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Abstract

We discuss a model for long memory and persistence in time series that

amounts to harmonically weighting short memory processes,
∑

j xt−j/(j+

1). A nonstandard rate of convergence is required to establish a Gaus-

sian functional central limit theorem. Theoretically, the harmonically

weighted [HW] process displays less persistence and weaker memory

than the classical competitor, fractional integration [FI] of order d. Still,

we establish that a test rejects the null hypothesis of d = 0 if the process

is HW. Similarly, a bias approximation shows that estimators of d will

fail to distinguish between HW and FI given realistic sample sizes. The

di�culties to disentangle HW and FI are illustrated experimentally and

with U.S. in�ation data.
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1 Introduction

It is a stylized fact in di�erent �elds of science that many time series display

long memory in the sense that the sequence of their autocovariances dies out

only slowly, see e.g. Beran, Feng, Ghosh, and Kulik (2013, Sect. 1.2) for

empirical examples. The most widely used model to account for long memory

is fractional integration [FI] of order d, where the autocovariances at lag h

vanish at rate h2d−1 as h→∞, 0 < d < 1/2. This is mirrored in the frequency

domain by the spectrum diverging with λ−2d as λ approaches the origin from

the right. The estimation of d has been subject to intense research over the

last decades, but there seems to be little consensus on how to proceed in prac-

tice. Unfortunately, di�erent researchers therefore measure di�erent degrees of

memory from identical data. Therefore, we suggest and discuss in this paper

a model of long memory that does not require parameter estimation, namely

harmonically weighted processes.

Let {εt} denote a sequence of white noise [WN] with E(εt) = 0. Harmonically

weighted noise,
∑t−1

j=1 j
−1εt−j, shows up in the derivative of the log-likelihood

function of Gaussian fractionally integrated noise, see Tanaka (1999, eq. (40))

and Breitung and Hassler (2002, eq. (3)), and it was used to construct a La-

grange Multiplier test for fractional integration. The autocovariances of this

process are not summable, see e.g. Palma (2007, Prob. 3.15). In the context of

fractional integration testing, Demetrescu, Kuzin, and Hassler (2008) consid-

ered more generally the process
∑t−1

j=1 j
−1xt−j where the �ltered input {xt} is

assumed to be a stationary regular process with absolutely summable moving

average coe�cients and positive spectrum. Demetrescu et al. (2008, Lemma

4) showed that such harmonically weighted processes are characterized by a

sequence of square summable autocovariances. Except for these results, little

seems to be known about harmonically weighted processes [HWP].

The present paper has two main contributions. First, we discuss the persis-

tence and long memory properties of HWP that di�er from the well known

features under fractional integration. They are characterized by a singularity

in the spectrum at the origin that is of order ln2 λ for λ → 0, and the auto-

covariances at lag h vanish at rate lnh/h, see Proposition 1. Consequently,

it follows in Proposition 2 that a functional central limit theorem [FCLT] re-

quires normalization with
√
T lnT where T denotes the sample size. Second,
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we address the (im)possibility to discriminate between HW and FI. Specif-

ically, Proposition 3 characterizes the behaviour of the Lagrange Multiplier

[LM] test by Robinson (1991) under the true null hypothesis d = d0 if a local

HW component is present. If the HW component is downweighted by T κ with

κ ≤ 0.25, then the test still has nonnegligible power against this weaker form

of long memory. At the same time one has to be careful with a rejection of

the null, which may not be hastily interpreted as evidence in favour of d > d0.

When it comes to estimating d, we use a bias approximation in order to show

that disentangling HW and FI is out of reach even for samples of size T = 104.

Finally, we illustrate with real U.S. in�ation data that the model of harmonic

weighting may in practice do as good a job in accounting for long memory as

the model of fractional integration.

The rest of the paper is organized as follows. Section 2 becomes precise on the

assumptions and contains the properties of HWP in the time and frequency

domains. Further, it discusses the harmonic inverse transformation required

for an autoregressive representation. The third section presents the asymptotic

theory for partial sums of HWP, containing a nonstandard central limit the-

orem [CLT]. Section 4 addresses the discrimination between HWP and FI on

theoretical grounds. Finite sample evidence from Monte Carlo experiments is

provided in Section 5, while Section 6 contains an empirical example. Conclud-

ing remarks are o�ered in the �nal section. Mathematical proofs are relegated

to the Appendix.

A �nal word on notation: Throughout this paper, ⇒ stands for weak con-

vergence as the sample size T diverges,
D→ and

p→ represent convergence in

distribution and in probability, respectively, and bxc denotes the largest inte-
ger smaller than or equal to x ≥ 0, x ∈ R. Further, (probabilistic) Landau

symbols O(·) (and Op(·)) have their usual meaning, and ∼ denotes asymptotic

equivalence of two sequences or functions.
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2 Properties of HWP

In terms of the usual lag operator L we de�ne the harmonically weighted �lter

h(L) by the formal expansion of ln(1− L):

h(L) := − ln(1− L)

L
=
∞∑
j=0

Lj

j + 1
. (1)

This de�nes a harmonically weighted process, HWP, as follows.

Assumption 1 Let

yt = µ+ h(L)xt , t ∈ Z ,

where {xt} is a stationary process with mean zero and

xt = c(L)εt =
∞∑
j=0

cjεt−j , εt ∼ WN (0, σ2) , i.e. E(εt εt+h) =

{
σ2 , h = 0

0 , h 6= 0
,

and with (c0 = 1)

∞∑
j=0

j |cj| <∞ and c(1) =
∞∑
j=0

cj 6= 0 . (2)

The process {xt} behind Assumption 1 is sometimes called integrated of order

zero, I(0). The restriction of one-summability,
∑∞

j=0 j |cj| < ∞, is a rather

weak and widely used assumption since Phillips and Solo (1992). All stationary

and invertible autoregressive moving average processes [ARMA] meet (2), since

cj is geometrically bounded in the ARMA case. We next give properties of

{yt} in terms of {xt} with autocovariances γx and spectrum fx:

γx(h) = σ2

∞∑
j=0

cjcj+h , h = 0, 1, . . . , and fx(λ) =
σ2

2π

∣∣∣∣∣
∞∑
j=0

cje
ijλ

∣∣∣∣∣
2

, i2 = −1 .

Correspondingly, fy and γy stand for the spectrum and the autocovariances of

{yt}, respectively. The moving average representation of the process is given
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by convolution of h(L) and c(L),

yt = µ+
∞∑
j=0

bjεt−j , bj =

j∑
k=0

ck
j + 1− k

, (3)

where {εt} is the white noise from Assumption 1.

Proposition 1. The harmonically weighted process {yt} from Assumption

1 is covariance stationary with mean µ. It further holds

a) for the moving average coe�cients that

bj ∼
∑∞

k=0 ck
j

=
c(1)

j
, j →∞ ,

b) for the spectrum that

fy(λ) =

[
ln2

(
2 sin

λ

2

)
+

(
π − λ

2

)2
]
fx(λ) , λ > 0 ,

∼ ln2 (λ) fx(0) , λ→ 0 ,

c) and for the autocovariances that

γy(h) ∼ 2πfx(0)
lnh

h
, h→∞ .

Proof. See Appendix.

