement was
used to obtain Figure 4, where simultaneous 50% confidence bounds for FDP (t) are shown.

3.4 Controlling the median of the FDP

Consider γ ∈ [0, 1]. As discussed in section 3.1, we can use any confidence envelope B to
guarantee that P(FDP ≤ γ) ≥ 0.5. In other words, we can control the mFDP. Note that
by mFDP we mean the median of the distribution that the FDP has, conditional on the
data and conditional on γ, which can be chosen after seeing the data. This is stated in the
following Theorem. (The maximum of an empty set is taken to be 0.)
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Figure 2: Graph showing the number of of rejections and two confidence envelopes for the
running example. The solid line shows the number of rejections, which depends on the re-
jection threshold t. The other lines are two confidence envelopes B̃. These are simultaneous
50%-confidence upper bounds for the number of false positives V (t). The intercept and slope
of B̃ depend on the user-specified constant c. Note that for c = 0, the intercept is slightly
smaller than for c = 0.004. Indeed, the intercepts are 0 and 2 respectively.

Theorem 4. Let B : T → N be a confidence envelope, for example B̃. Let the target FDP
γ ∈ [0, 1] be freely chosen based on the data. Define

tmax = tmax(B, γ) = max{pi : there is a t ∈ T ∩ [pi, 1] : B(t)/R(t) ≤ γ}.

Reject all hypotheses with p-values at most tmax and denote the FDP by FDPγ. Then with
probability 0.5 the FDP is at most γ, i.e.,

P
{
FDPγ ≤ γ)

}
≥ 0.5. (14)

In fact we have

P(
⋂

γ∈[0,1]

FDPγ ≤ γ) ≥ 0.5, (15)

i.e., the procedure offers mFDP control simultaneously over all γ ∈ [0, 1].
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Figure 3: Illustration of the construction of the confidence envelope for the running example.
For every rejection threshold t, V (t) is a 50% confidence upper bound for the number of
false positives, V (t). The confidence envelope B̃(t) is constructed in such a way that it lies
above the pointwise bound V (t) for all t ∈ T. Due to this construction, the bounds B̃(t) are
simultaneous 50%-confidence bounds for V (t). The intercept and slope of B̃ are influenced
by the choice of c.

In other words, if we reject all hypotheses with p-values that are at most tmax, then a
median unbiased estimate of the FDP is γ. This follows directly from the fact that the esti-
mates FDP (t), t ∈ T, are simultaneously valid 50%-confidence upper bounds, by inequality
(9). Inequality (14) holds despite the fact that γ can depend on the data. In fact, with
probability at least 50%, FDPγ ≤ γ simultaneosly over all γ ∈ [0, 1]. This contrasts our
method with many other procedures, which require considering only one rejection criterion,
which moreover needs to be chosen in advance (Benjamini and Hochberg, 1995; van der Laan
et al., 2004; Lehmann and Romano, 2005; Romano and Wolf, 2007; Guo and Romano, 2007;
Roquain, 2011; Neuvial, 2008; Guo et al., 2014; Delattre and Roquain, 2015; Ditzhaus and
Janssen, 2019; Döhler and Roquain, 2020; Basu et al., 2021; Miecznikowski and Wang, 2022).
In Example 3 we continue the running example and apply our mFDP control method.

Example 3 (Running example, part 3: Controlling the mFDP.). We continue on Example
2. Take γ = 0.05 and consider the confidence envelope B̃ discussed in Example 2. To find a
rejection threshold tmax for which we can ensure mFDP ≤ γ, we use Theorem 4. It computes
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Figure 4: For two values of c, simultaneous 50% confidence upper bounds for FDP (t) are
shown. Here FDP (t) := B̃(t)/R(t). Note that if c = 0.004, the bound is larger than zero at
t = 0. The reason is that B̃(0) > 0 for this value of c. Roughly speaking, the bound FDP (t)
then decreases for a while, before it starts to increase. Note that if c = 0, then the bound
starts at zero and increases from there.

tmax as the largest t for which the estimate in Figure 4 is at most γ.
Recall that in Example 3, we computed bounds B̃(t) for both c = 0 and c = 0.004. For

c = 0, we now find tmax = 0.002709, which is the 54-th smallest p-value. Thus, we can reject
54 hypotheses. More precisely, if we reject the 54 smallest p-values, we know that the mFDP
is below γ = 0.05. Note that tmax is about 27 times higher than the Bonferroni threshold
0.05/500 = 0.0001.

