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Abstract

We estimate short-duration dividend strip prices from 25 years-worth of S&P 500 index

option data (1996-2020). We show that short-duration strips offer substantially more attractive

returns than does the market, but the measurement error obscures this result at monthly holding

periods. For holding periods longer than one year, where the effect of the measurement error

dissipates, the strip Sharpe ratio is two to four times the market Sharpe ratio. This outperfor-

mance holds in different subperiods, as well as conditionally on recessions or expansions. We

also document that the return on the strip in excess of the market is highly predictable.
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1 Introduction

Are returns of short-duration equity more attractive than returns of long-duration equity? The an-

swer to this question is important for investment decisions and our understanding of asset pricing

models. Yet, the empirical evidence on this topic is mixed. Van Binsbergen, Brandt, and Koijen

(2012) estimate short-duration dividend strips from index options during 1996 through 2009 and

show that short-duration dividend strips deliver higher returns and Sharpe ratios than does the long-

duration market. Bansal, Miller, Song, and Yaron (2021) use dividend futures data from late 2004

to early 2017 and argue the exact opposite. Bansal, Miller, Song, and Yaron (2021) and Gorm-

sen (2021) disagree on whether the relative attractiveness of dividend strips increases or decreases

during bad times of the economy. We show that short-duration strip returns are substantially more

attractive than are market returns, during both recession and expansions, but performance needs

to be measured over long holding periods. Theoretical asset pricing equations typically hold inde-

pendently of holding periods. However, when prices are measured with error, results can depend

on the length of the holding period. This dependence is particularly important for dividend strips

estimated from leveraged option positions. Boguth, Carlson, Fisher, and Simutin (2019) show that

noise in the option data can cause a nontrivial measurement error in dividend strip returns. They

advocate for the use of logarithmic returns to remove the bias in average returns. However, the use

of logarithmic returns will not produce unbiased estimates of Sharpe ratios, because the measure-

ment error also inflates the return standard deviation (Blume and Stambaugh 1983). Hence, even

with an unbiased estimate for the mean return, the measurement error can still bias Sharpe ratios

downwards.

To mitigate the effect of measurement error, we use longer holding period returns. Standard

deviation of returns increases over longer holding periods, whereas the effect of measurement error

decreases over longer holding periods. Theoretically, the measurement error vanishes asymptoti-
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cally. Empirically, it disappears for holding periods longer than 12 to 24 months. At these holding

periods, we find that dividend strips are more attractive than the market; the dividend strip Sharpe

ratio is two to four times the market Sharpe ratio. This difference, which is economically impor-

tant and statistically significant, is mainly driven by the lower standard deviation of dividend strip

returns, whereas average returns on both assets are similar.

In addition to studying returns over longer holding periods, we also lengthen our sample.

Bansal, Miller, Song, and Yaron (2021) argue that short samples and an oversampling of reces-

sion periods drives many existing results regarding the term structure of equity term premia. We

almost double the sample of intradaily option data (1996 through 2020) compared to Van Binsber-

gen, Brandt, and Koijen (2012) (1996 through 2009). The proportion of recessions in our sample

is comparable to the historical occurrence of recessions.1

We estimate dividend strip prices from time-matched put-call parity relations (Van Binsbergen,

Brandt, and Koijen 2012); (BBK from now on). This estimation is sensitive to the choice of interest

rate. The interest rate should reflect the funding costs of marginal investors in the option market

(Song 2016; Binsbergen and Koijen 2016). Thus, we suggest an interest rate invariant method

and use the endogenous interest rate implied by option prices (Van Binsbergen, Diamond, and

Grotteria 2021). This approach contrasts with that of BBK, who impose an exogenous interest rate

(zero curve rate), which can bias dividend strip returns. Further, our interest rate invariant approach

avoids the time mismatch between the intradaily option data and end-of-day interest rate proxies

(Boguth, Carlson, Fisher, and Simutin 2019).

Our main finding is that dividend strip Sharpe ratios for longer holding periods are higher

than market Sharpe ratios. This result holds in the full sample, as well as in the subsamples used

1Bansal, Miller, Song, and Yaron (2021) find that 15% of their long sample consists of mild recessions and 4%
of their sample consists of severe recessions. We have National Bureau of Economic Research (NBER)-defined
recessions in 9% of our sample.
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by BBK and Bansal, Miller, Song, and Yaron (2021). Moreover, our result holds regardless of

whether the investment starts during National Bureau of Economic Research (NBER) recessions

or expansions.

Results are robust to the choice of the dividend strip maturity (1.9 years in the base case); the

use of the exogenous zero curve rate instead of the interest rate invariant approach; the choice of

moneyness as we filter our option sample; the use of raw returns rather than excess returns; and

reducing transactions costs by holding the strip to maturity instead of rebalancing monthly.

Having established the attractiveness of dividend strips, we ask whether one can predict the

outperformance of the strip over the market. A simple present value model guides our predictive

regressions. We find that the difference between the strip and the market return is highly predictable

by the difference between the dividend-to-price ratios of the strip and the market. These results

strengthen with the length of the holding period and hold both in and out of sample.

Our study bridges the literature on the equity term structure and the one on holding period

effects. The equity term structure literature is concerned with the shape of the term structure of

returns, standard deviations, and Sharpe ratios (for an overview, see Van Binsbergen and Koijen

2017). Depending on the time period and the measurement of dividend strip prices, researchers

argue that dividend strip returns are either more or less attractive than the market (BBK; Bansal,

Miller, Song, and Yaron 2021; Gonçalves 2021; Gormsen 2021). We contribute to this literature by

constructing a long time series of dividend strip prices. We provide strong evidence that dividend

strips deliver economically and statistically higher Sharpe ratios than does the market This is driven

by the upward-sloping term structure of standard deviations, while the equity term structure of

average returns is mostly flat.

A number of authors challenged the BBK approach of measuring dividend strip prices from

the options market. Schulz (2016) suggests that taxes could drive the results, but Binsbergen and
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Koijen (2016) argue that the estimated tax rates of Schulz (2016) are unreasonably high. Using

lower tax rates from the literature (Sialm 2009), they confirm the BBK findings. Further, Bins-

bergen and Koijen (2016) argue that neither noise induced by asynchronous trading nor alternative

funding costs for financial intermediaries are likely explanations for the original findings of BBK.

In contrast, we show that measurement error in option prices does affect findings and that results

over longer holding periods are not susceptible to such measurement error.

Among the leading asset pricing models, our findings are most consistent with predictions

made from the rare disaster model of Gabaix (2009). In this model, short- and long-duration assets

are exposed to the same risk and have the same expected returns. However, long-duration returns

are more sensitive to the time variation in disaster probabilities. As a result, long-duration assets

are more volatile and have lower Sharpe ratios.

The literature on the holding period effects mostly focuses on biases in average returns (Boguth,

Carlson, Fisher, and Simutin 2016). We contribute to that literature by focusing on the holding pe-

riod effects on Sharpe ratios. We show how the measurement error inflates the standard deviation

of single-period returns and, thus, requires the use of longer holding period returns to obtain re-

liable estimates of Sharpe ratios. The measurement error in the monthly returns shows up as a

negative AR(1) coefficient and leads to a downward biased Sharpe ratio. This bias disappears over

longer holding periods. Our findings dovetail with those of Laarits (2021), who documents the op-

posite effect for returns on anomalies. Anomalies exhibit positive AR(1) coefficients and upward

biased Sharpe ratios. Again, this bias disappears over longer holding periods.

Instead, one could use an ARMA-type model to account for measurement error. Such time-

series models suffer when they are misspecified while longer holding period returns work inde-

pendently of any modeling choice. Thus, longer holding period returns could be an interesting

alternative to the main MA(2) model of Getmansky, Lo, and Makarov (2004) that they use to
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model smoothing of hedge fund returns.

Like BBK, we estimate dividend strip prices from index options. Alternatively, one could

deduct dividend strip prices from dividend futures (Van Binsbergen, Hueskes, Koijen, and Vrugt

2013; Cejnek and Randl 2020; Bansal, Miller, Song, and Yaron 2021) Presumably, the use of

dividend futures is less prone to measurement error (Binsbergen and Koijen 2016). However,

the market for dividend futures has its own set of limitations. It is mostly a sellers’ market used

for hedging dividend exposure of institutions selling structured products (Dor and Florig 2021).

