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Abstract
We assess the performance of state-of-the-art robust clustering tools for regression
structures under a variety of different data configurations. We focus on two method-
ologies that use trimming and restrictions on group scatters as their main ingredients.
We also give particular care to the data generation process through the development
of a flexible simulation tool for mixtures of regressions, where the user can control the
degree of overlap between the groups. Level of trimming and restriction factors are
input parameters for which appropriate tuning is required. Since we find that incorrect
specification of the second-level trimming in the Trimmed CLUSTering REGression
model (TCLUST-REG) can deteriorate the performance of the method, we propose
an improvement where the second-level trimming is not fixed in advance but is data
dependent.We then compare our adaptive version of TCLUST-REGwith the Trimmed
Cluster Weighted Restricted Model (TCWRM) which provides a powerful extension
of the robust clusterwise regression methodology. Our overall conclusion is that the
two methods perform comparably, but with notable differences due to the inherent
degree of modeling implied by them.

Keywords Robust clustering · Clusterwise regression · Mixture modeling ·
TCLUST-REG · TCWRM · Monte Carlo experiment · MixSimReg

Mathematics Subject Classification 62-07 · 62-09 · 62Jxx
1 Introduction

In regression model-based clustering, outliers and noise can be handled in different
ways. For example, one approach is to represent themwith one (ormore) finitemixture
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model component(s) additional to those for themeaningful part of the data (e.g. Poisson
and t components are used by Banfield and Raftery 1993; Campbell et al. 1997;
Dasgupta and Raftery 1998; Peel and McLachlan 2000). Then, least squares (LS)
or maximum likelihood (ML) methods are applied component-wise to estimate all
parameters.

Alternatively, it is possible to rely on normally distributed variables and downweight
the contribution of atypical observations using, e.g., M-estimation. For example,
Campbell (1984) follows this approach to update the components of a Gaussian
mixture in the M step of the EM algorithm. In the same spirit, Hennig (2003) uses
M-estimation in clusterwise regression, in combination with an iteratively reweighted
algorithm with zero weight for the outliers.

In this paper we focus on a third approach based on two key ideas. One is the
“impartial trimming” framework of Gordaliza (1991), consisting in removing from
the dataset a fraction α of the “most outlying” data units, so that to obtain a trimmed
set with lowest possible variation. The second idea, which distinguishes the approach
from other trimming-based methods (e.g. Neykov et al. 2007), is to constrain the
group scatters in order to make the optimization of the likelihood (which is unbounded
otherwise) well-posed and to reduce the possibility of spurious solutions.

Trimming and constraints can be easily incorporated in a classical EM-type mix-
ture estimation/classification algorithm avoiding (unlike the previous two approaches)
specific distributions for the noise component or ad hoc solutions. This trimmed EM-
type algorithm is clearly related to the “concentration steps” introduced by Rousseeuw
and Van Driessen (1999) in the Fast algorithm of the Minimum Covariance Determi-
nant estimator (FAST-MCD). The MCD estimator, proposed in the seminal work of
Rousseeuw (1984), is one of the first affine equivariant and highly robust estimators
of multivariate location and scatter, but it is thanks to the fast algorithm that the MCD
found concrete applicability in problems of a certain size and complexity.

This computationally efficient framework based on trimming and scatter constraints
was introduced for multivariate clustering by García-Escudero et al. (2008), in the
TCLUSTmethod. Then,more recently themethodwas extended to clusterwise regres-
sion in TCLUST-REG (García-Escudero et al. 2010), with the addition of a second
trimming step introduced to mitigate the effect of high leverage points affecting the
mixture components with extreme values in some of the explanatory variables. More
precisely, to remove the effect of leverage points, in each step of the maximization
procedure of TCLUST-REG a fixed proportion of observations that are most outlying
in the regression space are trimmed. In many applications, the space of the explana-
tory variables can possibly include dummy variables. Although the TCLUST-REG
algorithm (at least in our implementation) can fit a model with dummy variables, here
we will not address this possibility, as the model properties would require a separate
careful study and complicate the discussion of the results and the comparison with the
standard case. For an overview of robust regression methods which treat dummies we
recommend Perez et al. (2014), while Cerasa and Cerioli (2017) address the selection
of dummy variables in an application framework similar to that analyzed in Sect. 5.6.