If c = 0.004 then tmax = 0.001660, so that we can only reject 53 hypotheses. The reason
why tmax is lower if c = 0.004, it that for small values of t, the bound B̃(t) is higher for
c = 0.004 than for c = 0. We saw this in Figure 2.

Note that it is allowed to change γ after looking at the data. For instance, if we decrease
γ to 0.01, we reject 44 hypotheses if c = 0 and we reject no hypotheses for c = 0.004.

3.5 Adjusted p-values for mFDP control

Adjusted p-values can be a useful tool in multiple testing. They are defined as the smallest
level, e.g. the smallest γ, at which the multiple testing procedure would reject the hypothesis.
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Adjusted p-values can be problematic in the context of e.g. FDR control and ours. The
reason is that the adjusted p-value does not have an independent meaning and can easily
be misinterpreted when taken out of context (Goeman and Solari, 2014, §5.4). Moreover, an
mFDP-adjusted p-value could be 0, which also shows that the interpretation is very different
than for real p-values, which cannot be 0. Nevertheless, in our context, adjusted p-values
are quite useful, because, once computed, they allow checking quickly which hypotheses are
rejected for various γ.

Let B be a confidence envelope and 1 ≤ i ≤ m. As discussed in Section 3.4, B defines an
mFDP controlling procedure. The mFDP adjusted p-value for Hi is the largest γ ∈ [0, 1] for
which Hi is still rejected by the mFDP controlling procedure. Consequently, if we reject all
hypotheses Hi with padi ≤ γ, then mFDP ≤ γ.

Proposition 3. Let 1 ≤ i ≤ m. Then the value

padi := min{B(t)/R(t) : t ∈ T ∩ [pi, 1]}, (16)

is an mFDP-adjusted p-value for Hi, i.e., if we reject all hypotheses Hi with padi ≤ γ, then
P(FDPγ ≤ γ) ≥ 0.5. Here γ may be chosen based on the data. In fact, inequality (15) holds.
We take the minimum of an empty set to be ∞.

Suppose T, the set of rejection thresholds of interest, is of the form [s1, s2]. Then we have
the following useful reformulation of Proposition 3.

Proposition 4. Suppose T is of the form [s1, s2], with 0 ≤ s1 < s2 ≤ 1. For each 1 ≤ i ≤ m
with pi ≤ s2, the adjusted p-value defined above is then

padi = min
{
B(t)/R(t) : t ∈

[
max{s1, pi}, s2

]
∩
{
s1, p1, p2, ..., pm

}}
. (17)

Note that given the data, the adjusted p-value is non-decreasing function of the unadjusted
p-value. As a consequence of this and Proposition 4, if T is of the form [s1, s2], we can use
Algorithm 1 to efficiently compute the mFDP adjusted p-values. The algorithm takes the m
sorted p-values, p(1), ..., p(m), as input and returns the corresponding sorted adjusted p-values.

The idea of the algorithm is to start with computing the largest adjusted p-value(s),
continue with the second largest one and so on. The algorithm also uses the fact that if
p(i) > s2, then pad(i) =∞. It further uses the fact that all hypotheses with unadjusted p-values
below s1 have the same adjusted p-value. Adjusted p-values can be easily computed using
the R package mFDP.

4 Simulations

We performed simulations to assess the error control and power of our method. We also
compared our method to BH (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001),
which is the most popular method related to FDP control.

In the simulations we considered m = 1000 hypotheses. The p-values were based on Z
statistics, computed from simulated data with various dependence structures. The p-values
were two-sided, unless stated otherwise. To add signal a number ∆ was added to the first
(1 − π0)/m test statistics. The following dependence structures of the test statistics were
considered:
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Algorithm 1 Algorithm for computing the mFDP adjusted p-values if T = [s1, s2]

r ← |{1 ≤ i ≤ m : pi ≤ s2}|.
if r < m then
pad(r+1), ..., p

ad
(m) ←∞.

end if
if r > 0 then

if s1 ≤ p(r) then

pad(r) ← B(p(r))/R(p(r))
else
pad(r) ← B(s1)/R(s1)

end if
l← r − 1
continue← FALSE
if l > 0 then

if s1 ≤ p(l) then
continue← TRUE

end if
end if
while continue = TRUE do
pad(l) = min{pad(l+1), B(p(l))/R(p(l))}
l← l − 1
if l = 0 then
continue← FALSE

else
if p(l) < s1 then
continue← FALSE

end if
end if

end while
if 0 < l then
pad(1), ..., p

ad
(l) ← min{pad(l+1), B(s1)/R(s1)}

end if
end if
return pad(1), ..., p

ad
(m)

• independence (IN);

• homogeneous positive correlations ρ (HO);

• five independent blocks, with positive dependence ρ within blocks (BL);

• 50 negatively dependent blocks (correlations -0.01), with correlation 0.5 within blocks.
The p-values were right-sided, so that they were negatively correlated between blocks
(NE).