Remark 1 Let us consider the special case of harmonically weighted noise,

where xt = εt and 2πfx(0) = σ2. It is straightforward to show in this case that

γy(0) = σ2

∞∑
j=0

(j + 1)−2 = σ2π
2

6
,

γy(h) = σ2

∞∑
j=0

1

(j + 1) (j + 1 + h)
= σ2 1

h

h∑
j=1

1

j
, h > 0 , (4)

see also Palma (2007, Prob. 3.15).
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For the general HW process, we have a spectral singularity of order ln2 (λ) at

the origin. This re�ects that the sum over the Wold coe�cients diverges at

logarithmic rate: limJ→∞
1

ln J

∑J
j=0 bj = c(1). In that sense, the HW process is

strongly persistent. Further, it displays long memory since
∑H

h=0 |γy(h)| → ∞
as H → ∞.1 For comparison with the traditional long memory model, we

brie�y recap the well known fractionally integrated [FI] process {zt} of order
d, for short zt ∼ I(d), which relies on the fractional integration operator with

the usual binomial expansion: (1− L)−d =
∑∞

j=0

(−d
j

)
(−L)j.

Assumption 2 Let zt = µ + (1 − L)−dxt, t ∈ Z, 0 ≤ d < 1/2, where {xt}
is from Assumption 1.

This FI process {zt} is often called of type I since the work by Marinucci and

Robinson (1999). The Wold decomposition provides zt = µ +
∑∞

j=0 βjεt−j

with βj ∼ c(1)
Γ(d)

jd−1, see Hassler (2019, Lemma 5.4). Note that Γ(x) ∼ x−1

at the origin. Hence, jd−1/Γ(d) converges to zero (for �xed j) as d → 0,

and HW is not a special case of FI. The spectrum of {zt} becomes fz(λ) =

(2 sinλ/2)−2d fx(λ), see e.g. Giraitis, Koul, and Surgailis (2012, Prop. 3.2.2).

Consequently, it holds for the autocovariances γz(h) that γz(h) ∼ Cd h
2d−1 for

a constant Cd de�ned in Giraitis et al. (2012, Prop. 3.1.1) or Hassler (2019,

Coro. 6.1); note that Cd → 0 as d → 0. Consequently, the persistence of the

HWP and its degree of long memory are not as strong as under the assumption

of fractional integration:

lim
j→∞

1/j

jd−1
= 0 , lim

λ→0

ln2(λ)

λ−2d
= 0 and lim

h→∞

lnh/h

h2d−1
= 0 for 0 < d < 1/2 . (5)

Although the persistence and memory of FI and HW processes have di�erent

qualities asymptotically, matters may be di�erent in �nite samples. Assume

a sample of size T . One typically estimates spectra at harmonic frequencies

λj = 2πj/T . For that reason, we plot in Figure 1 spectra of HW noise and of

FI noise (d = 0.3 and d = 0.4) for di�erent T (with σ2 = 2π), where we focus

on frequencies only up to π/4. For d = 0.3, the HW spectrum turns out to be

higher than the I(0.3) spectrum even at λj close to the origin. For d = 0.4,

1Note that our de�nition of long memory follows e.g. Giraitis et al. (2012, eq. (3.1.1)),
while Haldrup and Vera Valdés (2017, Def. (i)) de�ne long memory by the hyperbolic decay
h2d−1, which is characteristic for fractional integration.
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Figure 1: Spectra at λj = 2πj/T for HW noise (solid) and FI noise (dashed)
where 0 < λj ≤ π/4

the spectra of the I(d) process (dashed line) and the HW process (solid line)

are even closer and hard to distinguish by eyesight, and this will of course be

all the more true when spectra are estimated in practice. We will return to the

di�culties to disentangle the two models statistically after the next section.

Next, we turn to the harmonic inverse transformation [HIT] of the data that

removes the singularity in the spectrum observed from Prop. 1 a). Thus the

harmonic �lter h(L) is inverted to de�ne

g(L) =
1

h(L)
= − L

ln(1− L)
= 1−

∞∑
j=1

gjL
j , (6)

where {gj} are the coe�cients of the Taylor expansion, and h(L)g(L) = 1

yields the recursive relation

gj =
1

j + 1
−

j−1∑
i=1

gi
j − i+ 1

, j ≥ 1 , g0 = 1 .

These coe�cients are sometimes called Gregory coe�cients, see e.g. Blagou-
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chine (2016), and they are known to be positive, gj > 0. It holds that

g(1) = limz→1 g(z) = 0, see also Blagouchine (2016, eq. (20)). Hence, we

have that
∑∞

j=1 gj = 1, such that the �lter g(L) is (absolutely) summable,

and one even knows the rate at which the coe�cients vanish, see Blagouchine

(2016, eq. (18)):

gj ∼
1

j ln2 j
as j →∞ . (7)

Since the �lter coe�cients sum up to zero, it follows for HW processes from

Assumption 1 that g(L)yt = g(1)µ + xt = xt. Hence, �ltering the data with

g(L) not only removes the long memory but the mean at the same time. With

the absolutely summable �lter g(L), it is straightforward to obtain an AR(∞)

representation for HWP. Under the additional assumption that the spectrum

fx is strictly positive, we have from Brillinger (1975, pp. 76, 77) that {xt}
from Assumption 1 has an AR representation building on

εt =
xt
c(L)

=
∞∑
j=0

ajxt−j with
∞∑
j=0

j|aj| <∞ .

The convolution of g(L) and (c(L))−1 =
∑∞

j=0 ajL
j then results in an abso-

lutely summable AR(∞) representation of {yt}.

In practice, given only a �nite past, the HIT has to be truncated:

g+(L)yt := g(L)yt1(t>0)(t) = yt −
t−1∑
j=1

gjyt−j , t = 1, . . . , T . (8)

Here, we employ the indicator function

1(t>0)(t) =

{
1 , t > 0

0 , else
.

Similarly, one may consider h+ as a truncated version of h(L) and de�ne {y+
t }

as follows:

y+
t := µ+ h+(L)xt := µ+ h(L)xt1(t>0)(t) = µ+

t−1∑
j=0

xt−j
j + 1

, t = 1, . . . , T . (9)

This process is only asymptotically stationary. However, it follows from the
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proof of Lemma 2 in Demetrescu et al. (2008) that

yt − y+
t = Op

(
1√
t

)
. (10)

That's why we focus on {yt} from Assumption 1 for the rest of the exposition.

3 (Functional) Central limit theorem

We now turn to large sample properties of the sample mean of HWP. We obtain

the behaviour of the variance of cumulated HWP, which is used to establish a

functional central limit theorem [FCLT].

Proposition 2. Let us maintain Assumption 1, where {εt} is a martingale

di�erence sequence with E (ε2
t ) = σ2 and E (|εt|p) < ∞ for some p > 2. It is

further assumed to be either strictly stationary and ergodic or to satisfy Abadir,

Distaso, Giraitis, and Koul (2014, Ass. 2.1). It then holds as T →∞

a) that

Var
(∑T

t=1 yt

)
T ln2 T

→ 2πfx(0) ,

b) and that ∑brT c
t=1 (yt − µ)√
T lnT

⇒
√

2πfx(0)W (r) ,

where W is a standard Wiener process, 0 ≤ r ≤ 1.

Proof. See Appendix.

Our proof of Proposition 2 b) relies on Abadir et al. (2014). Hence, we main-

tain their assumptions. Note that Abadir et al. (2014, Ass. 2.1) allow for

conditional heteroskedasticity meeting certain requirements with respect to

conditional moments, see also the discussion in Abadir et al. (2014, Sect. 4.1).