Analternative novel and attractive approach to attack the problems causedby remote
observations in the space of the explanatory variables, is to assume a parametric
specification for such variables and to incorporate it inside the likelihood, so that
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leverage points are automatically removed. This leads to the so called TrimmedCluster
Weighted Restricted Model (TCWRM), where a Gaussian specification is generally
assumed (the model, by García-Escudero et al. 2016, is illustrated in Sect. 2).

While there is a vast literature on TCLUST for multivariate observations, the prop-
erties of TCLUST-REG and TCWRMhave received much less attention. In particular,
in the context of TCLUST-REG, the positive effects of the second trimming step are
known only for specific data configurations, but the benefits under general settings are
less clear. For example it is not known if, and when, the second trimming step can
be simply replaced by an increase of the percentage of units trimmed at the first step.
Similarly, in the context of TCWRM, the robustness of the procedure to departures
from the assumed distribution of the explanatory variables is not known. A first objec-
tive of this paper is to explore these and other properties of the two approaches with a
simulation experiment, in whichwe consider the relation between the values of the key
model parameters and some relevant data features. The datasets differ for the number
of groups, degree of overlap between the groups, type of outliers, noise contamination
schemes and distribution chosen for the explanatory variables. The parameters stud-
ied are the two trimming percentages and the restriction factor imposed on the ratio
between the error variances of each pair of groups, for which we study the joint effect
on the bias of the estimated model parameters and on the classification error of the
final clustering.

A main indication emerging from our simulations and the analysis of some bench-
mark datasets is that the use of TCLUST-REGwith awrong percentage of observations
removed at the second trimming step may deteriorate both the model estimates and
the classification performance. This can happen for insufficient trimming in presence
of concentrated bad leverage contamination, but also for excessive trimming if non-
harmful or even good leverage points are removed. To address the problem we have
introduced a new methodological option in TCLUST-REG, through the possibility to
regulate the percentage of second level trimming during the estimation steps. This is
done through an adaptive approach based either on the Forward Search (Riani et al.
2009), or on the Finite Sample Re-weighted MCD method of Cerioli (2010).

While the approach of TCWRM enables us to avoid the use of a second level
of trimming, its higher flexibility is counterbalanced by the need of specifying a
distribution for the covariates. Another major purpose of this paper is to compare
TCWRM with the adaptive TCLUST-REG approach, in presence of different outlier
patterns, possible misspecification of the distribution of the explanatory variables and
different schemes for leverage points.

To the growth of the TCLUST literature has certainly contributed the availability
of a comprehensive and well documented R package (Fritz et al. 2012). The same
cannot be said for TCLUST-REG, although some R code is available on the web-site
of the authors,1 or under the TCWRM framework, for which R code at present is
only available upon request from the authors of the method. To make TCWRM and
TCLUST-REG accessible to a wider statistical community we provide a MATLAB
implementation of themethod in our FSDA toolbox (Riani et al. 2012, 2015)where, by
simply using anoptionalphaX, the user can easily switch fromTCWRMtoTCLUST-

1 http://www.eio.uva.es/~langel/software/tclustReg.r.

123

http://www.eio.uva.es/~langel/software/tclustReg.r


230 G. Torti et al.

REG (see last paragraph of Sect. 2.3 for details).We also offer the possibility to choose
between classification and mixture likelihood models within the same framework, by
setting the parameter mixt respectively tomixt = 0 ormixt ≥ 1. In addition, we are
working on the integration of TCLUST-REG and TCWRM in a R interface to the main
MATLAB FSDA functions for regression and multivariate analysis. We published in
CRAN the first release of this R package, called fsdaR, in December 2017 (https://
cran.r-project.org/web/packages/).

In our work, we have given special attention to the generation of the data for the
simulation experiments. In order to control precisely the degree of overlap between
the different regression hyperplanes of the generating mixture, we have extended
MixSim to clusterwise regression. MixSim is a general, flexible and mathematically
well founded framework originally introduced to generate mixtures of Gaussian dis-
tributions (Maitra and Melnykov 2010; Melnykov et al. 2012). We have implemented
the new simulation framework,MixSimReg, in MATLAB and made it available in the
FSDA toolbox together with a previous implementation of the original multivariate
counterpart, already presented in Riani et al. (2015). Our implementations ofMixSim
and MixSimReg also include several data contamination schemes and other enrich-
ments.