Moreover, exchange-traded dividend futures on the S&P 500 dividend index started quite recently

in 2015. Before that, there was only an over-the-counter market for dividend swaps. Most stud-

ies using dividend swaps rely on proprietary data from investment banks (e.g., Bansal, Miller,

Song, and Yaron 2021;Van Binsbergen, Hueskes, Koijen, and Vrugt 2013) that cannot be freely

distributed. In comparison, our estimated dividend strip prices span 25 years of data and can be

freely distributed.

Other recent studies estimate the equity term structure from the cross section of equity returns

(Giglio, Kelly, and Kozak 2020; Gonçalves 2021). That approach extends the data back even

further than by using index options at the cost of estimating the dynamics of the economy and the

preferences of the investors. Our data provide direct estimates of dividend strips and can be used

as a yardstick to evaluate alternative methods.

Finally, we contribute to the return predictability literature. Researchers have used information

on dividends implied by derivative prices (Golez 2014; Li and Wang 2018) or dividend strip returns

(BBK) to predict stock market returns. We use present value relations to show that the outperfor-

mance of strip returns over market returns is predicted by the scaled difference of their respective

dividend-to-price ratios. Recently, Cassella, Golez, Gulen, and Kelly (2021) link the difference in

returns to the term structure of investor optimism.
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The rest of the paper is organized as follows. In Section 2, we describe the data. In Section 3,

we discuss the methodology and estimation of dividend strip prices and returns. In Section 4, we

present the results for monthly and longer holding periods. We also discuss the evidence related to

subsamples and the business cycle. In Section 5, we predict the term structure of equity returns. In

Section 6, we present the results of our robustness checks. Section 7 concludes.

2 Data

We obtain data on European S&P 500 index options (henceforth SPX options) from the Chicago

Board of Options Exchange (CBOE). We use tick-level data for the period from January 1, 1990,

through March 31, 2004, and minute-level data from January 1, 2004, through December 31, 2020.

We aggregate the tick-level data to the minute level. The CBOE switched in the more recent data

from Central Standard Time (Chicago) to Eastern Standard Time (New York City). We moved all

time stamps to Central Standard Time. We merge the option data with the intradaily S&P 500 cash

index from the Chicago Mercantile Exchange (CME). Data for long-maturity options in the early

years are very sparse. Therefore, we follow BBK and start our analysis in January 1996. Our final

time series is from January 1996 through December 2020.

We calculate realized dividends from the daily Datastream S&P 500 return index and the total

return index. We use information on indicative dividends for the S&P 500 index from S&P Dow

Jones Indices. We collect daily zero curve rates from January 1996 through December 2020 from

OptionMetrics. Further, we download nominal constant maturity Treasury interest rates from the

H.15 filing of the St. Louis Federal Reserve Bank. We also obtain returns on two-year and 10-year

fixed maturity Treasuries from CRSP. For recessions, we rely on NBER-defined recessions. For

comparison, we also download the original data from BBK from the web page of the American
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Economic Review.

3 Methodology and Estimation

To study the attractiveness of short-duration strips compared to the market, we need returns on

both securities. We compute market returns from S&P 500 prices. We compute dividend strip

prices from the put-call parity relation of European put and call options (SPX) on the S&P 500

index. Put-call parity dictates that, at any given time 𝑡,

𝑐𝜏𝑡 (𝑋) − 𝑝𝜏𝑡 (𝑋) =
(
𝑆𝑡 −𝑃𝜏

𝑡

)
− 𝑋𝑒−𝑟 𝑓

𝜏
𝑡 𝜏, (1)

where 𝜏 is the maturity of the options at time 𝑡, 𝑐 is the price of a European call option with

strike price 𝑋 , 𝑝 is the price of a European put option with same strike price, 𝑆 is the value of the

underlying index, 𝑃 is the price of dividends on the underlying index during the life of the options,

and 𝑟 𝑓 is the annualized continuously compounded risk-free rate of return over the corresponding

period 𝜏.

Using exogenous zero curve interest rates, Van Binsbergen, Brandt, and Koijen (2012) invert

the put-call parity relation and directly estimate the price 𝑃 of the short-duration dividend strip

from the observed option prices:

𝑃𝜏
𝑡 = 𝑆𝑡 + 𝑝𝜏𝑡 (𝑋) − 𝑐𝜏𝑡 (𝑋) − 𝑋𝑒−𝑟 𝑓

𝜏
𝑡 𝜏 . (2)

Specifically, for a given day 𝑡 and maturity 𝜏, they find all intradaily pairs of put and call options

with the same strike price and match them with the intradaily values of the index and the end-of-

day values of the zero curve rate of the matching maturity. From each combination of the data
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with the same maturity, they estimate a strip price, which they aggregate into a single daily median

price.

Results may be sensitive to the use of an exogenous zero curve interest rate. First, there is

a time mismatch between end-of-day zero curve rates and intradaily data for the options and the

index (Boguth, Carlson, Fisher, and Simutin 2019). Second, funding costs of marginal investors

in index options may differ from the exogenous interest rate (Song 2016). Ulrich, Florig, and

Wuchte (2019) find that the unconditional term premium is either downward-sloping or upward-

sloping depending on which interest rate (Treasury-bill rate or LIBOR) they use as a proxy for the

risk-free rate.

Even a small error in interest rates can lead to a large error in the estimated dividend strip

returns. Interest rates that are too low (high) lead to strip prices that are also too low (high) (see

Equation 2). Any mistake in the strip prices is then magnified in the calculation of strip returns. In

the Appendix, we consider a simple calibration based on a small error of negative 4 basis points

(bp). The error is based on our finding that interest rates implied by the option data (as will be

described below) are 4 bp higher than zero curve rates. We show that even such a small error

can lead to bias in half-annual dividend strip returns of 0.27% (or 7.63% in relative terms). The

elasticity of the strip return with respect to the interest rate error is large at −5.49.

3.1 Endogenous Interest Rates

Therefore, we advocate for the use of an interest rate invariant approach that relies on interest

rates internally consistent with option prices. Specifically, we can treat Equation (1) as having two

endogenous variables, the dividend price 𝑃 and the risk-free rate 𝑟 𝑓 . Van Binsbergen, Diamond,

and Grotteria (2021) identify the risk-free rate by combining two put-call parity relations with
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different strike prices 𝑋 into a pair.2

They discuss two different ways of estimating implied interest rates from such pairs. We refer

to the first approach as the outer product approach. For a given maturity 𝜏, we create all possible

unique combinations of put-call pairs across strike prices. We denote the number of different put-

call strike prices by 𝑁 . The number of possible combinations is 𝐴 =
𝑁 (𝑁−1)

2 . For each put-call pair

(indexed a = 1,...A), we compute an implied interest rate. That is, for each 𝑖 = 1, ....𝑁 and for each

𝑗 = 1...𝑁 , for which 𝑋𝑖 is greater than 𝑋 𝑗 , we compute

𝑟 𝑓𝑡,𝜏,𝑎 = −1
𝜏
𝑙𝑛

[ (
𝑝𝜏𝑡 (𝑋𝑖) − 𝑐𝜏𝑡 (𝑋𝑖)

)
−
(
𝑝𝜏𝑡

(
𝑋 𝑗

)
− 𝑐𝜏𝑡

(
𝑋 𝑗

) )
𝑋𝑖 − 𝑋 𝑗

]
. (3)

Finally, we take the median implied rate as the daily implied interest rate. This approach is com-

putationally intensive, but robust to outliers.

We refer to the second approach as the regression approach. For a given maturity 𝜏, we run the

following regression based on time-matched put-call parity relations:

𝑆𝑡 − 𝑐𝜏𝑡 (𝑋) + 𝑝𝜏𝑡 (𝑋) = 𝑃+ 𝛽𝑋 + 𝜖 . (4)

We use the estimated coefficient for the strike price 𝛽 to compute the implied risk-free rate, 𝑟 𝑓 =

−1
𝜏
𝑙𝑛

(
𝛽
)
. This is a computationally efficient method, but more sensitive to outliers than the outer

product approach. Both methods produce the same estimates asymptotically.