For r = 1, we have the following central limit theorem for y = T−1
∑T

t=1 yt,

√
T

(y − µ)

lnT
=

∑T
t=1(yt − µ)√
T lnT

D→ N (0, 2πfx(0)) .
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Although Var(y) converges to zero with T , it does so more slowly than in

the standard case of absolutely summable processes like {xt} characterized in

Assumption 1. Still, it is remarkable that the limiting process in b) is standard:

a Wiener process with independent increments. This contrasts again the case

of FI, where the limiting process is a so-called fractional Brownian motion with

dependent increments, see Abadir et al. (2014, Coro. 4.1). This re�ects that

the HWP displays a weaker form of long memory than FI.

To close this section, we brie�y turn to the issue of �nite sample e�ciency

of y. Let µ̃ denote the generalized least squares [GLS] estimator of µ under

Assumption 1, i.e. the best linear unbiased estimator. We now consider an

example to quantify potential e�ciency gains beyond y. Assume xt = εt with

known σ2, such that {yt} is harmonically weighted noise. With 1 denoting a

T vector of ones, we have

Var(µ̃)

Var(y)
=

T 2

1′Ω1 · 1′Ω−11
,

where Ω contains ωi,i+h = γy(h)/σ2 with γy(h) being from Remark 1. In Figure

2 we evaluate Var(µ̃)/Var(y) for T ranging from 50 up to 2000. It is obvious

that the e�ciency gains of µ̃ relative to y are very small in larger samples. The

estimation of µ is inevitably plagued by the strong persistence or long memory

of HWP resulting in the slow rate of convergence observed in Proposition 2.

4 HWP versus FI

Now, we turn to the discrimination between HWP and FI. Both features are

embedded in the harmonically weighted fractionally integrated [HWFI] process

{ξt},
ξt = µ+ h(L)(1− L)−dxt , t ∈ Z , 0 ≤ d <

1

2
, (11)

where {xt} is from Assumption 1. The HW process {yt} is a special case of

(11) for d = 0. It follows for the spectrum of {ξt} along the lines of the proof

of Proposition 1 that

fξ(λ) =

[
ln2

(
2 sin

λ

2

)
+

(
π − λ

2

)2
] (

4 sin2 λ

2

)−d
fx(λ) , λ > 0 ,
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Figure 2: Var(µ̃)/Var(y) for T = 50, . . . , 2000

and fξ(λ) ∼ ln2 (λ)λ−2dfx(0) as λ → 0. Model (11) is a special case of the

more general case considered in Robinson (2014, eq. (2)), in that ln2 λ is a

particular parameterization of a slowly varying function. How do HW and FI

interact statistically?

We �rst consider the LM test for d suggested by Robinson (1991), which is

e�cient against fractional alternatives, see Robinson (1994). Following Robin-

son (1994), we assume fractional integration of type II and di�erence the data

under H0: d = d0, i.e. ξt,d := ∆d0
+ ξt. For ξt ∼ I(d0 + θ) this means that

ξt,d ∼ I(θ). With the auxiliary variable ξ∗t−1,d := h+(L)ξt−1,d =
∑t−1

j=1 ξt−j,d/j

the test statistic of the LM test in the time domain becomes

tLM :=

√
6

πσ̂2

1√
T

T∑
t=2

ξt,dξ
∗
t−1,d , σ̂2 = T−1

T∑
t=2

ξ2
t,d,

see also Tanaka (1999). Under the null hypothesis one has ξt,d ∼ I(0), or H0:

θ = 0. From Robinson (1994, Thm. 2) it follows that the test has power

against local fractional alternatives in a Pitman sense. Although the HWP is

not I(θ) with θ > 0, it violates the null I(0) since it displays long memory.

Hence, (11) violates the null although the fractional alternative is not true.

We now investigate the power under local harmonically weighted processes.
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More speci�cally, we consider the following local type II model:

∆d
+ξt = ηt + T−κh+(L)εt , 0 < κ ≤ 0.5 . (12)

Then we have the following result.

Proposition 3. Let {ηt} be an iid process with zero mean and variance σ2
η

independent of the iid process {εt} with variance σ2
ε and with �nite fourth

moments. It then holds under (12) that

tLM


D→ N (0, 1) if κ > 0.25
D→ N

(
2
√

6
π

σ2
ε

σ2
η
ζ(3), 1

)
if κ = 0.25

→∞ if κ < 0.25

as T →∞, where ζ(·) is Riemann's zeta function.

Proof. See Appendix.

Hence, if the HW component is downweighted by T 0.25, the test has still non-

negligible power, and it even rejects with probability one if the local HW

component is stronger. On the one hand, this is good news: The LM test

designed against fractional alternatives has power against the weaker form of

long memory of a HW process, too. On the other hand, this calls for attention:

A (one-sided) rejection of d = d0 or θ = 0 is typically interpreted as d > d0

or θ > 0, which is a wrong conclusion under (12), i.e. a HW component will

appear as FI(θ).

Second, we turn to the estimation of d when an FI process is perturbed by HW,

where we maintain again model (11). Can one estimate d without systematic

bias notwithstanding the additional long memory due to HW? The answer will

be yes (asymptotically) and no (for samples even of size T = 105).

Robinson (2014) proved that the widely used log-periodogram regression [LPR]

studied by Geweke and Porter-Hudak (1983), Robinson (1995) and Hurvich,

Deo, and Brodsky (1998) provides a consistent estimator for d under (11).

Using the notation by Robinson (2014), the estimator becomes

d̂LPR = −
∑m

j=1 νj ln(Iξ(λj))

2
∑m

j=1 ν
2
j

, νj := ln(j)− ln(m!)/m ,
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where Iξ is the periodogram of ξt, λj = 2πj/T . With Uj = ln(Iξ(λj)/fξ(λj))

it follows that d̂LPR is made up by three terms:

d̂LPR =

m∑
j=1

νj

(
d ln(4 sin2 λj

2
)− ln

[
ln2
(

2 sin
λj
2

)
+
(
π−λj

2

)2
]
− Uj

)
2
∑m

j=1 ν
2
j

≈ d+ b(m,T ) + op(1)
p→ d as

1

m
+
m

T
→ 0 .

The �rst terms equals approximately d since ln(4 sin2 λj
2

) ∼ 2(ln(j)+ln(2π/T ));

the third one depending on Uj is op(1) by Robinson (2014, Ass. 1); and the

middle term is the approximate bias,

b(m,T ) := −

m∑
j=1

νj ln

[
ln2
(

2 sin
λj
2

)
+
(
π−λj

2

)2
]

2
∑m

j=1 ν
2
j

, (13)

which vanishes asymptotically by Robinson (2014, eq. (30)). In Figure 3 we

evaluate this bias term for growing T with m = bT 0.65c. Even for T = 104,

the value is above 0.25, and for T = 105 one has b(bT 0.65c, T ) = 0.222. What

is more, we will observe in the next section that b(m,T ) does a very good job

in explaining the bias quanti�ed by means of computer experiments (also for

more e�cient estimators). Hence, a reliable estimation of d seems to be out

of reach for realistic sample sizes.

5 Monte Carlo results

All computer experiments below were executed with MATLAB. The results

rely on 104 replications.

5.1 Central limit theorem

In this subsection we turn to Proposition 2. As true data generating process

[DGP] we consider the case µ = 0, i.e. yt = h(L)xt, t = 1, 2, . . . , T . In order

to simulate a sample from a stationary type I HW process of length T , we

generated T + 5000 observations from the type II model (9) and discarded the

13
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Figure 3: b(m,T ) for T ∈ {200, 400, . . . , 1000, . . . , 10000} with m = bT 0.65c

�rst 5000 observations. With the so-called long-run variance ω2
x = 2πfx(0), we

de�ne the infeasible test statistic

T0 :=

√
T

lnT

y

ωx
,

which is compared in absolute value with z0.975 = 1.96 for a two-sided test

at nominal 5% level. T1 and T2 are the corresponding test statistics with ω2
x

replaced by a consistent estimator. The estimator is computed from g+(L)yt.