The structure of the paper is as follows. In Sect. 2 we recall the crucial ingredients of
TCWRM, discuss its relationships with TCLUST-REG, and adaptive TCLUST-REG
and illustrate how these procedures are implemeted inside toolbox FSDA.MixSimReg
is described in Sect. 3. In Sect. 4 we give a simulation study in order to appreciate
the role of the restriction factor, which controls the maximum allowed ratio among
the group scatters of the residuals, and its relationships with the different types of
trimming. In Sect. 5 we compare our adaptive TCLUST-REG with TCWRM in pres-
ence of correct and mispecified distribution of the explanatory variables, different
degree of overlapping among components and different outlying schemes. Some brief
conclusions are provided in Sect. 6.

2 TCWRM and adaptive TCLUST-REG: theoretical and computational
aspects

So far, following a chronological approach, we focused on TCLUST-REG. In this
section we start instead from Cluster Weighted Modeling (CWM), we then review
the need for restrictions and trimming, leading to TCWRM, and we finally obtain
TCLUST-REG as a particular case in which the distribution of the explanatory vari-
ables is not specified. In such a way, we are able to obtain a unified view of robust
clustering for regression structures, where the two competing methods are related by
the choice of one specific modelling option.

CWM is a mixture approach regarding the modelisation of the joint probability
of data coming from a heterogeneous population which includes as special cases
mixtures of regressions. In this approach both the explanatory variables (X ) and the
response (Y ) are treated as random variates with joint probability density function,
p(y, x). This formulation was originally proposed by Gershenfeld (1997) and was
developed in the context of media technology, in order to build a digital violin. CWM
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was initially introduced under Gaussian and linear assumptions (Gershenfeld et al.
1999). The extension to other distributions is treated for example in Ingrassia et al.
(2012).

More formally, let (X ,Y ) be the pair of random vector X and random variable Y
defined on the probabilistic spaceΩ with joint probability distribution p(x, y), where
X is a p-dimensional input vector with values in some spaceX ⊆ Rp and Y a response
variable having values in Y ⊆ R1. Thus, (x, y) ∈ X ×Y ⊆ Rp+1. If we suppose that
the probabilistic space Ω can be partitioned into G disjoint groups, say Ω1, Ω2, . . .,
ΩG , CWMs belong to the family of mixture models and have density which can be
written as

p(x, y, θ) =
G∑

g=1

p(y|x, θy,g)p(x, θx,g)πg, (1)

where p(y|x, θy,g) is the conditional density of Y given x in Ωg which depends on
the vector of parameters θy,g , p(x, θx,g) is the marginal density of X in Ωg which
depends on the vector of parameters θx,g , and πg reflects the importance of Ωg in the
mixture with the usual constraints πg > 0 and

∑G
g=1 πg = 1. Vector θ denotes the

full parameters set θ = (θTy,g θTx,g)
T . It is customary to assume that in each group g

the conditional relationship between Y and x is

Y = β0
g + xTβg + εg, (2)

where εg ∼ N (0, σ 2
g ). β0

g , βg = (β1g, β2g, . . . , βpg)
T and σg are respectively the

p + 1 regression parameters and the scale parameter referred to component g. With
the linearity and normality assumption, the first two conditional moments of Y given
x can be written as E(Y |x, β0

g , βg, σg) = β0
g + xTβg , var(Y |x, β0

g , βg, σg) = σ 2
g . If,

in addition, we also assume that the X distribution is multivariate normal, that is

p(x; θx,g) = φp(x;μg,Σg),

where φp(x, μg,Σg) denotes the density of a p-variate Gaussian distribution, with
mean vector μg and covariance Σg , model (1) becomes the so called linear Gaussian
CWM and can be written as

p(x, y; θ) =
G∑

g=1

φ(y|β0
g + βT

g x, σ
2
g )φp(x;μg,Σg)πg. (3)

It is interesting to notice that clustering around regression (DeSarbo andCron 1988)
can be seen as a special case of Eq. (3) by setting φp(x;μg,Σg) = φp(x; δ), that
is assuming the same distribution of X for all the components. In other words, in
clustering around regression only the conditional distribution of p(y|x) is specified
while the distribution of the regressors is ignored. Equation (3) corresponds to a
mixture of regressions with weights φp(x;μg,Σg) depending not only on πg but
also on the covariate distribution in each component g. Let {xi , yi }, i = 1, 2, . . . , n,
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represent a i.i.d. random sample of size n drawn from (X ,Y ). This leads to define the
following log-likelihood function to be maximized (mixture log-likelihood Lmixt (θ))