We use the implied interest rates as an input to the put-call parity relation (Equation 2) and

calculate prices of the dividend strips. Over the years, option trading has substantially increased.

The data from the first part of the sample (1996 through 2003) are much sparser than from the sec-

2As an alternative, Golez (2014) identifies the risk-free rate by combining option data with futures data (see De-
maskey and Heck (1998) for an early reference). Since standard SPX options expire on a monthly cycle, and futures
expire on a quarterly cycle, his approach restricts the set of possible maturities.
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ond part (2004 through 2020). On January 31, 1996, and after filtering (see below), the number of

unique option relations across all maturities is 3,271 (1,243 option relations for maturities greater

than one year). On December 31, 2020, the number of unique option relations is 365,009 (84,346

option relations for maturities greater than one year). As a result, the impact of potential outliers is

much larger in the first part of the sample, whereas computational speed is more of a concern in the

latter part of the sample. We therefore use the outer product approach to estimate implied interest

rates from 1996 through 2003 and the regression approach from 2004 through 2020. When we

apply both approaches to a sample of recent data, we find that strip prices are virtually the same.3

Like BBK, we use options only on the last business day of each month between 10 a.m. and

2 p.m. We use standard monthly options that expire on the third Friday of each month. For the

option price, we use the bid-ask midpoint and eliminate all options with bid or ask prices lower

than $3. We also eliminate options with moneyness levels below 0.5 or above 1.5 and options with

maturities of fewer than 90 days.

[Figure 1 about here]

We find that the one-year implied rate is on average 5 bp (1.77% in relative terms) higher than

the zero curve rate. To illustrate, Figure 1 plots the one-year constant maturity implied rate along

with the zero curve rate and the Treasury rate. We calculate constant maturity rates by linearly

interpolating between the rates just below and above one year. The implied rate and the zero curve

rate are substantially higher than the Treasury rate (by some 33 bp). The difference between the

zero curve rate and the implied rate in the first half of the sample is rather small and amounts

to 0.79% in relative terms. The difference between both rates increases in the second half of the
3We also directly estimate the dividend prices in the outer product approach (substituting out the risk-free rate

without estimating it) and in the regression approach (using �̂� directly). In the early years of our sample period, the
direct approaches lead to slightly noisier dividend prices than the indirect approaches, which we prefer for that reason.
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sample to 5.94% in relative terms.4 This suggests that the zero curve rate was a relatively good

proxy for the funding costs of option investors in the early sample (including the BBK sample),

but that the use of the zero curve rate may overestimate dividend strip returns for recent years. We

proceed to estimate dividend strip prices using our time- and maturity-matched implied interest

rates. For comparison, we will report estimations with the zero curve rate in Section 6.

We follow BBK and estimate dividend strip prices using Equation (2). The only difference is

that we use implied interest rates rather than zero curve rates. In estimating dividend strip prices,

we use the same option pairs that we use in the calculation of implied interest rates. Each option

pair gives us one estimate for the dividend price. We then take the median across all the dividend

strip prices for a given maturity on a given day. For each month-end, we obtain estimates for

dividend strip prices with maturities matching the option expiration dates. We estimate dividend

strip prices with constant maturities by linearly interpolating the prices for dividend strips just

above and below the given maturity.

Finally, we calculate monthly returns on dividend strips. We rely on the approach used by BBK

and calculate returns from strip prices with maturities between 1.4 and 1.9 years. We rebalance in

January and July. Specifically, each January or July, we buy a dividend strip with a maturity of 1.9

years. Each monthly return is the sum of the strip price at month-end plus the collected dividends,

divided by the strip price at the beginning of the month. This is equivalent to reinvesting monthly

dividends in dividend strips. We repeat the procedure for 6 months, until we rebalance again into

dividend strips with 1.9 years maturity. The only exception to this rule is July 2013 to January

2014, during which we let the strategy rely on maturities between 0.9 and 1.5 years, because the

appropriate options maturing in June 2015 were not listed until September 2013.

We calculate monthly returns on the S&P 500 market so that we can compare them with strip

4One of the reasons the zero curve rate is lower than the implied interest rate in the recent sample is banks’
underreporting of borrowing costs used in the calculation of LIBOR (Gandhi, Golez, Jackwerth, and Plazzi 2019).
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returns. Throughout, we use logarithmic returns because they are less sensitive to the standard

deviation bias and better estimate buy-and-hold returns accumulated over longer periods.

3.2 Measurement Error

We estimate strip returns from options. Any noise in the option data can lead to biased estimates

of performance measures. Boguth, Carlson, Fisher, and Simutin (2019) argue that noise in the

data may bias average returns upward and suggest using logarithmic returns. As alluded above, we

follow their recommendation throughout the paper.

However, the use of logarithmic returns will not ensure unbiased Sharpe ratios. The reason

is that noise will lead to negatively autocorrelated returns (Blume and Stambaugh 1983). Such

negative autocorrelation inflates standard deviation estimates and lowers the Sharpe ratio. This

effect is present even in the case of logarithmic returns.

To illustrate, suppose the actual log price 𝑝 evolves as

𝑝𝑡+1 = 𝜇+ 𝑝𝑡 + 𝜀𝑡+1, (5)

where 𝜇 is the mean log return and 𝜀 is 𝑖.𝑖.𝑑. with 𝜀 ∼ 𝑁 (0,𝜎2
𝜀 ). Thus, the variance of log returns

is 𝜎2
𝜀 . Next, suppose that the price is measured with error:

𝑝𝑡+1 = 𝑝𝑡+1 + 𝛿𝑡+1, (6)

where 𝛿 is 𝑖.𝑖.𝑑. with 𝛿 ∼ 𝑁 (0,𝜎2
𝛿
). By substitution, we can write the measured price as

𝑝𝑡+1 = 𝜇+ 𝑝𝑡 + 𝜀𝑡+1 + 𝛿𝑡+1 − 𝛿𝑡 . (7)
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Assuming that returns and measurement errors are uncorrelated (i.e., 𝑐𝑜𝑣(𝜀, 𝛿) = 0), the AR(1)

coefficient 𝛷 is

𝛷 =
𝑐𝑜𝑣( ˆ𝑟𝑡+1,, 𝑟𝑡)

𝑣𝑎𝑟 (𝑟𝑡)
=

−𝜎2
𝛿

2𝜎2
𝛿
+𝜎2

𝜀

. (8)

Thus, measurement error leads to a negative serial correlation in returns. This negative serial

correlation inflates the variance of measured returns.

To reduce the influence of measurement error, we focus on longer holding periods. Define ℎ-

period returns as 𝑟𝑡,𝑡+ℎ =
∑ℎ

𝑗=1 𝑟𝑡+ 𝑗 . Variance of actual returns scales by the time horizon, whereas

variance due to measurement error stays constant across the holding periods. As a result, the

variance bias decreases in the length of the holding period. For single period returns, the ratio of

measured variance to actual variance is:

𝑣𝑎𝑟 ( ˆ𝑟𝑡,𝑡+1)
𝑣𝑎𝑟 (𝑟𝑡,𝑡+1)

=
2𝜎2

𝛿
+𝜎2

𝜀

𝜎2
𝜀

= 1+2
𝜎2
𝛿

𝜎2
𝜀

. (9)

For ℎ-period returns, the same ratio is:

𝑣𝑎𝑟 ( ˆ𝑟𝑡,𝑡+ℎ)
𝑣𝑎𝑟 (𝑟𝑡,𝑡+ℎ)

= 1+
(
2
ℎ

)
𝜎2
𝛿

𝜎2
𝜀

. (10)

Hence, in the limit, an infinitely long holding period would completely eliminate the variance

bias due to measurement error. We can express the ratio of h-period measured Sharpe ratio to

actual Sharpe ratio as:
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𝑆𝑅(𝑟𝑡)
𝑆𝑅(𝑟𝑡)

=
𝐸 [ ˆ𝑟𝑡,𝑡+ℎ] − 𝑟 𝑓𝑡,𝑡+ℎ√︃

(2𝜎2
𝛿
+ ℎ𝜎2

𝜀 )

√︁
(ℎ𝜎2

𝜀 )
𝐸 [ ˆ𝑟𝑡,𝑡+ℎ] − 𝑟 𝑓𝑡,𝑡+ℎ

=

√︁
(ℎ𝜎2

𝜀 )√︃
(2𝜎2

𝛿
+ ℎ𝜎2

𝜀 )
=

1√︂
1+

(
2
ℎ

)
𝜎2
𝛿

𝜎2
𝜀

=
1√︃

𝑣𝑎𝑟 ( ˆ𝑟𝑡 ,𝑡+ℎ)
𝑣𝑎𝑟 (𝑟𝑡 ,𝑡+ℎ)

.