Further, we varied π0, the signal ∆ and correlation strength ρ.

15



We computed B̃ as in Section 3.3. We took T = [0, 0.1], i.e. our bounds and mFDP-
adjusted p-values were simultaneously valid with respect to all thresholds t in this interval.
We took c = 1/(2m) = 0.0005, as recommended in Section 3.3 .

We first assessed whether our method provided appropriate simultaneous mFDP control.
We show simulation results in Table 1. For each setting, the table shows the estimate of the
probability P{for some t ∈ T, V (t) > B̃(t)}, which is identical to the probability that there is
a 0 < γ < 1 for which FDPγ exceeds γ. Each estimate was based on 104 repeated simulations.
The simulations in this section took less than one hour in total on a standard PC.

The table confirms the simultaneous control of our method. We see that the error rate is
0.5 under independence if π0 = 1. The reason is that then p = q and the equality (5) then
holds, so that the probability in expression (2) is exactly 0.5. We see that for π0 = 0.95, the
error rate is also about 0.5, rather than less than 0.5. This is partly due to the fact that
our method is adaptive, as mentioned in the Introduction. We see that in the setting with
negative dependence, π0 = 1 and one-sided p-values, the error rate is also 0.5, which is also
because equality (5) then holds. Note that in the other cases, the method was also valid.

Table 1: For various settings, the last column indicates the simulation-based estimate of the
probability that there is a 0 < γ < 1 for which FDPγ exceeds γ. This probability should
not be larger than 0.5. For the settings with π0 < 1, the signal for the false hypotheses was
∆ = 3.

π0 Setting ρ P(error)

1 IN 0 .499
1 HO .2 .334
1 HO .5 .266
1 HO .9 .295
1 BL .5 .335
1 BL .9 .351
1 NE −.01 .500
.95 IN 0 .498
.95 HO .2 .336
.95 HO .5 .266
.95 HO .9 .338
.95 BL .5 .338
.95 BL .9 .343
.95 NE −.01 .501

Next, we assessed the power of our method and compared to the power of BH. The
power was defined as the average fraction of false hypotheses that were rejected. In each
simulation loop, we calculated mFDP- and FDR-adjusted p-values and recorded which p-
values were below γ, for three values of γ. For BH1995, we took α = 0.05. BH does not have
a simultaneity property, so we only show simulation results for this value of α for BH. We
took π0 = 0.9, i.e., the first 100 hypotheses were false. The results are shown in Table 2.

Table 2 shows that for γ = 0.05, the power of our method was roughly equal to that of
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Table 2: For various simulation settings, the power of our method is shown as depending
on γ. The last column shows the power of BH, for α = 0.05. Since our method provides
simultaneous inference, γ may freely be chosen after seeing the data and we have mFDP
control simultaneously over all γ ∈ [0, 1]. Since BH requires choosing α beforehand, we only
show its power for one value of α.

γ (i.e., α)
Setting ρ ∆ 0.01 0.05 0.1 0.05(BH)

IN 0 2 .043 .045 .084 .059
IN 0 3 .224 .431 .557 .495
IN 0 4 .538 .848 .901 .878
HO .5 2 .066 .102 .139 .099
HO .5 3 .216 .393 .505 .466
HO .5 4 .513 .854 .916 .860
BL .8 2 .057 .123 .175 .127
BL .8 3 .235 .436 .533 .476
BL .8 4 .553 .818 .877 .839
NE -.01 2 .068 .100 .171 .120
NE -.01 3 .281 .539 .666 .600
NE -.01 4 .593 .895 .940 .919

BH, yet often slightly lower. However, our method provides simultaneous inference, meaning
that our bounds are simultaneous and γ can be chosen after seeing the results.

As expected, the power of our method increased with γ. Note that for in the independence
setting “IN”, for ∆ = 2, there was only a small difference between the power for γ = 0.01 and
γ = 0.05. This is because the number of rejections was nearly always low in this setting and
the envelope B̃ is discrete, so that FDP (t) usually made large jumps as a function of t.