Lmixt (θ) =
n∑

i=1

log

⎡

⎣
G∑

g=1

φ(yi |b0g, bTg x, s2g)φp(xi ,mg, Sg)pg

⎤

⎦ , (4)

where θ = (p1, . . . , pG , b01, . . . , b
0
G , b1, . . . , bG , s21 , . . . , s

2
G ,m1, . . . ,mG , S1, . . . ,

SG) is the set of parameters satisfying pg ≥ 0 and
∑G

g=1 pg = 1, b0g ∈ R1 bg ∈ Rp,

s2g ∈ R+, m j ∈ Rp and S j a p.s.d. symmetric p × p matrix. The optimal set of
parameters based on this likelihood is

θ̂mixt = argmax
θ

Lmixt (θ). (5)

Once θ̂Mixt = ( p̂1, ..., p̂G , b̂01, ..., b̂
0
G , b̂1, ..., b̂G , ŝ21 , ..., ŝ

2
G , m̂1, ..., m̂G , Ŝ1, ..., ŜG)

is obtained, the observations in the sample are divided into G clusters by using
posterior probabilities. That is, observation (xi , yi ) is assigned to cluster g, if g =
argmaxl φ(yi |̂b0l , b̂Tl x, ŝ2l )φp(xi ; m̂l , Ŝl) p̂l .

In the so-called classification framework of model based clustering, the classifica-
tion log-likelihood (Lcla(θ)) to be maximized is defined as

Lcla(θ) =
n∑

i=1

G∑

g=1

zig(θ) logφ(yi |b0g, bTg x, s2g)φp(xi ,mg, Sg)pg, (6)

where

zig(θ) =
{
1 if g= argmaxl φ(yi |β0

l , βT
l x, σ

2
l )φp(xi , μl ,Σl)πl , l = 1, 2, . . . ,G,

0 otherwise.

In this case, the optimal set of estimates is

θ̂cla = argmax
θ

Lcla(θ) (7)

and observation (xi yi ) is now classified into cluster g if zig(θ̂cla) = 1.
In the MATLAB toolbox FSDA, the user can easily specify, using input parameter

mixt, which of the two likelihoods (4) or (6) is to be maximized. However, both these
likelihoods suffer from three major problems: unboundedness, lack of robustness and
presence of several local maxima. In the three subsections below, we tackle these
problems and illustrate how the solution to these issues has been implemented inside
FSDA.
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2.1 Unboundedness

The target functions (4) and (6) are unbounded when no constraints are imposed on the
scatter parameters. It is necessary therefore to define constraints on the maximization
on the set of eigenvalues {λr (Sg)}, r = 1, . . . , p, of the scattermatrices Sg by imposing

λl1(Sg1) ≤ cXλl2(Sg2) for every 1 ≤ l1 �= l2 ≤ p and 1 ≤ g1 �= g2 ≤ G

and to the variances s2g of the regression error terms, by requiring

s2g1 ≤ cys
2
g2 for every 1 ≤ g1 �= g2 ≤ G

The constants cX ≥ 1 and cy ≥ 1 are real numbers (not necessarily equal) which
guarantee that we are avoiding the cases |Sg| → 0 and σ 2

g → 0. This makes the
likelihood bounded; as a consequence spurious solutions are reduced as shown in
García-Escudero et al. (2010). Inside FSDA these restrictions are controlled by using
the (required input) parameter named restrfact. If restrfact is a scalar, it
refers to cy and controls the differences among group scatters of the residuals. If
restrfactor is a vector with two elements, the first element refers to cy and the
second to cX . The algorithm used to impose the restrictions is an efficient vectorized
version without loops of the procedure described in Fritz et al. (2013).

2.2 Local maxima

In order to avoid to be trapped into local maxima, we start from several different initial
random subsets and bring each of them to convergence. Each subset is obtained by
generating p ×G natural numbers from 1 to n and extracting the corresponding rows
from the original set of data. For example, if (p + 1) = 2, G = 3 and n = 100, we
randomly generate 2 × 3 = 6 natural numbers in the interval 1 ≤ n ≤ 100; if the
generated numbers are [5, 36, 58, 71, 80, 95], the subset will be formed by the rows
in the original dataset with these six indexes. The number of subsets can be controlled
in FSDA using the input parameter nsamp, which by default is equal to the minimum
between 300 and n choose (p + 1) × G. An optional parameter, refsteps, lets the
user specify the maximum allowed number of iterations (concentration steps).