(11)

Thus, the ratio of Sharpe ratios approaches one from below as ℎ grows. For sufficiently long

holding period, the measured Sharpe ratio will approach the actual Sharpe ratio. In the empirical

analysis, we will consider holding periods of up to 60 months.

3.3 Dividend-to-Price Ratios

We define the log dividend-to-price ratio for the market 𝑑𝑝𝑀𝑘𝑡as the logarithm of the current level

of the S&P 500 index minus the logarithm of the sum of dividends over the past year. For divi-

dend strips, we define 𝑑𝑝𝑆𝑡𝑟𝑖𝑝 as the logarithm of the price of a one-year dividend strip minus the

logarithm of the sum of dividends over the past year.

4 Results

Table 1 reports the summary statistics for single-period (monthly) returns. Columns 1 and 3 give

statistics for dividend strip returns and market returns. In columns 2 and 4, we compute the equity

risk premium by subtracting the returns on fixed maturity Treasuries from equity returns. We want

to approximately match the duration of equities and Treasuries. For dividend strips, we use two-

year maturity notes. For the market, we follow Van Binsbergen and Koijen (2017) and use 10-year

bonds.5 All returns in Table 1 are in logarithms. Figure 2 plots the cumulative returns for rolling

over investments in the dividend strip or the market.

5Results are qualitatively similar if we use 20-year bonds.
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[Table 1 about here]

[Figure 2 about here]

We only find small differences between the strip and the market in terms of average returns.

The average annualized strip return is 7.63%, whereas the average market return is 9.02%.6As

depicted in Panel A in Figure 2, $1.00 invested in the dividend strip for 25 years grows to $6.68,

whereas $1.00 invested in the market grows to $9.46.

When we subtract the Treasury returns, the average strip return in excess of the two-year Trea-

sury return is 4.34% annually and the market return in excess of the 10-year Treasury return is

3.91% annually. Panel B in Figure 2 shows that $1.00 invested in the strip in excess of the two-

year Treasury would grow to $2.96, and the $1.00 invested in the market in excess of the 10-year

Treasury would grow to $2.77. Thus, accounting for the Treasury term structure matters for the

relative comparison of strips and the market, but neither the difference between the average re-

turns on the strip and the market nor the difference between average excess returns is statistically

significant.

While we do not find much difference in terms of average returns, short-duration dividend

strip returns are substantially more volatile than market returns. Regardless of whether or not we

deduct the Treasury returns, dividend strip returns are approximately twice as volatile as market

returns. The standard deviation of single-period dividend strip returns is 33%, whereas the standard

deviation of single-period market returns is 19% (16% if we do not subtract Treasury returns).

Monthly dividend strip returns also exhibit a strong negative serial autocorrelation of -0.34. This

means that lagged strip returns explain 12% of the variation in monthly returns. In comparison,
6These results are contrary to those of Van Binsbergen, Brandt, and Koijen (2012), who find that dividend strips

offer higher returns than the market. In the Internet Appendix, we replicate their results and compare them to our
estimates. We find that the difference stems from both our use of the interest rate invariant approach and our extended
sample. With the interest rate invariant approach, dividend strips and the market deliver similar returns during the
BBK sample, but dividend strips underperform during the extended sample (1996 through 2020).
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the AR(1) coefficient for the market return is almost zero and the AR(1) coefficient for the market

in excess of Treasury return is slightly positive at 0.06.7

4.1 Longer Holding Periods

A high standard deviation of single-period strip returns combined with a strong negative serial

correlation in returns is indicative of a measurement error in dividend strip prices. In Section 3.2,

we show that the effect of the measurement error declines as the holding period over which we

calculate performance measures increases.

Next we consider holding periods of 1 through 60 months. We sum the logarithmic returns over

a given holding period, that is, 𝑟ℎ𝑡 =
∑ℎ

𝑗=1 𝑟𝑡+1− 𝑗 , for ℎ = 1, ...,60. We focus on excess returns, that

is, dividend strip returns minus 2-year Treasury returns and market returns minus 10-year Treasury

returns. Figure 3 presents annualized standard deviations across different holding periods. Table 2

reports the corresponding summary statistics.

[Table 2 about here]

[Figure 3 about here]

We note a drastic decrease in the annualized standard deviation for the excess dividend strip.

The standard deviation decreases from 33% for monthly returns to 15% for annual returns. It then

stabilizes at around 13% for holding periods beyond two years. This suggests that obtaining stable

estimates for the standard deviation of dividend strip returns takes at least 12 to 24 periods. In

comparison, the standard deviation for the market in excess of the 10-year bond initially increases

slightly from 18% to 20% and then decreases to 17%. Overall, these patterns are consistent with a

7When we check for a higher-order serial correlation, we find that, of all AR coefficients out to six lags for both
the strip and the market, only the AR(1) coefficient of the strip is significant.
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strong negative serial correlation for the dividend strip and a slightly positive serial correlation for

the market.

[Figure 4 about here]

These shifts in the standard deviation profoundly affect the annualized Sharpe ratios (see Fig-

ure 4). Specifically, the dividend strip Sharpe ratio increases from 0.13 for the monthly holding

period to 0.35 for the five-year holding period. In contrast, the market Sharpe ratio decreases from

0.21 to around 0.10. We test for the difference in Sharpe ratios using the heteroskedasticity- and

autocorrelation-consistent (HAC) test proposed by Ledoit and Wolf (2008). We find that the strip

Sharpe ratio is significantly higher than the market Sharpe ratio for any holding period longer than

24 months. Since these are the holding periods in which the measurement error is minimized, we

conclude that the dividend strip offers more attractive returns than does the market.8,9

4.2 Subsamples and the Business Cycle

How does the dividend strip return compare with the market return over different subsamples?

Panel A of Figure 5 plots the annualized Sharpe ratios during the BBK period from January 1996

through October 2009. Panel B plots the results for the period from December 2004 through

December 2020 (in Bansal, Miller, Song, and Yaron (2021), the time period is from December

8In the Internet Appendix, we show that Sharpe ratios exhibit similar pattern if we use raw market and dividend
strip returns rather than returns in excess of bond returns (A.2).

9One observation requires additional consideration. For the market, the decrease in the Sharpe ratio goes beyond
the increase in its standard deviation. In fact, the decrease in the Sharpe ratio for the market is mostly driven by the
decrease in the average market return. This is because, for longer holding periods, when using overlapping observa-
tions, we place more (less) weight on the observations from the center (early and late) years of the sample period. As
a robustness check, we consider a circular bootstrap as in Politis and Romano (1992), where we connect the last return
with the first. While unrealistic from the point of view of an investor, this approach ensures that the average returns are
the same regardless of the holding period. We still find that the difference in Sharpe ratios of excess strip and market
returns is statistically significant for longer holding periods.
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2004 to February 2017) In both subsamples, the dividend strip Sharpe ratio is higher than the

market Sharpe ratio for all holding periods and substantially so at longer holding periods.

[Figure 5 about here]

[Figure 6 about here]

How does the dividend strip return compare with the market return over business cycle? We use

standard NBER business cycle dating. If the first return occurs during an expansion, we compute

holding period returns out to 60 months and report their Sharpe ratios in Panel A of Figure 6.