5 Data analysis

We analyzed part of the RNA-Seq count data discussed in Best et al. (2015). The data
are from 283 blood platelet samples. We downloaded the data from the Gene Expression
Omnibus, accession GSE68086. The samples are from patients with one of six types of cancer,
as well as controls. We used the data from the 35 patients with pancreatic cancer and the 42
patients with colorectal cancer (n=77). The data contain read counts of 57736 transcripts.
We removed the data on transcripts for which more than 75% of the counts were 0, resulting
in data on 10042 transcripts.

For each of the m = 10042 transcripts, we tested the null hypothesis of no association
with type of cancer, i.e, pancreatic or colorectal. To compute the m uncorrected p-values,
we used the R package DE-Seq2, which is currently the most standard approach (Love et al.,
2014). This method employs a negative binomial model for each transcript.

We used the computed p-values as input for our method of Sections 3.3-3.5. The method
requires choosing the tuning parameter c a priori. We chose c = 1/(2m), as recommended
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in Section 3.3 and used in the simulations. Figure 5 shows the number of rejections and the
simultaneous bound for the number of false positives, as functions of the rejection threshold
t. Note that for small thresholds, R(t) is much larger than B̃(t), so that the mFDP is small.
In Figure 5 the corresponding simultaneous 50%-confidence upper bounds for the FDP are
shown

Figure 5: The number of rejections and the simultaneous bound for the number of false
positives, as functions of the rejection threshold t.

We used Algorithm 3.5 to compute mFDP-adjusted p-values. These are useful, because
the number of hypotheses that the method rejects can be computed as the number of adjusted
p-values that are at most γ. We used the adjusted p-values for generating Table 3, where the
number of rejections is shown for various values of the mFDP-threshold γ. For comparison,
we also show the number of rejections with BH for α = γ. Note, however, that BH only allows
using one value for α, which moreover needs to chosen before seeing the data.

The interpretation of the table is as follows. If the user first chooses e.g. γ = 0.05, then
she can reject 125 hypotheses. This means that with probability at least 50%, the true FDP is
below 0.05 if we reject the 125 hypotheses with the smallest p-values. Based on this promising
result, the user may wonder how many hypotheses are rejected when γ is decreased to 0.01.
She finds that then 24 hypotheses are rejected. Thus, the FDP is below 0.01 with probability
at least 50%. Since the FDP must be a multiple of 24, it follows that with probability 50%,
there are no false positives when these hypotheses are rejected. Thus, if, hypothetically, we
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Figure 6: The simultaneous 50%-confidence upper bound FDP (t) = B̃(t)/R(t) as function
of the rejection threshold t.

Table 3: For different values of γ, the number of rejected null hypotheses is shown, for two
methods. The first method is our method for simultaneous mFDP control. The inferences
with this method are simultaneous, which means that with 50% confidence, FDPγ ≤ γ for
all γ ∈ T simultaneously. The second method is BH, which ensures that if α is chosen prior
to the data analysis, then FDR = FDR(α) ≤ α, but not simultaneously over multiple α.

γ (i.e., α)
Method 0.01 0.05 0.1

mFDP control 24 125 243
FDR control with BH 12 163 287

repeat the experiment many times, then in at least 50% of the cases, for all values of γ that
the user considers, the FDP = FDPγ will be below γ.
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6 Discussion

This paper provides an exploratory multiple testing method, which is useful in particular
because the user is allowed to freely use the data to choose rejection thresholds. This is what
many researchers would like to do, but is not allowed by most popular methods.

In this paper we have first considered relatively simple, non-simultaneous bounds for π0
and the FDP. We then provided simultaneous 50%-confidence envelopes for the FDP, which
can in turn be used for flexible control of the mFDP. Our approach, inspired by Schweder-
Spjøtvoll-Storey and Hemerik et al. (2019), is often rather powerful and requires a novel type
of assumption, which was valid in all our simulations.

Since our method essentially provides estimates for the FDP without confidence intervals,
we encourage users to also compute a confidence interval, using e.g. the methods listed in
the Introduction. However, as discussed, the methods among those that are valid under
dependence have limited power. This means that the confidence interval for the FDP may
contain 1, even when there are several strong signals. If permuting data is valid, this can
often be used to construct tighter confidence intervals (Hemerik et al., 2019; Andreella et al.,
2020; Blain et al., 2022).

In simulations we have compared our procedure to the well-known BH method. Our
simulations illustrate that for a given level γ, BH tends to have slightly more power than our
method, but our method has the advantage that it provides simultaneous inference. On the
other hand, we control the median of the FDP, which may not always be as appealing as
control of the mean.

Both our method and BH have certain proven theoretical guarantees, in particular under
independence. None of the methods are guaranteed to be valid under an unknown dependence
structure. However, there is much evidence that BH is valid for many dependence structures.
Likewise, we did not find a simulation setting where our method was invalid.