For each subset we immediately apply the eigenvalue restrictions in order to be
sure that we are using an admissible value of the set of parameters θ . In order to let
the user have a feeling about the stability of the obtained solution, we also provide
in output the value of the target function in correspondence of each subset. Finally, if
the user wishes to compare the results using different values of the restriction factors,
our routine makes use of parallel computing tools and enables to preextract the list of
subsets without having to recalculate them for each new value of restrfactor.
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2.3 Lack of robustness and an adaptive trimming proposal

In the literature of robust regression it is widely known the effect of both vertical
outliers in Y and outliers in X . Robustness can be achieved by discarding in each
step of the maximization procedure a proportion of units equal to α1, associated with
the smallest contributions to the target likelihood. More precisely, for example in
the context of mixture modeling, the TCWRM parameter estimates are based on the
maximization, over the parameters pg,mg, Sg, b0g, bg, s

2
g , of the following trimmed

likelihood function

Lmixt (θ |α1, cy , cX )=
n∑

i=1

z∗(xi , yi ) log

⎡

⎣
G∑

g=1

φ(yi |b0g, bTg x, s2g)φp(xi ,mg, Sg)pg

⎤

⎦ (8)

In 8, z∗(·, ·) is a 0-1 trimming indicator function which tells us whether observation
(xi yi ) is trimmed off (z∗(xi yi ) = 0) or not (z∗(xi yi ) = 1). A fixed fraction α1 of
observations can be unassigned by setting

∑n
i=1 z(xi yi ) = [n(1 − α1)]. TCLUST-

REG (García-Escudero et al. 2010) can be considered as a particular case of TCWRM
in which the contribution to the likelihood of φp(xi ,mg, Sg) is set equal to 1. In
other words, in TCLUST-REG only the conditional distribution of p(y|x) is mod-
elled/specified.

However, if the component φp(xi ,mg, Sg) is discarded, α1 just protects against
vertical outliers in Y , since these data points have small φ(yi |b0g, bTg x, s2g)pg values,
but it has no effect in diminishing the effect of outliers in the X space. Therefore, if
we adopt a TCLUST-REG approach, it is necessary to consider [as done by García-
Escudero et al. (2010)] a second trimming step, which discards a proportion α2 of the
observations after taking into account the values of the explanatory variables of the
observations surviving to the first trimming step. More in detail, the second trimming
step applies MCD on the explanatory variables space so that to trim a fraction α2
of observations with the largest robust distances. The usual solution in TCLUST-
REG is to fix α2 in advance, although there is no established indication of the link
between this proportion and the breakdown properties of the overall methodology.
Furthermore, in the following sections we show that we may end up in a serious
deterioration of the model parameter estimates and in an increase of the classification
error if we impose a value of α2 which is not well tuned. To improve the performance
of TCLUST-REG, we instead propose to select α2 adaptively from the data. This
means that the robust distances are compared with the confidence bands at a selected
confidence level, and the observationswith distances exceeding the bands are trimmed.
In this case the multivariate outlier detection procedure proposed by Cerioli (2010),
based on the reweighted MCD estimator (Rousseeuw and Van Driessen 1999), or the
Forward Search (Riani et al. 2009) can be used at each concentration step of each
starting subset. The observations surviving to the two trimming steps are then used for
updating the regression coefficients, weights and scatter matrices. We refer to the new
version of method as adaptive TCLUST-REG. As suggested by one of the referees, a
similar adaptive approach could be applied also to the first trimming step (Dotto et al.
2018, discuss the case in the multivariate context). We prefer leaving this interesting
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extension to future work, so that to focus on the second trimming step, which is less
studied in the literature.

Clearly, TCWRM enables us to model the marginal distribution of X , provides
high flexibility to the model and automatically enables us to discard the observations
which are atypical also in the space of the explanatory variables, because they will
have a very small value of φp(xi ,mg, Sg) and thus a small likelihood contribution
φ(yi |b0g, bTg x, s2g)φp(xi ,mg, Sg)pg . The higher flexibility of TCWRM, however, is
counterbalanced by the additional complexity of the model, and the need of specifying
a distribution for X . TCWRM seems to be more suitable when the sample size of the
components is large. In the next sections we will see an example of cases in which,
due to the low sample size (and natural holes in the distribution) the use of TCWRM
may lead to find spurious components. One of the purposes of our work is thus to
compare the TCWRM approach with adaptive TCLUST-REG.