The pattern closely follows the unconditional results of Figure 4, in particular for longer holding

periods. For shorter holding periods of up to about half a year, the market outperforms the strip.

Thereafter, as in the unconditional results, the strip outperforms the market in terms of Sharpe

ratios. Panel B of Figure 6 shows the Sharpe ratios when the first holding period return occurs

during a recession. During recessions, the strip outperforms the market for all holding periods.

Again, for long holding periods, the Sharpe ratios converge to the unconditional results of Figure

4.

4.3 Discussion of Results

Our results show that the strip outperforms the market in terms of Sharpe ratios, as long as we focus

on longer holding periods, where the measurement error is minimized. What are the economic

drivers of this outperformance?

The fact that Sharpe ratios are higher for short-duration dividend strips than for the market

implies a downward-sloping term structure of Sharpe ratios. BBK study term structures of Sharpe

ratios for a set of popular asset pricing models, including the Bansal and Yaron (2004) long-run

risks model, the Campbell and Cochrane (1999) habit formation model, the Gabaix (2009) rare
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disaster model, and the Lettau and Wachter (2007) value premium model. They depict simulated

Sharpe ratios in their figures 5 and 6 (both panel C). As the theoretical models exhibit no mea-

surement error, their Sharpe ratio term structures hold for all holding periods. The long-run risks

and the habit formation models both exhibit an upward-sloping term structure of Sharpe ratios

and are thus inconsistent with our findings. The Gabaix (2009) rare disaster model and the Lettau

and Wachter (2007) value premium model both show downward-sloping term structures of Sharpe

ratios consistent with our empirical findings.

Of the latter two models, the rare disaster model of Gabaix (2009) seems to fit our findings best.

In the model, short- and long-duration assets are exposed to the same risk of a rare disaster and,

hence, have the same expected return. Meanwhile, the return standard deviation is increasing with

maturity since long-maturity assets are more exposed to the time variation in disaster probabilities.

As a result, the Sharpe ratio is downward-sloping. This is exactly what we find in our analysis. The

difference in average returns between short-duration dividend strips and long-duration market is

small. The annualized standard deviation of market returns, however, is higher than the annualized

standard deviation for the strips (i.e., 20% vs. 13% at the 24-month holding period). Thus, the

rare disaster model seems to capture our results not only in terms of Sharpe ratios (the focus of our

study) but also in terms of average returns and standard deviations.

The value premium model of Lettau and Wachter (2007) captures our results in terms of the

Sharpe ratios, but it predicts a downward-sloping term structure of both expected returns and stan-

dard deviations, whereas we find that the standard deviation of the long-duration market is higher

than the standard deviation of the short-duration dividend strip.
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5 Predictability of the Outperformance of the Strip Over the

Market

So far, we have shown that the strip outperforms the market in terms of the Sharpe ratio. In

this section, we investigate whether the difference between returns on the strip and the market is

predictable. We motivate our analysis with a simple present value model.

We assume that the market is infinitely lived, whereas the dividend strip lives only for one

period. They both share the same dividend growth process, which we assume to be an AR(1)

process:

𝐸 (Δ𝑑𝑡+1) = 𝑔𝑡 = 𝛾0 +𝛾1𝑔𝑡−1 + 𝜀𝑔𝑡 . (12)

We allow the expected returns on the market to follow a different process from the expected

returns on the dividend strip. Specifically, we assume that expected market returns follow an AR(1)

process:

𝐸

(
𝑟𝑀𝑘𝑡
𝑡+1

)
= 𝜇𝑀𝑘𝑡

𝑡 = 𝛿0 + 𝛿1𝜇
𝑀𝑘𝑡
𝑡−1 + 𝜀𝜇,𝑀𝑘𝑡

𝑡 . (13)

For expected strip returns, we do not impose any specific dynamics:

𝐸

(
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡+1

)
= 𝜇

𝑆𝑡𝑟𝑖𝑝
𝑡 . (14)

Under these assumptions and using the Campbell and Shiller (1988) decomposition, we can

write the logarithm of the market dividend-to-price ratio as (Van Binsbergen and Koijen 2010)
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𝑑𝑝𝑀𝑘𝑡
𝑡 = 𝜅 +

(
1

1− 𝜌𝛿1

)
𝜇𝑀𝑘𝑡
𝑡 −

(
1

1− 𝜌𝛾1

)
𝑔𝑡 , (15)

where 𝜌 =
𝑒𝑥𝑝(−𝑑𝑝)

1+𝑒𝑥𝑝(−𝑑𝑝) . The logarithm of the strip dividend-to-price ratio is:

𝑑𝑝
𝑆𝑡𝑟𝑖𝑝
𝑡 = 𝜇

𝑆𝑡𝑟𝑖𝑝
𝑡 −𝑔𝑡 . (16)

Then the outperformance is the difference between expected strip and market returns:

𝐸

(
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡+1

)
−𝐸

(
𝑟𝑀𝑘𝑡
𝑡+1

)
= 𝐴𝜅 +

[
𝑑𝑝

𝑆𝑡𝑟𝑖𝑝
𝑡 − 𝐴𝑑𝑝𝑀𝑘𝑡

𝑡

]
+𝐵𝑔𝑡 , (17)

where 𝐴 = (1− 𝜌𝛿1), 𝐵 =

(
𝜌𝛿1−𝜌𝛾1
1−𝜌𝛾1

)
. Thus, the term structure of expected returns is related to the

variation in both dividend-to-price ratios and the expected growth rate.

5.1 In-Sample Predictability

We use Equation (17) to motivate our predictive regressions. We start with univariate regressions

of differences in strip and market returns over the next ℎ periods on either the market or the strip

dividend-to-price ratio:

ℎ∑︁
𝑗=1

(
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡+ 𝑗 − 𝑟𝑀𝑘𝑡
𝑡+ 𝑗

)
= 𝛼+ 𝛽𝑋𝑡 + 𝜀, (18)

where ℎ = 1, ..,60 months, and 𝑋𝑡 is either 𝑑𝑝𝑆𝑡𝑟𝑖𝑝𝑡 or 𝑑𝑝𝑀𝑘𝑡
𝑡 .

[Table 3 about here]

Panels A and B of Table 3 report the results. Newey-West t-statistics appear in parentheses,

with the number of lags equal to ℎ. In brackets are t-statistics based on ℎ nonoverlapping ob-
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servations. Specifically, for a given holding period, we estimate the predictive regression on ℎ

alternative nonoverlapping samples. We then average 𝑡-statistics across the ℎ alternative samples

and report them in the table. The strip dividend-to-price ratio predicts the realized term struc-

ture over shorter periods (coefficients are significant for holding periods shorter than three years),

whereas the market dividend-to-price ratio predicts the realized term structure over longer holding

periods (coefficients are statistically significant for holding periods longer than two years).

Next, we consider a univariate regression of the realized term structure on a scaled difference

between the dividend-to-price ratios as implied by Equation (17):

ℎ∑︁
𝑗=1

(
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡+ 𝑗 − 𝑟𝑀𝑘𝑡
𝑡+ 𝑗

)
= 𝛼+ 𝛽𝑆𝐷

[
𝑑𝑝

𝑆𝑡𝑟𝑖𝑝
𝑡 −

(
1− 𝜌𝛿ℎ1

)
𝑑𝑝𝑀𝑘𝑡

𝑡

]
+𝜐. (19)

The scaling factor depends on 𝜌, 𝛿1, and ℎ. During our sample period, the coefficient 𝜌 is 0.9825.

To estimate the persistence of expected returns, we follow Golez and Koudijs (2020) and infer the

persistence of expected returns 𝛽(ℎ) from a predictive regression of market returns over the next ℎ

months on lagged values of the market dividend-to-price ratio as 𝛽(ℎ) = 1−𝛿ℎ/12
1

1−𝛿1
𝛽(12). We estimate

𝛽(60) = 1.16 and 𝛽(12) = 0.34, which implies a persistence of expected returns of 𝛿1 = 0.81

Panel C of Table 3 reports the results. Unlike the univariate dividend-to-price ratio regressions

that predict the term structure either over the short horizon (𝑑𝑝𝑆𝑡𝑟𝑖𝑝𝑡 ) or the long horizon (𝑑𝑝𝑀𝑘𝑡
𝑡 ),

the scaled difference between the two dividend-to-price ratios predicts the equity term structure at

any holding period. The R-squared varies from 11% at the monthly holding period to 25% at the

annual holding period to 66% at the five-year holding period.