Some avenues for potential future research become apparent in the Supplementary Mate-
rial. There we discuss more general estimates of π0 and V (t), which can be combined with
the approach in Section 3.2 of constructing simultaneous mFDP bounds.

Note that “uniform” or “ simultaneous” control means that the probability of a union
of events is kept below some value (Genovese and Wasserman, 2004; Meinshausen, 2006;
Blanchard et al., 2020; Goeman et al., 2021). Since the definition of FDR control is not
defined as controlling a probability, “simultaneous FDR control” is in that sense undefined.
However, one could instead aim to control the expected value of the supremum of the FDPs for
several sets of selected hypotheses. We are not aware of any literature on such ‘simultaneous
FDR control’, except Corollary 1 in Katsevich and Ramdas (2018). One also wonders whether
methods such as BH can modified such that α can be chosen after seeing the data. Such a
method might for example require that only one value for α is considered, but would allow
this value to be chosen post hoc.
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A Appendices

A.1 Proofs of results in the main paper

A.1.1 Proof of Proposition 1

Proof. We have

π̂′0 − π′0 =
|{i : pi > 1− t}|

mt
− |{i : pi ≥ 1− t}|+ |{i : pi > t}|

m
=

|{i : pi > 1− t}|
mt

−
t
(
|{i : pi ≥ 1− t}|+ |{i : pi > t}|

)
mt

=

λ|{i : pi > 1− t}| − t|{i : pi = 1− t}| − t|{i : pi > t}|
mt

. (18)

For t = 1/2, this is 0. Now suppose t ∈ (0, 1/2). If the densities fi of the p-values pi are
non-increasing, then

E(|{i : pi > 1− t}|/t) =

t−1
m∑
i=1

∫ 1

1−t
fi(x)dx ≤

(1− t)−1
m∑
i=1

∫ 1

t
fi(x)dx =

E(|{i : pi > t}|)/(1− t).
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Here, the inequality is due to fact that the average of fi(x) on [1−t, 1] is smaller than or equal
to the average of fi(x) on [t, 1], since t < 1 − t and the fi are non-increasing. Multiplying
both sides by t(1− t) gives

E
(
λ|{i : pi > 1− t}| − t|{i : pi > t}|

)
≤ 0,

so that the expected value of (18) is at most 0. In case t ∈ (1/2, 1), an analogous proof shows
that the expected value of (18) is at least 0.

A.1.2 Proof of Theorem 3

Proof. Let E be the event {B̃(p) ≥ B̃(1− q)} and suppose E holds. Note that

V
′
(1− q, t) = |{1 ≤ i ≤ N : 1− qi > 1− t}| = |{1 ≤ i ≤ N : qi < t}| = R(q, t).

Thus
B̃(1− q) = min

{
B ∈ B :

⋂
t∈T

{
B(t) ≥ R(q, t)

}}
.

Note that V (q, t) = |N ∩ R(t)| = R(q, t). Hence, for every t ∈ T,

V (t) = R(q, t) ≤ B̃(1− q, t) ≤ B̃(p, t).

Since P(E) ≥ 0.5, it follows that

P
[ ⋂
t∈T

{
V (t) ≤ B̃(p, t)

}]
≥ 0.5,

as was to be shown.
Now we show that B̃′ is also a confidence envelope. Assume E holds. Then for every l ∈ T,

[R(l)− B̃(l)]+ ≤ S(l), where we recall that S(l) = R(l)− V (l). Since S is non-decreasing in
l, it follows that

max{[R(l)− B̃(l)]+ : l ∈ T, l ≤ t)} ≤ S(t)

for every t ∈ T. Consequently V (t) ≤ B̃′(t) for every t ∈ T. This is true whenever E
holds. Since P(E) ≥ 0.5, it follows that B̃′ is a confidence envelope. It improves B̃ when
[R(·)− B̃(·)]+ in strictly decreasing somewhere on T.

A.1.3 Proof of Proposition 2

Proof. We will first show that formula (13) holds if we define

κ0 = max
{
κ ∈ (0,∞] : Bκ(s1) ≥ V

′
(s1)

}
,

κi = max
{
κ ∈ (0,∞] : Bκ(1− pi) ≥ V

′
(1− pi)

}
,

1 ≤ i ≤ m. We then show that this κi is actually equal to 1−pi+c
V
′
(1−pi)

(and analogously for κ0),

which finishes the proof.
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First step. By definition,

κmax = max
{
κ ∈ (0,∞] :

⋂
t∈T

{
Bκ(t) ≥ V ′(t)

}}
. (19)

Let
A :=

{
s1

}
∪
{

1− pi : 1 ≤ i ≤ m and 1− pi ∈ T
}
.