In FSDA α1 is a required input parameter, called alphaLik to stress that it is
referred to the likelihood contribution. Parameter α2 is called alphaX in order to
stress that it is referred to outliers in the X space. If 0 ≤ alphaX ≤ 0.5, TCLUST-
REG is used and this parameter indicates the fixed proportion of units subject to second
level trimming. In particular, if alphaX = 0 there is no second-level trimming. If
alphaX is in the interval (0.5, 1), adaptive TCLUST-REG is used and this parameter
indicates a Bonferronized confidence level to be used to identify the units subject to
second level trimming. If p > 1, the default estimator which is used is the forward
search, on the other hand, if p = 1 we use a reweighted MCD as modified by Cerioli
(2010). Finally, if alphaX is equal to 1, TCWRM is used and the user can supply the
value of cX as the second element of the other input parameter restrfact.

2.4 Choice of function parameters and tuning constants

These methods entail suitable values for key parameters such as G, cy , cX , α1 and α2,
and algorithmic tuning constants that are often overlooked. The latter include nsamp,
refsteps and convergence tolerances used to attain the desired restrictions or check
when a change in the objective function is small enough to stop the optimization
process. Cerioli et al. (2018) have recently proposed a fully automatic approach to
choose G and other key parameters. Nevertheless, the choice should always exploit
possible subject matter knowledge about problem and data, as we will see in our
motivating examples and case studies (Sects. 4, 5). The experience in our application
domain (case study 5.6) is that the clustering obtainedwith a reasonable inflation of the
number of groups is in general as informative as a clustering with the “correct” number
of groups. The results seem rarely sensitive to the choice of the tuning constants,
which in our FSDA implementation are chosen to cover the most typical scenarios.
Frameworks for monitoring the effects of parameters and tuning constants have been
discussed in clustering by Cerioli et al. (2017) and some discussants (García-Escudero
et al. 2017b; Farcomeni and Dotto 2018; Perrotta and Torti 2018).
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3 Simulating regressionmixture data with MixSimReg

Our simulations use regression mixture data generated with an approach that allows
to control pre-specified levels of average or/and maximum overlap between pairs of
mixture components. The distinctive aspects of this approach are that the pairwise
overlap has a natural formulation in terms of sum of the two misclassification proba-
bilities, and that the generating model parameters are automatically derived to satisfy
the prescribed overlap values instead of being given explicitly by the experimenter.

The approach, known as MixSim (Maitra and Melnykov 2010; Melnykov et al.
2012), was originally introduced in the multivariate context to generate samples from
Gaussian mixture models

∑G
g=1 πgφ(y;μg,Σg) defined in a v-variate space, for

given data vector y, group occurrence probabilities (or mixing proportions) πg , group
centroids μg and group covariance matrices Σg . If i and j (i �= j = 1, ...,G) are
clusters indexed by φ(y;μi ,Σi ) and φ(y;μ j ,Σ j ) with occurrence probabilities πi

andπ j , then themisclassification probabilitywith respect to cluster i (i.e. conditionally
on y belonging to cluster i) is defined as

w j |i = Pr [πiφ(y;μi ,Σi ) < π jφ(y;μ j ,Σ j )]. (9)

Similarly for wi | j , the overlap between groups i and j is then given by

w j |i + wi | j i, j = 1, 2, ...,G.

This section illustrates our extension of MixSim to regression mixtures and the
implementation of the newMixSimReg framework in our FSDA toolbox. The starting
point is the redefinition of the misclassification probability (9), which in clusterwise
regression (given that y is univariate) becomes

w j |i = Pr [πiφ(y;μi , σ
2
i ) < π jφ(y;μ j , σ

2
j )]. (10)

The group centers are now defined as μi = x ′
iβi and μ j = x ′

jβ j , where xi (x j ) is the
expected value of the explanatory variable distribution for group i ( j) and βi (β j ) is
the vector of regression coefficients for group i ( j).

In our implementation, the distribution of the elements of vectors βi (β j ) can be
Normal (with parameters μβ and σβ ), HalfNormal (with parameter σβ ) or Uniform
(with parameters aβ and bβ ). Similarly for the distribution of the elements of xi (x j ).
However, while the parameters of the distributions are the same for all elements of
β in all groups, the parameters of the distribution of the elements of vectors xi (x j )
can vary for each group and each explanatory variable. For example, it is possible to
specify that the distribution of the second explanatory variable in the first group is
U (2, 3) while the distribution of the third explanatory variable in the second group is
U (2, 10).