Finally, in the last regression specification, guided by Equation (17), we add a proxy for ex-

pected dividend growth:

22



ℎ∑︁
𝑗=1

(
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡+ 𝑗 − 𝑟𝑀𝑘𝑡
𝑡+ 𝑗

)
= 𝛼+ 𝛽𝑆𝐷

[
𝑑𝑝

𝑆𝑡𝑟𝑖𝑝
𝑡 −

(
1− 𝜌𝛿ℎ1

)
𝑑𝑝𝑀𝑘𝑡

𝑡

]
+ 𝛽𝑔𝑔𝑡 +𝜂. (20)

We proxy for expected dividend growth by the logarithm of indicated dividends over the 12-month

trailing sum of dividends. The indicated dividends over the next year are provided by the S&P

Dow Jones Indices. They are based on announced dividends, or, if dividends have not yet been

announced, they are the last announced dividends projected into the future.

Panel D in Table 3 reports the results. When we add the indicated dividend growth as an ad-

ditional predictor, the R-squared increases compared to Panel C to 16% at the monthly holding

period to 32% at the annual holding period to 72% at the five-year holding period. The estimated

coefficient for the indicated dividend growth is positive, which is consistent with the widely doc-

umented feature that expected returns are more persistent than expected growth rates (Golez and

Koudijs 2020). Specifically, in Equation (17), the coefficient 𝐵 is positive iff 𝛿1 > 𝛾1.

5.2 Out-of-Sample Predictability

While in-sample predictability is strong, particularly at longer holding periods, in-sample results

do not necessarily imply that returns are predictable in real time (Goyal and Welch 2003; Goyal and

Welch 2008; Cochrane 2008). We check this by computing the out-of-sample R-square (ROOS)

as in Goyal and Welch (2008):

𝑅𝑂𝑂𝑆 = 1−

∑𝑇
𝜏=1

((
𝑟
𝑆𝑡𝑟𝑖𝑝
𝜏 − 𝑟𝑀𝑘𝑡

𝜏

)
−
( ˆ
𝑟
𝑆𝑡𝑟𝑖𝑝
𝜏 − ˆ𝑟𝑀𝑘𝑡

𝜏

))2

∑𝑇
𝜏=1

((
𝑟
𝑆𝑡𝑟𝑖𝑝
𝜏 − 𝑟𝑀𝑘𝑡

𝜏

)
−
(
𝑟
𝑆𝑡𝑟𝑖𝑝
𝜏 − 𝑟𝑀𝑘𝑡

𝜏

))2 , (21)

where 𝑟𝑆𝑡𝑟𝑖𝑝 − 𝑟𝑀𝑘𝑡 is the difference between the actual return on the strip and the market, ˆ𝑟𝑆𝑡𝑟𝑖𝑝 −
ˆ𝑟𝑀𝑘𝑡 is the difference between the predicted return on the strip and the market estimated on the
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sample up to 𝜏 − 1, and 𝑟𝑆𝑡𝑟𝑖𝑝 − 𝑟𝑀𝑘𝑡 is the mean return up to 𝜏 − 1. We use 60 months for the

first training sample and Eq (21) with the scaled difference between the dividend-to-price ratio for

the strip and the market (as in Eq (19)) to make out-of-sample predictions. Our training sample

limits the lengths of holding periods that we can reasonably estimate. We limit ourselves to 12-

and 24-month ahead returns, for which we compute ROOS and Clark and West (2007) t-statistics.

For 12-months holding period returns, the ROOS is 15.58% and significant with a t-statistics of

2.65. Results are similar for 24-months holding period returns with an ROOS of 14.49% and a

t-statistics of 2.31. These results are much stronger than typical ROOS values in the literature and

suggest that the predictability can be exploited in real time.

6 Robustness

We consider several robustness checks with respect to dividend strip maturity, exogenous interest

rates, option moneyness, and transaction costs. Table 4 repeats the main strip result (Table 2, Panel

A) and collects the robustness results.

[Table 4 about here]

6.1 Dividend Strip Maturity

In the base case, we invest each January in a dividend strip with an approximate maturity of 1.9

years. We collect dividends each month and hold this position for half a year until we rebalance

into a new 1.9-year dividend strip in July. We now check our results for different maturities of the

strip. Panels B and C of Table 4 show results for maturities of 1.3 and 0.9 years; the results are

very similar to the base results in Panel A for a maturity of 1.9 years, while the average returns
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and standard deviations are slightly higher than in the base case, Sharpe ratios are very close to the

base case Sharpe ratios and are always increasing in the length of the holding period.

6.2 Exogenous Interest Rates

In the base case, we estimate dividend strip prices using an interest rate invariant approach. Now,

we use zero curve interest rates instead. In Panel D of Table 4, we find that excess returns are

about 1% higher than in the base case, leading to a relative error of 37%. Standard deviations are

somewhat higher than in the base case (except for monthly returns, where the standard deviation is

lower). As a result, Sharpe ratios are overestimated with a relative error of about 30% (even more

so for monthly Sharpe ratios). However, regardless of the bias in the level of Sharpe ratios, we

observe the same pattern of increasing Sharpe ratios in the length of the holding period from 0.21

at the monthly holding period to 0.44 at the five-year holding period.

The error in the level of Sharpe ratios aligns with our earlier analysis that the zero curve rate

underestimates the interest rate of marginal investors in the option markets and, thus, underesti-

mates the prices of dividend strips, which leads to an upward bias in dividend strip returns. In the

appendix, we show the mechanics of the upward bias and that using constant maturity Treasury

rates further amplifies errors in strip returns.10 We interpret these results as an additional argument

for the use of the interest rate invariant approach.

6.3 Option Moneyness

We identify implied interest rates by combining put-call pairs with different strike prices. In the

base case, we use a wide range of strike prices to estimate implied rates with moneyness levels

10We do not use overnight interest rates or repo rates, as neither matches the maturity range of our dividend strip
(from 1.4 through 1.9 years) and are only available in recent years.
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between 0.5 and 1.5. We use the same range of moneyness levels in the calculation of dividend

strips. We now consider the same time series except that, for the period from 2004 onward, we use

only options with moneyness levels between 0.8 and 1.2. Panel E of Table 4 shows that Sharpe

ratios are increasing in the length of the holding period, and all the main conclusions remain the

same. For longer holding periods, returns are a little higher and have a somewhat lower standard

deviation than in the base case. As a result, Sharpe ratios are somewhat higher at longer holding

periods than in the base case in Panel A.

6.4 Transaction Costs

Our trading strategy consists of buying a 1.9-year dividend strip at the end of January. We collect

dividends over the month of February, sell the asset at the end of February, and compute our

February return. Then we buy back the asset (or never sell it), collect dividends over the next

month, and sell the asset again. We repeat this strategy for 6 months until the end of July, when

the strip has a maturity of 1.4 years. Thereafter, we rebalance into a new 1.9-year strip. Based on

this time series of monthly returns, we calculate cumulative returns (see Figure 2). Although we

only rebalance into a new asset every 6 months, the cumulative strategy assumes that dividends are

reinvested in the dividend strip every month. As the strategy involves options with large bid/ask

spreads, we are concerned about trading costs. We follow Bansal, Miller, Song, and Yaron (2021)

and consider holding the strip to maturity (instead of rebalancing monthly) to reduce trading costs.