For T1, the estimation builds on a Bartlett kernel with data-driven bandwidth

according to Andrews (1991, eq. (5.3)), while the estimation behind T2 re-

lies on the quadratic spectral kernel advocated by Andrews (1991) with the

deterministic bandwidth choice b4(T/100)1/4c.

In 5 sets of experiments, the input sequence {xt} = {εt} is free of serial cor-
relation. We consider the case of a standard normal distribution N (0, 1) and

of a t distribution t(3) with 3 degrees of freedom. Further, ALi, i = 1, 2, rep-

resents two asymmetric Laplace distributions with the following distribution
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Table 1: Empirical size testing for true µ = 0 at α = 5%

N (0, 1) t(3) AL1 AL2 GARCH AR(1) MA(9)
T = 250

T0 5.05 4.88 5.13 5.14 5.25 5.23 4.91
T1 5.64 5.75 6.04 6.05 5.83 8.60 10.39
T2 5.70 5.89 6.04 5.89 5.57 8.35 13.71

T = 500
T0 4.98 4.66 4.52 4.82 4.62 4.79 4.92
T1 5.35 4.87 5.22 5.40 5.08 6.87 8.80
T2 5.25 4.84 5.06 5.28 5.02 7.11 13.17

T = 1000
T0 4.64 4.67 4.32 4.79 4.76 4.40 4.50
T1 4.86 4.84 4.75 5.16 4.98 6.10 6.76
T2 4.82 4.73 4.76 5.23 4.89 5.91 9.01

Note: T0 is the infeasible statistic computed from yt = h(L)xt, T1 and T2

rely on estimates described in the text. xt is either free of serial correlation
or serially correlated; for a description of the columns see the text.

function

F (x;m,λ, τ) =

{
τ2

1+τ2
exp

(
λ
τ

(x−m)
)

for x ≤ m

1− 1
1+τ2

exp (−λτ (x−m)) for x > m
.

For i = 1 and i = 2, we chose m1 = 3
2
, λ1 = 1, τ1 = 2 and m2 = −3

2
, λ2 = 1,

τ2 = 1
2
, respectively. The expected values are 0 in both cases, and the skewness

coe�cients amount to − 126
17
√

17
and 126

17
√

17
≈ 1.8, respectively. Further, we

consider stationary GARCH(1,1) innovations with (using standard notation)

α0 = 0.05, α1 = 0.10 and β1 = 0.85 where the underlying shocks are iid and

distributed according to a standard Gaussian law. The corresponding kurtosis

is 3.77. Finally, we allow {xt} to be serially correlated; �rst as AR(1) with

xt = 0.5xt−1 + εt, εt is iid N (0, 1), and second as MA(9): xt = εt + 0.9εt−1 +

· · ·+ (1− 9/10)εt−9.

Table 1 contains the rejection rates for di�erent sample sizes. Under all cir-

cumstances where {xt} = {εt}, no notable size distortions show up. For the

mildly persistent AR(1) case, mild distortions are observed when ωx has to

be estimated from small samples; in the slightly more persistent MA(9) case,

the distortions are slightly stronger. All in all, we �nd that Proposition 2 pro-

vides a reliable guideline for �nite sample inference under a variety of realistic
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distributional and dynamic assumptions.

5.2 Discrimination between I(d) and HW

In this subsection, we have the model (11) in mind and focus without loss of

generality on d = 0. More speci�cally, we maintain (12) while �xing κ = 0:

yt = h+(L)εt. Hence, the DGP is now of type II, which is conformable with

the assumption in Robinson (1994).

To begin with, we turn to Proposition 3 and quantify the e�ect of the presence

of a HW component on tests for FI in �nite samples. To mimic a realistic prac-

tical strategy, we allow for additional short memory employing the augmented

LM [ALM] test by Demetrescu, Kuzin, and Hassler (2008). This version of the

test is executed by regressing ξt,d on the auxiliary regressor ξ
∗
t−1,d and k endoge-

nous lags, ξt−j,d, j = 1, . . . , k. The (absolute) value of the t statistic testing for

insigni�cance of ξ∗t−1,d is compared with the standard normal. Following the

recommendation by Demetrescu et al. (2008), we choose k = b4(T/100)1/4c.
Note that a data driven lag selection e.g. with information criteria cannot be

advised due a devastating post model selection e�ect, see Demetrescu, Hassler,

and Kuzin (2011) for a quanti�cation. In Table 2 we report rejection frequen-

cies at nominal 5% level for a selection of T between 200 and 104. Trivially,

the one-sided test rejects more often than the two-sided version. The rejection

rates grow with T . This can be read as increasing power when having the null

hypothesis in mind, H0: yt ∼ I(0), which is violated under HW. At the same

time a word of warning is due. A one-sided rejection of d = d0, must not be

hastily interpreted as evidence in favour d > d0, since it may as well result

from the presence of HW.

Table 2: ALM test at nominal size 5%

T 200 400 600 800 1000 2000 5000 10000
one-sided 20.77 31.26 37.36 47.71 49.02 72.09 93.43 99.22
two-sided 14.23 22.36 27.34 36.88 37.87 61.90 88.71 98.30

Note: Frequency of rejections testing for true d = 0 from HW noise, yt = h+(L)εt

Next, we relate to the bias approximation when estimating d, see (13). For

Figure 4, we estimated the order of integration by means of the LPR and by
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Figure 4: Box plots of estimates of d = 0; the true process is yt = h(L)εt

means of the more e�cient exact local Whittle [ELW] estimator d̂ELW proposed

by Shimotsu and Phillips (2005) and Shimotsu (2010) with bandwidth m =

bT 0.65c. The true DGP is now again of type I as in the previous subsection:

yt = h(L)εt. Asymptotically, the estimates should concentrate around the true

d = 0. In �nite samples, however, things are quite di�erent. In Figure 4 we

present Box plots of the estimates. For T = 100, the median is well above

0.4, for T = 1000, the median is roughly 0.33, which well corresponds to the

approximating values in Figure 3. Figure 5 presents experimental evidence

that also for T = 104 the mean and median closely relate to b(m, 104). What

is more, out of 104 experiments, all estimates behind Figure 5 are larger than

the true value d = 0. This means for realistic sample sizes in practice that a

fractional speci�cation will be mislead for sure under HW.

6 Empirical example: U.S. in�ation

Granger (1980) argued that the aggregation of individual (price) series may

result in an index that is fractionally integrated. Consequently, Granger and

Joyeux (1980) studied as an empirical example for fractional integration the
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Figure 5: See Figure 4

monthly U.S. index of consumer food prices. More systematically, Geweke

and Porter-Hudak (1983) applied fractional integration to di�erent U.S. price

indices. Their work triggered independent studies on long memory in in�ation

by Delgado and Robinson (1994), Hassler and Wolters (1995) and Baillie,

Chung, and Tieslau (1996). Long memory in in�ation is sometimes considered

as a stylized fact supported by abundant evidence over the last decades.