The key result of Maitra and Melnykov (2010) is a closed expression for the prob-
ability of overlapping w j |i defined in Eq. (9), which is shown to be (for multivariate
Gaussian mixtures) the cumulative distribution function (cdf) of a linear combination
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of non central χ2 distributionsUl with 1 degree of freedom plus a linear combination
of Wl ∼ N (0, 1) random variables:

ω j |i = PrNp(μi ,Σi )

⎡

⎢⎢⎣
v∑

l=1
l:λl �=1

(λl − 1)Ul + 2
v∑

l=1
l:λl=1

δlWl

≤
v∑

l=1
l:λl �=1

λlδ
2
l

λl − 1
−

v∑

l=1
l:λl=1

δ2l + log
π2
j |Σi |

π2
i |Σ j |

⎤

⎥⎥⎦ (11)

The cdf is evaluated in a point c, which is the second term of the inequality. The expres-
sion and, in particular, the non-centrality parameter of the non central-χ2 distributions
Ul ,

λ2l δ
2
l (λl − 1)2 with δl = γ

′
l Σ

−0.5
i (μi − μ j ),

depend on the eigenvalues λl and eigenvectors γl of the spectral decomposition of
matrix Σ j |i = Σ0.5

i Σ−1
j Σ0.5

i .
Let us now simplify the framework to clusterwise regression models with one

response variable. The model becomes univariate, therefore in Eq. (11) v reduces to
1 and the summations disappear. The dimension reduction implies these additional
simplifications:

– There is only one eigenvalue λl = σ 2
i /σ 2

j �= 1 and one eigenvector γl = 1;

– δl = μi − μ j

σi
;

– There is a single non-central χ2 to compute (lower or upper tail of the cdf):

Ul ∼ χ2

⎛

⎝1, σ 2
i

[
μi − μ j

σ 2
i − σ 2

j

]2
⎞

⎠ .

This is a considerable simplification, because the computation of the linear com-
bination of non-central χ2 in Eq. (11) uses the expensive algorithm AS 155 of
Davies (1980), discussed also in Riani et al. (2015).

With these simplifications Eq. (11), for the general non homogeneous clusters case in
which σ 2

i �= σ 2
j , reduces to

ω j |i = PrN (x ′βi ,σi )

[(
σ 2
i

σ 2
j

− 1

)
Ul ≤ (μi − μ j )

2

σ 2
i − σ 2

j

+ log
π2
j σ

2
i

π2
i σ 2

j

]

= PrN (x ′βi ,σi )

[
Ul ≤ σ 2

j (μi − μ j )
2

(σ 2
i − σ 2

j )
2

+ σ 2
i

σ 2
i − σ 2

j

log
π2
j σ

2
i

π2
i σ 2

j

]
. (12)
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Note that the equation holds for σ 2
i > σ 2

j and that the inequality inverts for the

symmetric case where σ 2
i < σ 2

j . Now, if we assume homogeneous clusters, i.e. if

σ 2
i = σ 2

j , the eigenvalue becomes 1 and therefore the contribution to both sides
of the general equation comes only from the second sum term. With this additional
simplification Eq. (12) reduces to:

ω j |i = PrN (x ′βi ,σi )

[
2δl N (0, 1) ≤ −δ2l + log

π2
j

π2
i

]

= Φ

[
−1

2

[ |μi − μ j |
σ

]
+ log

(
π j

πi

)
(1/|μi − μ j |)

]
(13)

Note that in this case there is only the cdf of a normal distribution to compute.
Our software implementation of the framework is very flexible. We briefly discuss

here the main options and parameters. One of the key output produced by MixSim-
Reg, once the user specifies G, p and the presence of the intercept, is the matrix
(G × G) containing the misclassification probabilities w j |i , called OmegaMap. Its
diagonal elements are equal to 1 while those for i �= j are OmegaMap(i,j)= w j |i .
The user typically specifies as input a desired average or maximum overlap, which
are respectively BarOmega (defined as the sum of the off diagonal elements of
OmegaMap divided by G(G − 1)/2) and MaxOmega (defined as max(w j |i + wi | j ),
for i �= j = 1, 2, ...,G). Together with the average or maximum overlap, optionally
the user can also specify a desired standard deviation for the overlap, StdOmega.
The important restriction factor, specifying the maximum ratio to allow between the
largest σ 2

j and the smallest σ 2
j , redwith j = 1, . . . ,G, which are generated, is given

in option restrfactor as scalar in the interval [1,∞].
The output produced byMixSimReg includes the vector of length G containing the

mixing proportions,Pi, the ((p+intercept)×G)matrix containing (in each column)
the regression coefficients for each group,Beta and the (G×G)matrix containing the
variances for the G groups, S. These mixture model parameters provided byMixSim-
Reg are the key input variables of function simdatasetreg, which generates a
simulated dataset with the desired statistics. Component sample sizes are produced
as a realization from a multinomial distribution with probabilities given by mixing
proportions Pi. The function simdatasetreg also requires the specification of
a structure Xdistrib specifying how to generate each explanatory variable inside
each group, as commented above, and of course a desired number of data points n.