More precisely, every January and July, we buy a dividend strip with a maturity of 1.9 years and

hold it until maturity. We collect monthly dividends and reinvest them in the S&P 500 index. Our

return is the logarithm of the value of reinvested dividends over the initial price. For comparison,

we similarly calculate returns on the S&P 500 index as the logarithm of the future S&P 500 price,

plus the value of reinvested dividends over the initial S&P 500 price.
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For a better comparison with the results in Section 4, we present excess returns. The holding

period of the hold-to-maturity strategy is 1.9 years (22.8 months) and is thus comparable to the

main results for a holding period of 24 months in Table 2. The average annualized excess returns

for the strip (4.31%) and the market (2.47%) are slightly lower than in the base case. The standard

deviations for the strip excess returns (14.29%) and the market (20.65%) are slightly higher than

in the base case. The resultant Sharpe ratios are 0.30 and 0.12 and slightly lower than in the base

case. The strip Sharpe ratio is thus 2.6 times higher than the market Sharpe ratio. This relative

outperformance of the strip over the market in terms of the Sharpe ratio is very similar to our main

analysis. Based on the arguments of Bansal, Miller, Song, and Yaron (2021), we conclude that our

results are robust to the presence of transaction costs.

7 Concluding Remarks

We estimate dividend strip prices from intradaily data for options on the S&P 500 index from 1996

to 2020. We almost double the existing time series of strip prices, suggest an interest rate invariant

approach to avoid biases because of the use of exogenous interest rates, and advocate the use of

longer holding period returns to minimize the effect of measurement error in dividend strip prices.

While researchers have previously argued that Sharpe ratios for short-duration assets are either

higher or lower than market Sharpe ratios, we show that the strip clearly dominates the market, as

long as we focus on longer holding periods, where the effect of the measurement error is marginal.

For holding periods longer than a year, the standard deviation for strip returns is smaller than

the market standard deviation, and the strip Sharpe ratio significantly exceeds the market Sharpe

ratio. Such outperformance of strips holds during the full sample, in subsamples, and during both

expansions and recessions. Overall, our results are most consistent with the predictions of the
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rare disaster model of Gabaix (2009), which predicts a flat term structure of expected returns, an

upward-sloping term structure for standard deviations, and a downward-sloping term structure for

Sharpe ratios. In additional results, we show that the outperformance of the strip over the market

is highly predictable by the relative prices of short- and long-duration assets. This predictability is

strongest at longer holding periods and holds both in- and out-of-sample.
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Appendix

In this appendix, we provide a simple calibration exercise to illustrate the effect of errors in the

risk-free rate on dividend strip returns according to Equation (2). We thank an anonymous referee

for the suggestion to use the observed term structure at 1.4 and 1.9 years. In line with Figure 1, both

zero curve interest rates are 4 bp below the implied interest rates (279 bp vs. 283 bp at 1.4 years

and 290 bp vs. 294 bp at 1.9 years, all interest rates are annualized and in logs). To illustrate the

resultant effect of interest rates on dividend returns, we use a simple example with index 𝑆 = 2,000,

strike price 𝑋 = 2,000, standard deviation 𝜎 = 0.2, dividend yield 𝛿 = 0.02, and risk-free rate equal

to the implied rate at the required horizon. Based on these parameters, the Black-Scholes call and

put prices are 226.63 and 192.70 for the 1.9-year maturity and 193.64 and 171.01 for the 1.4-year

maturity. We set the value of collected dividends, 𝐷, after half a year to 22.00.

From Equation (2) and using the implied interest rates, we find 𝑃1.9 = 74.58 and 𝑃1.4 = 55.22.

The corresponding (half-annual) return on the strategy is (55.22+22.00)/74.58−1 = 0.0354. Us-

ing the zero curve rates instead, we find 𝑃1.9 = 73.25 and 𝑃1.4 = 54.04. The corresponding biased

(half-annual) return on the strategy is (54.04+ 22.00)/73.25− 1 = 0.0381. Thus, small errors of

−1.26% (at 1.9 years) and −1.55% (at 1.4 years) in interest rates translate into a sizable error of

+7.63% in the dividend strip return. The resultant average elasticity of the strip return to interest

rate errors is large at −5.49.

Errors are even larger when we use constant maturity Treasury rates, which are 32 bp and 34

bp below the implied interest rates at 1.4 and 1.9 years. The biased (half-annual) return on the

strategy is (46.08+22.00)/63.11 - 1 = 0.0788, which translates into a large error of +122.6%. In

light of this magnification of errors in interest rates, we prefer our implied interest rates over any

exogenous interest rate.
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Tables and Figures

Table 1: Monthly Returns (Annualized)

Strip ret. Strip ret. - 2y Treasury ret. Market ret. Market ret. - 10y Treasury ret.

Mean 7.63% 4.34% 9.02% 3.91%
Std. dev. 32.83% 32.85% 15.78% 18.57%
Sharpe ratio 0.13 0.21
AR(1) -0.34 -0.34 0.01 0.06
N 299 299 299 299

Table 1 presents summary statistics for the monthly returns. Returns are continuously compounded
(in logarithms of raw returns), annualized, and expressed as a percentage. The period is from
January 1996 through December 2020.
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Table 2: Holding Period Returns (Annualized)

1m 6m 12m 24m 36m 48m 60m

Panel A: Strip-return - 2y Treasury return
Mean 4.34% 4.67% 4.26% 4.54% 4.56% 4.45% 4.51%
Std. dev. 32.85% 19.28% 14.64% 13.28% 13.32% 13.20% 12.92%
Sharpe ratio 0.13 0.24 0.29 0.34 0.34 0.34 0.35
N 299 294 288 276 264 252 240

Panel B: Market-return - 10y Treasury return
Mean 3.91% 3.29% 2.97% 2.66% 2.47% 1.99% 1.47%
Std. dev. 18.57% 19.76% 19.65% 20.53% 19.76% 18.64% 17.35%
Sharpe ratio 0.21 0.17 0.15 0.13 0.12 0.11 0.08
Diff. Sharpe ratios (p-val.) [0.73] [0.68] [0.38] [0.02] [0.00] [0.00] [0.00]
N 299 294 288 276 264 252 240

Table 2 presents summary statistics for the holding period returns ranging from 1 month through
60 months. Returns are continuously compounded (in logarithms of raw returns), annualized, and
expressed as a percentage. In brackets are p-values for the HAC test of Ledoit and Wolf (2008) for
the difference in Sharpe ratios between Panels A and B. The period is from January 1996 through
December 2020.
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Table 3: Predicting the Realized Term Structure

1m 6m 12m 24m 36m 48m 60m

Panel A:
𝑑𝑝

𝑆𝑡𝑟𝑖 𝑝
𝑡 0.26 0.59 0.71 1.02 1.11 1.01 0.79
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (4.87) (4.72) (3.08) (2.11) (2.26) (1.84) (1.32)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [4.87] [3.84] [2.10] [2.73] [2.84] [1.86] [2.04]

𝑅2 0.11 0.23 0.20 0.22 0.22 0.17 0.11

Panel B:
𝑑𝑝𝑀𝑘𝑡

𝑡 -0.01 -0.12 -0.30 -0.64 -0.85 -1.04 -1.10
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (-0.39) (-1.23) (-1.82) (-2.59) (-2.97) (-3.92) (-6.42)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [-0.39] [-0.92] [-1.56] [-2.42] [-2.54] [-4.39] [-10.88]

𝑅2 0.00 0.03 0.11 0.26 0.38 0.53 0.65

Panel C:
𝑑𝑝

𝑆𝑡𝑟𝑖 𝑝
𝑡 − 𝐴ℎ𝑑𝑝𝑀𝑘𝑡

𝑡 0.27 0.60 0.78 1.20 1.34 1.35 1.24
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (4.86) (5.65) (4.54) (5.16) (8.12) (8.61) (13.26)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [4.86] [4.11] [3.10] [4.19] [4.89] [5.56] [10.35]

𝑅2 0.11 0.25 0.27 0.44 0.55 0.62 0.66

Panel D:
𝑑𝑝

𝑆𝑡𝑟𝑖 𝑝
𝑡 − 𝐴ℎ𝑑𝑝𝑀𝑘𝑡

𝑡 0.40 0.84 0.96 1.37 1.43 1.47 1.35
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (5.83) (8.78) (5.75) (6.33) (9.36) (10.30) (19.14)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [5.83] [5.69] [3.59] [-4.30] [5.05] [11.08] [34.85]