Let Pt stand for the seasonally adjusted monthly consumer price index from

December 1969 until August 2017, more precisely: Consumer Price Index for

all urban consumers (all items), retrieved from the Federal Reserve Bank of

St. Louis. The in�ation series is computed as πt = 100 (Pt − Pt−1)/Pt−1,

t = 1, . . . , T = 572, see the northwestern graph in Figure 6. The sample

autocorrelogram in the northeastern graph is indicative of long memory with

ρ̂π(h) > 0.3 up to h = 20. At the same time, ρ̂π(1) is clearly less than 1, so

that we can rule out a unit root (d = 1). The estimated di�erencing parameter

is d̂ = 0.43 when estimated by exact local Whittle [ELW] with bandwidth

bT 0.65c = 61. This value was used to fractionally di�erence the series, and

alternatively we use the harmonic inverse transformation, HIT:

dift := (1− L)d̂+πt and hitt = g+(L)πt.
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Next, the sample autocorrelations of dift and hitt are computed; they are

plotted in the lower graphs of Figure 6 (right and left, respectively). The

resulting sample autocorrelograms appear very similar by visual inspection.

This suggests that the harmonically weighted model captures the long-range

dependence of U.S. in�ation just as well as fractional integration. To support

this claim we compute the Box-Pierce statistics,

Qdif (25) = T
25∑
h=1

(ρ̂dif (h))2 = 69.74 and Qhit(25) = T
25∑
h=1

(ρ̂hit(h))2 = 70.11 .

Clearly, these values are signi�cantly di�erent from zero at any reasonable

level: We do not claim that fractional di�erencing or harmonic inverse trans-

formation turn U.S. in�ation into white noise. But Qdif (25) and Qhit(25)

are both approximately equal to 70, suggesting that the model of harmonic

weighting does as good a job in capturing the in�ation persistence as the more

popular model of fractional integration. At the same time, the HW model is

radically more simple, it does not require to choose an estimator of d, and it

does not require to pick a bandwidthm. Further, note that the semiparametric

estimation of d is plagued by large variances. For ELW one obtains as approx-

imate con�dence interval at 95% level [d̂± 1.96/15.62] = [0.3045, 0.5555].

7 Concluding remarks

From Proposition 1 we learn that HW processes are strongly persistent and

display long memory in the sense that the moving average coe�cients and the

autocovariances are not summable. Still, by (5) the strength of persistence and

the length of memory are of a di�erent, weaker quality than with the traditional

model of fractional integration. One might be tempted to introduce a new

category of �weak long memory� or �intermediate memory� to characterize

HW. We think there is no need to do so, since Proposition 2 helps to clarify

what distinguishes HW from FI. Remember the concept of summability by

Berenguer-Rico and Gonzalo (2014). Let L(x) be slowly varying at in�nity in

Karamata's sense, L(cx)/L(x)→ 1 as x→∞ for all c > 0. Then, according

to Berenguer-Rico and Gonzalo (2014), a process {ξt} is summable of order δ,
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Figure 6: U.S. in�ation

if δ is the minimum number such that

L(T )

T δ
√
T

T∑
t=1

(ξt − µ) = Op(1) . (14)

Since 1/ lnT is slowly varying at in�nity, Proposition 2 implies that the HWP

{yt} is summable of order δ = 0. Once more, this contrasts the long memory

FI case: If d > 0, then the FI process is summable of order d, see Berenguer-

Rico and Gonzalo (2014, Prop. 1). In that sense, the HWP �lls a gap between

short memory processes as characterized in Assumption 1 and FI processes

from Assumption 2. The process {xt} from Assumption 1 has short memory

and is summable of order 0, and the process {zt} from Assumption 2 with d > 0

has long memory and is summable of order d; the HWP {yt} is in-between: it
has long memory but is summable of order 0.

The question whether it is possible to discriminate between the di�erent rates

of memory of HW and FI processes comes up naturally. From Proposition

3 we learn the following for a process {ξt}. Assume that the hypothetical

order of integration d0 equals the true one, and is removed from the data:

∆d0ξt. If these di�erences are tested for short memory, I(0), then the widely

20



used LM test will reject with high probability in the presence of HW, which

is supported by Monte Carlo evidence. Upon rejection, one would thus like to

unveil the nature of the remaining memory, i.e. to know whether {ξt} is FI with
d = d0 + θ, θ > 0, or whether it is a harmonically weighted FI(d0) process, see

(11). When applying the log-periodogram regression to ∆d0ξt, we know from

Robinson (2014) that the estimator of the order of integration will converge

to the true value of zero, asymptotically, notwithstanding the fact that ∆d0ξt

displays long memory under HW. However, the bias approximation (13) shows

that this convergences is incredibly slow. Even with T = 105 observations the

estimation will be misleading. This is supported by Monte Carlo evidence,

and for the so-called exact local Whittle estimator, too. Hence, in practice we

see little chances to disentangle HW and FI.

FI processes o�er an overwhelming �exibility in modelling persistence and long

memory. This is a virtue and a burden at the same time: on the one hand, there

is a continuity of long memory depending on the order of integration d, but on

the other hand the estimation of d is notoriously di�cult and troubled by large

variances of slowly converging semiparametric estimators. With U.S. in�ation

data we illustrate that a HW process may be just as able to capture persistence

as the more involved FI model. The admitted simplicity and rigidity of the HW

model, which does not allow - or require - to choose a memory parameter, may

turn out to be a practical advantage in applied work, and empirical researchers

may prefer the HW model without having to choose an estimator of d, which

typically is plagued by the need of further decisions like picking a bandwidth.

Of course, we need more empirical evidence to learn whether and for what

values of d and in which �elds of application HW may be a serious competitor

to FI.

There are further open issues. First, one may wish to step beyond the univari-

ate model and consider a multivariate framework where harmonically weighted

vector autoregressive processes are allowed for. Second, one may account for

nonstationarity and allow for processes where integer di�erencing is required

to obtain harmonically weighted processes. Third, the harmonically weighted

model may serve as a general forecasting device under long memory when the

true data generating process is not known and might be fractionally integrated

or spurious long memory. These issues are currently under investigation but
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beyond the scope of the present paper.

Appendix

Preliminary Results

Our proofs of Proposition 1 and 2 rely on what is sometimes called the Stolz-

Cesàro Theorem. For the ease of reference, we give the result here, adopting

the version by Mure³an (2009, Thm. 1.22).

Stolz-Cesàro Theorem Let {sn} and {σn} be real sequences, n ∈ N,
where {σn} is strictly monotone and divergent. If (sn+1 − sn)/(σn+1 − σn)

converges, then sn+1/σn+1 converges, too, and has the same limit:

If lim
n→∞

sn+1 − sn
σn+1 − σn

= ` , then lim
n→∞

sn+1

σn+1

= ` . (15)

The proof by Mure³an (2009) also covers the case ` = ±∞. For a historical

exposition on this result we also recommend Knopp (1951, pp. 76, 77).

The proof of Proposition 2 requires a technical lemma that we provide next.

Lemma A. It holds that

T∑
h=1

(T − h) lnh

h
=
T

2
ln2 T − T lnT +O(T ) .

Proof. We de�ne the function f (x) = (T−x) lnx
x

with kth derivative f (k). In

order to evaluate
∑T

h=1 f(h), we use Euler's summation formula taken from

Knopp (1951, p. 524):

T∑
h=1

f(h) =

∫ T

1

f(x) dx+
1

2
(f(T ) + f(1)) +

1

12

(
f (1)(T )− f (1)(1)

)
+R , (16)

where

|R| ≤ 1

2π3

∫ T

1

∣∣f (3) (x)
∣∣ dx .
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For the third derivative we obtain in absolute value that

∣∣f (3) (x)
∣∣ =

∣∣∣∣11T

x4
− 6T lnx

x4
− 2

x3

∣∣∣∣ ≤ 11T

x4
+

6T lnx

x4
+

2

x3
.