Note that on T, the non-decreasing, discrete, right-continuous function t 7→ V
′
(t) has a jump

at every t ∈ T for which there is a 1 ≤ j ≤ m such that t = 1− pj .
Consequently, the expression (19) equals

κmax = max
{
κ ∈ (0,∞] : for all s ∈ A : Bκ(s) ≥ V ′(s)

}
=

κ0 ∧min
{
κi : 1 ≤ i ≤ m and 1− pi ∈ T

}
,

where
κ0 = max

{
κ ∈ (0,∞] : Bκ(s1) ≥ V

′
(s1)

}
and for 1 ≤ i ≤ m

κi = max
{
κ ∈ (0,∞] : Bκ(1− pi) ≥ V

′
(1− pi)

}
.

Second step. We have

κi = max
{
κ ∈ (0,∞] : |{1 ≤ i ≤ m : iκ− c ≤ 1− pi}| ≥ V

′
(1− pi)

}
=

max
{
κ ∈ (0,∞] : [V

′
(1− pi)] · κ− c ≤ 1− pi

}
=

1− pi + c

V
′
(1− pi)

and analogously for κ0.

A.1.4 Proof of Theorem 4

Proof. Let E be the event that for all t ∈ T we have FDP (t) ≤ B(t)/R(t). Suppose E
holds. Let γ ∈ [0, 1]. We will show that FDPγ ≤ γ. This will then finish the proof of
the last statement of the theorem, since P(E) ≥ 0.5. Note that FDPγ = FDP [tmax(γ)] ≤
B[tmax(γ)]/R[tmax(γ)] ≤ γ, so that we are done.

A.1.5 Proof of Proposition 3

Proof. First of all, note that the minimum in (16) exists, since B takes values in N by defini-
tion.

Let E be the event that for all t ∈ T we have FDP (t) ≤ B(t)/R(t). Let r be the number
of hypotheses that this procedure rejects, i.e., the number of Hi with padi ≤ γ. Note that
there is a t′ ∈ T such that |{1 ≤ i ≤ m : pi ≤ t′}| = r and such that B(t′)/R(t′) ≤ γ. Hence
FDP (t′) ≤ γ. This holds simultaneously over all γ ∈ [0, 1], since E holds. Since P(E) ≥ 0.5,
this finishes the proof.
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A.1.6 Proof of Proposition 4

Proof. Note that [max{s1, pi}, s2] is simply the set T∩[pi, 1] from definition (16). The discrete
function t 7→ B(t)/R(t) only has jumps downwards at points t ∈ {p1, ..., pm}. Thus, on T =
[s1, s2], this function takes its minimum at some t ∈ {s1, p1, p2, ..., pm}. Hence, to compute the
minimum, it suffices to take the minimum over all t ∈

[
max{s1, pi}, s2

]
∩
{
s1, p1, p2, ..., pm

}
,

as was to be shown.

A.2 Supplemental information: other methods for estimation of π0 and
FDP

The main paper contains a useful framework for estimation of π0 and the FDP, inspired
by the Schweder-Spjøtvoll-Storey estimator of π0. For every cut-off t considered, the paper
derives a median unbiased estimate V

′
(t) of the number of false positives V (t). In Theorem

3, these bounds were used to derive a confidence envelope, which provides simultaneous 50%-
confidence bounds for FDP (t). This confidence envelope was in turn used to provide flexible
mFDP control.

In this appendix, we employ existing results related to closed testing, to generalize the
results in the main paper. We will obtain a wide range of novel median unbiased estimates of
π0 and V (t). Using the approach developed in the main paper, these novel estimates could also
be used to provide novel confidence envelopes and FDP controlling procedures. The methods
developed in the main paper are a special case of the general methodology developed below.

The procedures that we will derive, vary in terms of properties such as accuracy and bias.
These properties always depend on the distribution of the data and there is no method that
is always best. We consider the method developed in the main paper particularly valuable,
because it is sensible and relatively simple. For this reason, we focus on that method in the
main paper.

A.2.1 The Schweder-Spjøtvoll-Storey method and closed testing

In Section 2 we derived median unbiased estimators of π0 and the FDP. Here we first derive
the same result, but from the perspective of closed testing (Marcus et al., 1976; Goeman
and Solari, 2011; Goeman et al., 2021). This perspective will reveal the broad class of novel
estimators.