𝑔𝐼𝑛𝑑𝑡 0.57 1.11 0.96 1.22 0.87 1.40 1.46
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (4.56) (6.04) (4.71) (4.69) (3.30) (5.37) (9.15)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) (4.56) (3.78) (2.51) (1.90) (1.26) (3.69) (9.32)

𝑅2 0.16 0.33 0.32 0.48 0.57 0.67 0.72

Table 3 presents the results of the predictive regressions for the difference between strip and market
returns for holding periods ranging from 1 month through 60 months. In parentheses are t-statistics
based on the Newey-West (1987) correction with h lags. In brackets is the average t-statistic across
all non-overlapping regressions with different starting months. The period is from January 1996
through December 2020.
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Table 4: Robustness
1m 6m 12m 24m 36m 48m 60m

Panel A: Strip-return - 2y Treasury return
Mean 4.34% 4.67% 4.26% 4.54% 4.56% 4.45% 4.51%
Std. dev. 32.85% 19.28% 14.64% 13.28% 13.32% 13.20% 12.92%
Sharpe ratio 0.13 0.24 0.29 0.34 0.34 0.34 0.35
N 299 294 288 276 264 252 240

Panel B: 1.3 year strip-return - 2y Treasury return
Mean 4.74% 5.05% 4.56% 4.61% 4.64% 4.61% 4.76%
Std. dev. 33.18% 18.37% 14.96% 13.00% 13.39% 13.36% 12.83%
Sharpe ratio 0.14 0.27 0.31 0.35 0.35 0.35 0.37
N 299 294 288 276 264 252 240

Panel C: 0.9 year strip-return - 2y Treasury return
Mean 4.91% 4.99% 4.53% 4.69% 5.02% 5.00% 5.12%
Std. dev. 35.81% 22.94% 17.67% 16.28% 16.29% 15.81% 15.68%
Sharpe ratio 0.14 0.22 0.26 0.29 0.31 0.32 0.33
N 299 294 288 276 264 252 240

Panel D: 1.9 year zero-curve strip-return - 2y Treasury return
Mean 5.96% 5.57% 5.19% 5.57% 5.71% 5.64% 5.89%
Std. dev. 27.98% 19.88% 16.80% 14.28% 14.22% 14.11% 13.52%
Sharpe ratio 0.21 0.28 0.31 0.39 0.40 0.40 0.44
N 299 294 288 276 264 252 240

Panel E: 1.9 year strip-return (Moneyness 0.8-1.2) - 2y Treasury return
Mean 4.66% 4.99% 4.60% 4.92% 4.94% 4.89% 4.98%
Std. dev. 33.16% 19.10% 14.51% 12.89% 12.86% 12.57% 12.21%
Sharpe ratio 0.14 0.26 0.32 0.38 0.38 0.39 0.41
N 299 294 288 276 264 252 240

Table 4 presents summary statistics for the holding period returns ranging from 1 month through 60
months. Panel A repeats the main strip results from Table 2, Panel A. In Panels B and C, dividend
strip returns are based on rolling over investments in strips with maturities of 0.9 year or 1.3 years.
In Panel D, dividend prices are estimated using the zero curve interest rate. In Panel D, only
options with moneyness in the range 0.8 to 1.2 are used. Returns are continuously compounded (in
logarithms of raw returns), annualized, and expressed as a percentage. The period is from January
1996 through December 2020.
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Figure 1: Interest Rates
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Figure 1 plots the 12-month maturity interest rates. The implied rate is based on put-call parity
pairs of S&P 500 index options. The zero curve rate is from OptionMetrics. The constant maturity
Treasury rate is from the H.15 filing of the St. Louis Federal Reserve Bank. All interest rates
are continuously compounded and expressed as a percentage. The period is from January 1996
through December 2020.
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Figure 2: Cumulative Returns

Panel A: Cumulative returns
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Panel B: Cumulative returns in excess of Treasury returns
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Panel A in Figure 2 plots the cumulative returns for a hypothetical one dollar investment in the
dividend strip and the market. Panel B plots the cumulative excess returns of the strip in excess of
the two-year Treasury return and the market in excess of the 10-year Treasury return. The period
is from January 1996 through December 2020.
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Figure 3: Annualized Standard Deviation Across Different Holding Periods
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Figure 3 plots the annualized standard deviation for excess strip and market returns for holding
periods of 1, 6, 12, 24, 36, 48, and 60 months. The period is from January 1996 through December
2020.
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Figure 4: Annualized Sharpe Ratio Across Different Holding Periods

5 10 15 20 25 30 35 40 45 50 55 60

Holding period in months

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
nn

ua
liz

ed
 S

ha
rp

e 
ra

tio

Dividend strip - Treasury 2y

Market - Treasury 10y

Figure 4 plots the annualized Sharpe ratio for excess strip and market returns for holding periods
of 1, 6, 12, 24, 36, 48, and 60 months. The period is from January 1996 through December 2020.
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Figure 5: Annualized Sharpe Ratios: Subsamples
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Panel B: December 2004 - December 2020
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Figure 5 plots the annualized Sharpe ratio for holding periods ranging of 1, 6, 12, 24, 36, 48, and
60 months. The period is from January 1996 through October 2009 (Panel A) and from December
2004 through December 2020 (Panel B).
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Figure 6: Annualized Sharpe Ratios: Business Cycle

Panel A: Expansions
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Panel B: Recessions
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Figure 6 plots the annualized Sharpe ratio for holding periods ranging of 1, 6, 12, 24, 36, 48, and
60 months. The first returns occurs during an NBER expansion (Panel A) and during an NBER
recession (Panel B).
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Internet Appendix: A Comparison to Van Binsbergen, Brandt,

and Koijen (2012)

In this Internet Appendix, we compare our empirical estimates for dividend strip prices and returns

to those reported by Van Binsbergen, Brandt, and Koijen (2012). First, we replicate their estimates.

That is, we estimate dividend strip prices from S&P 500 options using the zero curve interest

rate. Figure A.1 shows that we are able to almost perfectly replicate their estimates for 12-month

dividend strip prices.

Table A.1 reports monthly log returns for dividend strips and the market. We prefer mean

logarithmic returns, which are less prone to standard deviation bias. In Panel A, the time period

matches the one used by BBK (January 1996 through October 2009). Based on the BBK data,

dividend strips (0.85%) outperform the market (0.44%). Our dividend strip returns based on zero

curve interest rates closely correlate with the BBK original series (0.98). On average, they are

slightly lower than those reported by BBK, but still substantially higher than the market returns,

thus confirming BBK’s results (0.71% for the strip, 0.44% for the market). When we switch

from the zero curve interest rate to the interest rate invariant approach, dividend strips no longer

outperform the market (0.41% for the strip, 0.44% for the market).

Next, we extend the sample period through 2020, adding more than a decade of data. Panel

B of Table A.1 reports the results. Using the zero curve interest rate during the long sample, we

find that dividend strips (0.77%) perform approximately as well as the market (0.75%). Using the

interest rate invariant approach during the long sample inverts the relation, and the market (0.75%)

outperforms the strip (0.64%).

44



Table A.1: Monthly Returns

Strip ret. Market ret.

BBK sample (Jan 1996 - Oct 2009)
Original data 0.85% 0.44%
Zero curve 0.71% 0.44%
Interest rate invariant approach 0.41% 0.44%

Long Sample (Jan 1996 - Dec 2020)
Zero curve 0.77% 0.75%
Interest rate invariant approach 0.64% 0.75%

Table A.1 presents the summary statistics for monthly logarithmic returns.
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Figure A.1: Dividend Prices
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Figure A.1 plots prices for 12-month dividend strips on the S&P 500 index. The period is from
January 1996 through December 2020.
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Figure A.2: Annualized Sharpe Ratio Across Different Holding Periods

5 10 15 20 25 30 35 40 45 50 55 60
Holding period in months

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
nn

ua
liz

ed
 S

ha
rp

e 
ra

tio

Dividend strip
Market

Figure A.2 plots the annualized Sharpe ratio for strip and market returns for holding periods of 1,
6, 12, 24, 36, 48, and 60 months. The period is from January 1996 through December 2020.
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