It is elementary to verify that∫ T

1

f(x) dx =
1

2
T ln2 T − T lnT + T − 1 ,

f(1) = f(T ) = 0, f (1)(T )− f (1)(1) = − lnT/T − (T − 1), and that∫ T

1

∣∣f (3) (x)
∣∣ dx ≤ 1 +

13

3
T − 16

3T 2
− 2

lnT

T 2
.

Hence,
T∑
h=1

f(h) =
1

2
T ln2 T − T lnT +O(T ) ,

which proves the result. �

Proof of Proposition 1

The stationarity and the expectation follow from Fuller (1996, Thm. 2.2.3)

since bj =
∑j

k=0 ck/(j+1−k) is given by convolution of an absolutely summable

and a square summable �lter.

a) Let us decompose jbj = j
∑

k≤j/2 ck/(j + 1− k) + j
∑

k>j/2 ck/(j + 1− k).

We consider the second sum �rst:

j

∣∣∣∣∣∣
∑
k>j/2

ck
j + 1− k

∣∣∣∣∣∣ ≤
∑
k>j/2

2 k
|ck|

j + 1− k
≤
∑
k>j/2

2 k |ck| → 0 .

Second, we study the di�erence of the �rst sum and
∑

k≤j/2 ck:∣∣∣∣∣∣
∑
k≤j/2

ck − j
∑
k≤j/2

ck
j + 1− k

∣∣∣∣∣∣ ≤
∑
k≤j/2

|ck|
|1− k|
j + 1− k

=
|c0|
j + 1

+

j/2∑
k=2

|ck|
k − 1

j + 1− k

≤ 1

j + 1
+

j/2∑
k=2

|ck|
k

j + 1− j/2
→ 0 .
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Consequently, j
∑

k≤j/2 ck/(j + 1− k)→
∑∞

k=0 ck for j →∞, as required.

b) For λ > 0 we have

fy(λ) =
∣∣h(eiλ)

∣∣2 fx(λ) , h(eiλ) = − ln(1− eiλ)

eiλ
,

where
∣∣h(eiλ)

∣∣2 = ln(1− eiλ)ln(1− e−iλ). Note that

ln(1− eiλ) = ln(r(λ) eiθ(λ)) = ln(r(λ)) + iθ(λ)

with

r(λ) =
√

(1− cosλ)2 + sin2 λ =

√
4 sin2 λ

2
,

and

θ(λ) = arctan
− sinλ

1− cosλ
, λ > 0 .

With ln(1− e−iλ) = ln(r(λ))− iθ(λ) we obtain

∣∣h(eiλ)
∣∣2 = ln2(r(λ)) + θ2(λ) = ln2

(
2 sin

λ

2

)
+ arctan2 sinλ

1− cosλ
.

Further, focusing on the principal value,

arctan
sinλ

1− cosλ
= arctan cot

λ

2
=
π

2
− λ

2
,

where we used the usual double-angle formulae and tan(π/2 − x) = cotx for

the last two equations, respectively. Hence, we have at the origin that∣∣h(eiλ)
∣∣2

ln2 λ
→ 1 as λ→ 0 .

This implies the spectral results as required.

c) We write bj as

bj =
1

j + 1

j∑
k=0

ck

1− k
j+1

=
1

j + 1
Bj ,

where Bj was de�ned implicitly. From part a) we have that Bj → c(1). Now,

de�ne sj − sj−1 = bjbj+h and σj − σj−1 = 1
j+1

1
j+h+1

. It holds by part a) that
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(sj − sj−1)/(σj − σj−1) = BjBj+h → (c(1))2. Therefore, by (15) we have∑∞
j=0 bjbj+h∑∞

j=0
1
j+1

1
j+h+1

=
γy(h)/σ2

1
h

∑h
j=1

1
j

= (c(1))2 ,

where the �rst equality is by (4). This means that

γy(h) ∼ 2πfx (0)
lnh

h
.

Hence, the proof is complete.

Proof of Proposition 2

a) De�ne sT−1 =
∑T−1

h=1 (T − h) γy (h) and σT−1 =
∑T−1

h=1 (T − h) lnh
h

with

sT−1 − sT−2

σT−1 − σT−2

=

∑T−1
h=1 γy (h)∑T−1
h=1

lnh
h

.

By Proposition 1 c), we have γy (T − 1) ∼ 2πfx (0) ln(T−1)
T−1

. Using (15) it hence

follows that
sT−1 − sT−2

σT−1 − σT−2

→ 2πfx (0) .

Again by (15), this time applied to sT−1 and σT−1, we conclude that∑T−1
h=1 (T − h) γy (h)∑T−1
h=1 (T − h) lnh

h

→ 2πfx (0) .

We may expand the left-hand side,∑T−1
h=1 (T − h) γy (h)∑T−1
h=1 (T − h) lnh

h

=

∑T−1
h=1 (T − h) γy (h)

1
2
T ln2 T

1
2
T ln2 T∑T−1

h=1 (T − h) lnh
h

,

where the second factor on the right-hand side converges to 1 by Lemma A,

such that ∑T−1
h=1 (T − h) γy (h)

1
2
T ln2 T

→ 2πfx (0) .
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Consequently,

V ar
(∑T

t=1 yt

)
T ln2 T

=
γy (0)

ln2 T
+

2
∑T−1

h=1 (T − h) γy (h)

T ln2 T
→ 2πfx (0) ,

as required.

b) De�ne ST (r) =
∑brT c

t=1 (yt − µ) and σ2
T = Var (ST (1)). Then we �rst es-

tablish the convergence of the �nite dimensional distributions of σ−1
T ST (r) for

0 ≤ r ≤ 1. To do so we �rst observe that

Var
(∑brT c

t=1 (yt − µ)
)

Var
(∑T

t=1 (yt − µ)
) =

rT ln2 (rT ) (1 + o (1))

T ln2 (T ) (1 + o (1))
→ r.

For brevity de�ne at−1 =
∑t−1

m=0 bm with bm from (3). With Sj =
∑j

t=1 yt =∑j
t=1 at−1εt we easily see for j ≥ k that Cov (Sj, Sk) = Var (Sk), since

Var (Sj − Sk) = Var

(
j∑

t=k+1

at−1εt

)
= σ2

ε

j∑
t=k+1

a2
t−1 = σ2

ε

j∑
t=1

a2
t−1 − σ2

ε

k∑
t=1

a2
t−1.

Therefore, following the same steps as in the proof of Proposition 3.1 in Abadir

et al. (2014), we may conclude that

ST (r)

σT

fdd→ W (r) ,

where
fdd→ denotes the �nite dimensional convergence of distributions. To com-

plete the proof we need to show that ST (r)
σT

is tight with respect to the uniform

metric, where we require E (|εt|p) < ∞ for some p > 2. Note that with some

positive constant c

E

∣∣∣∣ST (r)

σT
− ST (s)

σT

∣∣∣∣p ≤ c

[
E

(
ST (r)

σT
− ST (s)

σT

)2
] p

2

= c

E

σ−1
T

brT c−bsT c∑
t=1

(yt − µ)

2
p
2

= c

[
(brT c − bsT c) ln2 (brT c − bsT c)

T ln2 (T )

1 + o (1)

1 + o (1)

] p
2
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≤ c

∣∣∣∣brT cT − bsT c
T

∣∣∣∣ p2 ,
where the �rst inequality follows from Abadir et al. (2014, Lemma 3.1). By

Billingsley (1968, Thm. 15.5), the last inequality shows that ST (r)
σT

is tight with

respect to the uniform metric. Hence, the proof is complete.