We start by explaining what closed testing is and how it can be used to obtain median
unbiased estimators. The closed testing principle goes back to Marcus et al. (1976) and can be
used to construct multiple testing procedures that control the family-wise error rate. Goeman
and Solari (2011) show that such procedures can be extended to provide confidence bounds
for the number of true hypotheses in all sets of hypotheses simultaneously. They construct
(1 − α)100%- confidence upper bounds – (1 − α)-bounds for short – for the FDP, where
α ∈ (0, 1). In this paper, we always consider γ = α = 0.5.

Let C be the collection of all nonempty subsets of {1, ...,m}. For every I ∈ C consider the
intersection hypothesis HI = ∩i∈IHi. This is the hypothesis that all Hi with i ∈ I are true.
For every I ∈ C, consider some local test δ(I), which is 1 if HI is rejected and 0 otherwise.
Assume the test δ(N ) has level at most α, so that P(δ(N ) ≥ 1) is bounded by α. Define

X = {I ∈ C : δ(J) = 1 for all I ⊆ J ⊆ C}.
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The general closed testing procedure rejects all intersection hypotheses HI with I ∈ X . It is
well-known that this procedure controls the familywise error rate (Marcus et al., 1976). In
Goeman and Solari (2011) it is shown that we can also use the set X to provide a (1 − α)-
confidence upper bound for the number of true hypotheses in any I ∈ C. They show that

tα(I) := max{J ⊆ I : J 6∈ X}.

is a (1−α)-confidence upper bound for |N ∩ I|. In fact, they show that the bounds tα(I) are
valid simultaneously over all I ∈ C :

P

[ ⋂
I∈C

{
|N ∩ I| ≤ tα(I)

}]
≥ 1− α. (20)

The proof is short: HN is rejected with probability at most α, and if it is not rejected, then
X contains no (sets of indices of) true hypotheses, which implies that |N ∩ I| ≤ tα(I) for all
I ∈ C. A different method, formulated in Genovese and Wasserman (2006), turns out to lead
to the same bounds. This was first noted in the supplementary material of Hemerik et al.
(2019) and in Goeman et al. (2021).

We now turn to a closed testing procedure inspired by the Schweder-Spjøtvoll-Storey
estimator, which will lead to the same estimates as obtained in the previous sections. We
only assume that Assumption 1 is satisfied and, for convenience, that N > 0. Let 1(·) be the
indicator function. For every I ∈ C, consider the local test

δ(I) = 1

(∣∣{i ∈ I : pi ≤ t
}∣∣ > ∣∣{i ∈ I : pi ≥ 1− t

}∣∣) = 1

(
W−I > W+

I

)
,

where
W−I =

∣∣{i ∈ I : pi ≤ t
}∣∣, W+

I =
∣∣{i ∈ I : pi ≥ 1− t

}∣∣. (21)

Take α = 0.5. It follows from Assumption 1 that P(δ(N ) = 1) ≤ α. Consequently the
bounds tα(I), I ∈ C, are simultaneous 50%-confidence upper bounds, i.e., the inequality (20)
is satisfied for α = 0.5. In particular, tα({1, ...,m}) is a bound for the total number of true
hypotheses, N . For every 1 ≤ a ≤ m, Qa be the set of indices of the a largest p-values, with
ties broken arbitrarily. For t ∈ (0.0.5] we have

tα({1, ...,m}) = max{J ⊆ {1, ...,m} : J 6∈ X} = max{1 ≤ a ≤ m : Qa 6∈ X} =

max{1 ≤ a ≤ m : W−Qa
≤W+

Qa
} =

min
{
m, 2 · |{1 ≤ i ≤ m : pi ≥ 1− t}|+ |{1 ≤ i ≤ m : t < pi < 1− t}|

}
=

min
{
m, |{1 ≤ i ≤ m : pi > t}|+ |{1 ≤ i ≤ m : pi ≥ 1− t}|

}
.

By a similar argument, we get the same result when t ∈ (0.5, 0). Dividing this estimate by
m gives precisely our estimate π′0. Thus, based on the closed testing principle we obtain the
same bound as using the argument in Section 2.1.