Proof of Proposition 3

Our proof of Proposition 3 builds on a technical lemma that we establish �rst.

Lemma B. Let yt = h+(L)εt and y
∗
t−1 := h+(L)yt−1. For {εt} being iid(0, σ2

ε)

with �nite fourth moments, it holds that

ST :=
1

T

T∑
t=2

yty
∗
t−1

p→ 2σ2
εζ(3)

as T →∞.

Proof. First, we determine an expression for the moving average coe�cients

of y∗t−1. To that end, rewrite

yj =

j∑
k=1

εk
j − k + 1

and y∗t−1 =
t−1∑
j=1

yj
t− j

,

such that

y∗t−1 =
t−1∑
j=1

j∑
k=1

1

(t− j) (j − k + 1)
εk

=
t−1∑
k=1

t−1∑
j=k

1

(t− j) (j − k + 1)
εk.

Hence, the coe�cients are

t−1∑
j=k

1

(t− j) (j − k + 1)
=

t−1∑
j=k

(t− j) + (j − k + 1)

(t− j) (j − k + 1)

1

t− k + 1
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=
1

t− k + 1

(
t−1∑
j=k

1

j − k + 1
+

t−1∑
j=k

1

t− j

)

=
2

t− k + 1

t−k∑
j=1

1

j
=

2H(t− k)

t− k + 1
,

where H (j) =
∑j

k=1
1
k
denotes the jth harmonic number.

Second, we derive the limit of E(ST ). To that end, consider

E
(
yty
∗
t−1

)
= 2σ2

ε

t−1∑
k=1

H (t− k)

(t− k + 1)2 = 2σ2
ε

t−1∑
k=1

H (k)

(k + 1)2 .

Next, note that

t−1∑
k=1

H (k)

(k + 1)2 =
t−1∑
k=1

H (k + 1)

(k + 1)2 −
t−1∑
k=1

1

(k + 1)3

=
t∑

k=1

H (k)

k2
−

t∑
k=1

1

k3

→ 2ζ(3)− ζ(3) , as t→∞ ,

where the second limit follows by de�nition, and the �rst limit is taken from

Borwein and Borwein (1995, p. 1195), who attribute this result (and a general-

ization thereof) to Euler:
∑∞

j=1
H(j)
jn

=
(
1 + n

2

)
ζ (n+ 1)−1

2

∑n−2
k=1 ζ (k + 1) ζ (n− k)

for n = 2, 3, . . .. We thus have E
(
yty
∗
t−1

)
→ 2σ2

εζ(3), which implies that

E (ST )→ 2σ2
εζ(3).

Third, we are left with the second moment: E (S2
T ) = T−2

∑T
t=2

∑T
s=2 E

(
yty
∗
t−1ysy

∗
s−1

)
.

We proceed by analyzing

E
(
yty
∗
t−1ysy

∗
s−1

)
=

t∑
k=1

t−1∑
j=1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

=
s∑

k=1

s∑
j=1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

+
t∑

k=s+1

t−1∑
j=s+1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)
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+
s∑

k=1

t−1∑
j=s+1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

+
t∑

k=s+1

s∑
j=1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

=
s∑

k=1

s∑
j=1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

+
t∑

k=s+1

t−1∑
j=s+1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

= S1 (t, s) + S2 (t, s) , say .

To simplify the summations we consider �rst the case when t > s. For S1 (t, s)

we have

S1 (t, s) =
s∑

k=1

s∑
j=1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

=
s−1∑
k=1

4H (t− k)H (s− k)

(t− k + 1)2 (s− k + 1)2E
(
ε4
k

)
+

s−1∑
m=1

4H (t− s)H (s−m)

(t− s+ 1) (t− s+ 1) (s−m+ 1) (s−m+ 1)
E (εsεsεmεm)

+
s−1∑
m=1

4H (t−m)H (s−m)

(t−m+ 1) (t− s+ 1) (s− s+ 1) (s−m+ 1)
E (εsεmεsεm)

+
s−1∑
m=1

4H (t− s)H (s−m)

(t− s+ 1) (t−m+ 1) (s− s+ 1) (s−m+ 1)
E (εmεsεsεm) ,

+
s−1∑
k=1

s−1∑
j=1,j 6=k

4H (t− j)H (s− k)

(t− j + 1) (t− k + 1) (s− j + 1) (s− k + 1)
E
(
ε2
k

)
E
(
ε2
j

)
+

s∑
k=1

s−1∑
j=1,j 6=k

4H (t− j)H (s− j)
(t− j + 1) (t− k + 1) (s− k + 1) (s− j + 1)

E
(
ε2
j

)
E
(
ε2
k

)
+

s−1∑
k=1

s−1∑
l=1,l 6=k

4H (t− k)H (s− l)
(t− k + 1)2 (s− l + 1)2 E

(
ε2
k

)
E
(
ε2
l

)
= S1,1 (t, s) + S1,2 (t, s) + S1,3 (t, s) + S1,4 (t, s) + S1,5 (t, s) + S1,6 (t, s)

+S1,7 (t, s) ,
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where the �rst counts k = j = l = m, the second term counts k = j = s 6=
l = m, the third term counts k = l = s 6= j = m, the fourth term counts

j = l = s 6= k = m, the �fth term counts k = m 6= j = l, the sixth term

counts k = l 6= j = m and the last term counts k = j 6= l = m. We begin with

S1,1 (t, s):

1

T 2

T∑
s=2

T∑
t=s+1

S1,1 (t, s) =
1

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

4H (t− k)H (s− k)

(t− k + 1)2 (s− k + 1)2 E
(
ε4
k

)
≤ 1

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

4H (t− k)H (s− k)

(t− k + 1) (s− k + 1)2 E
(
ε4
k

)
=

4µ4

T 2

T∑
s=2

s−1∑
k=1

T∑
t=s+1

H (t− k)

(t− k + 1)

H (s− k)

(s− k + 1)2

≤ 4µ4

T 2

T∑
s=2

s−1∑
k=1

T∑
t=1

H (t)

t

H (s− k)

(s− k + 1)2

=
4µ4

T 2

T∑
t=1

H (t)

t

T∑
s=2

s−1∑
k=1

H (s− k)

(s− k + 1)2 ,

where µ4 = E (ε4
t ). Now, as

∑T
t=1

H(t)
t

= O
(
log2 T

)
and as

∑T
s=2

∑s−1
k=1

H(s−k)

(s−k+1)2
=

O (T ) we have that

1

T 2

T∑
s=2

T∑
t=s+1

S1,1 (t, s) = O

(
ln2 T

T

)
. (17)

Next, we look at S1,2 (t, s):

1

T 2

T∑
s=2

T∑
t=s+1

S1,2 (t, s) =
4σ4

ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
m=1

H (t− s)H (s−m)

(t− s+ 1)2 (s−m+ 1)2

=
σ4
ε

T 2

T∑
s=2

T−s∑
t=1

s−1∑
m=1

H (t)H (m)

(t+ 1)2 (m+ 1)2

=
4σ4

ε

T 2

T∑
s=2

T−s∑
t=1

H (t)

(t+ 1)2

s−1∑
m=1

H (m)

(m+ 1)2

≤ 4σ4
εζ (3)2

T
.
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Hence,

1

T 2

T∑
s=2

T∑
t=s+1

S1,2 (t, s) = O

(
1

T

)
. (18)

For S1,3 we have

1

T 2

T∑
s=2

T∑
t=s+1

S1,3 (t, s) =
4σ4

ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
m=1

H (t−m)H (s−m)

(t−m+ 1) (t− s+ 1) (s−m+ 1)
.

Here noting that

s−1∑
m=1

1

(t−m+ 1) (s−m+ 1)
=

1

t− s

(
s−1∑
m=1

1

s−m+ 1
−

s−1∑
m=1

1

t−m+ 1

)

≤ 1

t− s

s∑
m=1

1

m
,

and as H (s−m) < H (t−m) ≤ C lnT , we obtain

1

T 2

T∑
s=2

T∑
t=s+1

S1,3 (t, s) ≤ C
ln3 T

T 2

T∑
s=2

T∑
t=s+1

1

(t− s)2 .

Therefore,

1

T 2

T∑
s=2

T∑
t=s+1

S1,3 (t, s) = O

(
ln3 T

T

)
. (19)

For S1,4 (t, s) we have

1

T 2

T∑
s=2

T∑
t=s+1

S1,4 (t, s) =
4σ4

ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
m=1

H (t− s)H (s−m)

(t− s+ 1) (t−m+ 1) (s−m+ 1)

≤ 4σ4
ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
m=1

H (t− s)H (s−m)

(t− s+ 1) (s−m+ 1)2

=
4σ4

ε

T 2

T∑
s=2

T−s∑
t=1

s−1∑
m=1

H (t)H (m)

(t+ 1) (m+ 1)2 .

Using
∑s−1

m=1
H(m)

(m+1)2
→ ζ (3) and as 1

ln2 T

∑T
t=1

H(t)
t+1

= O (1), we have that

1

T 2

T∑
s=2

T∑
t=s+1

S1,4 (t, s) = O

(
ln2 T

T

)
. (20)
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We now turn to S1,5 (t, s):

1

T 2

T∑
s=2

T∑
t=s+1

S1,5 (t, s) =
4σ4

ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

s−1∑
j=1,j 6=k

H (t− j)H (s− k)

(t− j + 1) (t− k + 1) (s− j + 1) (s− k + 1)

≤ 4σ4
ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

s−1∑
j=1

H (t− j)H (s− k)

(t− j + 1) (t− k + 1) (s− j + 1) (s− k + 1)

=
4σ4

ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

H (s− k)

(t− k + 1) (s− k + 1)

s−1∑
j=1

H (t− j)
(t− j + 1) (s− j + 1)

.

Here, note that H (s− k) ≤ C lnT and H (t− j) ≤ C lnT and

s−1∑
k=1

1

(t− k + 1) (s− k + 1)
=

1

t− s

(
s−1∑
k=1

1

s− k + 1
−

s−1∑
k=1

1

t− k + 1

)
≤ C lnT

t− s

for a generic constant C, such that

1

T 2

T∑
s=2

T∑
t=s+1

S1,5 (t, s) ≤ C
ln2 T

T 2

T∑
s=2

T∑
t=s+1

1

(t− s)2 = O

(
ln2 T

T

)
. (21)

S1,6 (t, s) is the same as S1,5 (t, s):

1

T 2

T∑
s=2

T∑
t=s+1

S1,6 (t, s) = O

(
ln2 T

T

)
. (22)

Further, we have

1

T 2

T∑
s=2

T∑
t=s+1

S1,7 (t, s) ≤ σ4
ε

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

s−1∑
l=1

4H (t− k)H (s− l)
(t− k + 1)2 (s− l + 1)2

≤ C ln2 T

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

s−1∑
l=1

1

(t− k + 1)2 (s− l + 1)2

=
C ln2 T

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

1

(t− k + 1)2

s−1∑
l=1

1

(s− l + 1)2

≤ C ln2 T

T 2

T∑
s=2

T∑
t=s+1

s−1∑
k=1

1

(t− k + 1)2 ,
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as
∑s−1

l=1
1

(s−l+1)2
≤ π2

6
. Noting that

∫ T

s=2

∫ T

t=s+1

∫ s−1

k=1

ds dt dk

(t− k + 1)2 = 4− 2T + 2 lnT + ln
T + 1

12
+ T ln

T + 1

3
,

we obtain
1

T 2

T∑
s=2

T∑
t=s+1

S1,7 (t, s) = O

(
ln3 T

T

)
. (23)

Using (17)-(23) and noting that all the terms with s ≥ t behave similarly to

those with s < t lead to

1

T 2

T∑
s=2

T∑
t=2

S1 (t, s) = O

(
ln3 T

T

)
. (24)

Now, we turn to 1
T 2

∑T
s=2

∑T
t=s+1 S2 (t, s) and note that

S2 (t, s) =
t∑

k=s+1

t−1∑
j=s+1

s∑
l=1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1) (t− k + 1) (s− l + 1) (s−m+ 1)
E (εkεjεlεm)

= σ4
ε

t−1∑
j=s+1

s−1∑
m=1

4H (t− j)H (s−m)

(t− j + 1)2 (s−m+ 1)2 .

Hence, we need to analyze

1

T 2

T∑
s=2

T∑
t=s+1

S2 (t, s) =
4σ4

ε

T 2

T∑
s=2

T∑
t=s+1

t−1∑
j=s+1

s−1∑
m=1

H (t− j)H (s−m)

(t− j + 1)2 (s−m+ 1)2

=
4σ4

ε

T 2

T∑
s=2

T∑
t=s+1

t−s∑
j=1

s−1∑
m=1

H (j)H (m)

(j + 1)2 (m+ 1)2

=
4σ4

ε

T 2

T∑
s=2

T−s∑
t=3

t∑
j=1

s−1∑
m=1

H (j)H (m)

(j + 1)2 (m+ 1)2

→ 1

2

(
2σ2

εζ (3)
)2
.

Because of
∑s

m=1
H(m)

(m+1)2
− ζ (3) = O

(
lnT
T

)
, we have that

1

T 2

T∑
s=2

T∑
t=s+1

S2 (t, s) =
1

2

(
2σ2

εζ (3)
)2

+O

(
lnT

T

)
,
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which in turn implies that

1

T 2

T∑
s=2

T∑
t=2

S2 (t, s) =
(
2σ2

εζ (3)
)2

+O

(
lnT

T

)
. (25)

Using (24) and (25) we hence have that Var (ST ) = O
(

ln3 T
T

)
, and the proof

of Lemma B is complete. �

Equipped with Lemma B, the proof of Proposition 3 is straightforward. With

η∗t−1 = h+(L)ηt−1 consider

1√
T

T∑
t=2

ξt,dξ
∗
t−1,d =

1√
T

[
T∑
t=2

ηtη
∗
t−1 +

T∑
t=2

ηt
y∗t−1

T κ
+

T∑
t=2

yt
T κ
η∗t−1 +

T∑
t=2

yty
∗
t−1

T 2κ

]
.

(26)

The �rst term on the right-hand side converges to N (0, π2σ4
η/6) since ηtη

∗
t−1

forms a martingale di�erence sequence [mds], see Robinson (1991); the second

term converges to zero as long as κ > 0, since ηty
∗
t−1 forms a mds, too. Along

the lines of proof of Lemma B it follows that Var
(∑T

t=2 ytη
∗
t−1

)
= O(T ln3 T );

in fact, one can establish as sharp rate that Var
(∑T

t=2 ytη
∗
t−1

)
= O(T ). In

any case, it follows that

1√
T

T∑
t=2

yt
T κ
η∗t−1

p→ 0

as long as κ > 0. The behaviour of the fourth term on the right-hand side of

(26) is obvious from Lemma B. Since σ̂2 p→ σ2
η, the proof of Proposition 3 is

complete.
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