Now let t ∈ (0, 1) be a threshold and consider the rejected set R(t) = {1 ≤ i ≤ m : pi ≤ t}.
Then one can check that tα(R) is precisely the bound V (t) from section 2.2. Thus, the
closed testing principle gives the same estimate as obtained before. Below, we will consider
alternative local tests δ, to obtain different methods.
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A.2.2 Different median unbiased estimates

We will now consider a more general class of local tests δ, which lead to estimates different
from the ones considered until now. Consider any non-decreasing, data-independent function
ψ : [0, 1/2]→ R. For every I ∈ C, define

W−I =
∑
I−

ψ(|1/2− pi|), W+
I =

∑
I+

ψ(|pi − 1/2|), (22)

where I− = {i ∈ I : pi ≤ t}, I+ = {i ∈ I : pi ≥ 1 − t}. This is a generalization of the
definition of W−I and W+

I from section A.2.1. Indeed, if we take ψ ≡ 1, then the definitions
(21) and (22) coincide.

We make the following assumption, which is a generalization of Assumption 1.

Assumption 3. The following holds:

P
{
W−N > W+

N

}
≤ 0.5. (23)

(If N = 0, assume nothing.)

In case ψ ≡ 1, Assumption 1 and 3 are the same. We noted in section 2.2 that Assumption
1 is satisfied in particular if (q1, ..., qN ) and (1 − q1, ..., 1 − qN ) have the same distribution.
Note that Assumption 3 is then satisfied as well for general ψ.

For every I ∈ C we now consider the general local test

δ(I) = 1(W−I > W+
I ),

where W−I and W+
I depend on ψ as in the definition (22). This general local test defines

a general closed testing method that depends on ψ. We again denote the collection of sets
rejected by the closed procedure by X . Based on this general closed tesing procedure we
obtain ψ-dependent bounds tα(I). Like before we have

tα({1, ...,m}) = max{1 ≤ a ≤ m : Qa 6∈ X} = max{1 ≤ a ≤ m : W−Qa
≤W+

Qa
} =

max{1 ≤ a ≤ m : W−Qa
≤W+

{1,...,m}}. (24)

This is a general, ψ-dependent, median unbiased estimator of N .
Now suppose we use a rejection threshold t ∈ (0, 1/2], i.e., we reject all hypotheses with

indices in R(t). For every 1 ≤ a ≤ R(t), define Qta to be the set containing the indices of the
largest a p-values that are strictly smaller than t (with ties broken arbitrarily).

Proposition 5. Under Assumption 3, for any t ∈ [0, 1], a median unbiased estimate of V (t)
is

V ψ(t) := max{1 ≤ a ≤ R(t) : W−Qt
a
≤W+

{i:pi>1−t}}.

Dividing this by R(t) gives a median unbiased estimate for the FDP:

P(FDP (t) ≤ V ψ(t)/R(t)) ≥ 0.5.
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Proof. A median unbiased estimate of V (t) is

tα(R(t)) = max{|I| : I ⊆ R(t) and I 6∈ X} = max{1 ≤ a ≤ R(t) : Qta 6∈ X}. (25)

Note that Qta 6∈ X if and only if its superset J := Qta ∪ {i : pi ≥ 1 − t} is not rejected by its
local test δ(J), i.e. when W−J ≤W

+
J , i.e. when W−Qt

a
≤W+

{i:pi≥1−t}.

Hence the quantity (25) is equal to

max{1 ≤ a ≤ R(t) : W−Qt
a
≤W+

{i:pi≥1−t}}.

The bounds V ψ(t) can be immediately used within the theorems in the main paper to
obtain confidence envelopes and FDP controlling procedures. For good performance, it can
be necessary to adapt the set B of candidate envelopes in an appropriate way depending on
the choice of ψ.

We will now discuss two new examples of functions ψ, namely ψ(x) = x and ψ(x) = x2.
If ψ(x) = x, then for I ∈ C we have

δ(I) = 1(W−I > W+
I ) =

1

[ ∑
i∈I−

0.5− pi >
∑
i∈I+

pi − 0.5
]

= 1

[
|I|−1

∑
i∈I

pi < 0.5
]
.

Thus the local test simply checks whether the average of the p-values with indices in I is
below 0.5.

For ψ(x) = x2, we local test is

δ(I) = 1

[ ∑
i∈I−

(0.5− pi)2 >
∑
i∈I+

(pi − 0.5)2
]
.

The function ψ ‘weights’ the p-values, depending on how far they are from 1/2. If, rather
than ψ ≡ 1, we take ψ(x) = x or ψ(x) = x2, then the p-values that are far from 1/2 receive the
most weight. The choice of ψ influences the bias and variance of the π0 and FDP estimates.
We found using simulations (not shown) that using ψ ≡ 1 often leads to a smaller expected
value of the estimator of π0 than using ψ(x) = x or ψ(x) = x2, but often to higher variance.
The former makes intuitive sense if one looks at the formula (24) of the estimator of N .
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