To make a dataset more challenging for clustering, a user might want to simu-
late noise variables or outliers. Parameter nnoise specifies the desired number of
noise variables. If an interval int is specified, noise will be simulated from a Uni-
form distribution on the interval given by int. Otherwise, noise will be simulated
uniformly between the smallest and largest coordinates of mean vectors. nout spec-
ifies the number of observations outside (1 - alpha) ellipsoidal contours for the
weighted component distributions. Outliers are simulated on a hypercube specified by
the interval int. A user can apply an inverse Box-Cox transformation of y provid-
ing a coefficient lambda. The value 1 implies that no transformation is used for the
response.
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Fig. 1 Code used to generate the mixture data of Fig. 3

Fig. 2 Code used to generate the mixture data and the outliers of Fig. 10

Figures 1 and 2 report code fragments used to generate the data of Figs. 3 and 10,
with option nnoiseunits used in the latter to contaminate the data.

4 Motivating examples

This section prepares the ground for the next central one, with an illustration of the role
of the restriction factor and its relation with the two types of trimming. In fact, in order
to conduct a fair assessment of the performances of different scatter-constrained meth-
ods, it is crucial to define a proper setting for the relative cluster scatters, i.e. to rely on
reasonable values for the restriction factor. This is the objective of Sect. 4.1. Then, the
relationship of the restriction factor with the different types of trimming is illustrated
in Sect. 4.2. The examples are based on different simulated data configurations.

4.1 The restriction factor

The two scatterplots of Fig. 3 represent regression mixture data generated using
MixSimReg (see first code fragment in Sect. 3) for a model without intercept, two
components, a restriction factor which does not have to exceed 100 and average over-
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Fig. 3 Regression mixture data with a (upper) component more dispersed than the other and a concentrated
contamination between them. The dataset is analysed with TCLUST-REG (on 300 subsets) with a large and
a small restriction factor: cy = 100 (left panel) and cy = 5 (right panel). This and similar results indicate
that large values of cy can disrupt the main trimming step and deteriorate the model estimates and the final
classification

lap ω̄ = 10%. A 10% concentrated contamination of potential high leverage units
has been added between the two components. The empirical ratio between the two
residual variances is 4.41 (true cy).

The classifications in the two panels are obtained by TCLUST-REG with the first
and second trimming levels set toα1 = 10%andα2 = 5%respectively. In the left panel
TCLUST-REG was run with restriction factor cy = 100, while in the right panel a
much lower value (cy = 5) was used. There is a visible side effect in using cy = 100.
The variability granted to the upper component is so large that some units that are
clearly part of the more concentrated lower group (identified by a black ellipse) are
wrongly assigned. The same happens to some contaminant units. As a consequence,
the fit of the resulting Group ‘2’ drops and a strip of units located in the upper part
of the plot are trimmed (red circles or light grey, for prints in grey-scale). We have
observed that, for this dataset, very similar (if not identical) bad classifications are
obtained already for cy ≥ 9 (approximately twice the value of the true one).

This example indicates that in clusterwise regression the choice of the restriction
factor requires attention, and that if parameter cy is left too high it may lead to undesir-
able solutions. Of course, results also depend on the combined effects of the restriction
factor and the level of the two trimming steps, which in our opinion the literature has
not sufficiently studied so far. This is what we address in the next section.

4.2 Trimming

García-Escudero et al. (2010) motivated the need of a second trimming step for
TCLUST-REG in relation to data patterns like in Fig. 4, formed by non-overlapping
groups generated in almost disjoint ranges (of the explanatory variables), by lines
(or hyperplanes, in more dimensions) intersecting at angles not necessarily close to
orthogonal. Without a second trimming step (left panel) TCLUST-REG wrongly clas-
sifies, perforce, a group of units located at the intersection of the two fitted lines. The
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Fig. 4 TCLUST-REG applied to non-overlapping data groups generated by almost perpendicular linear
components (García-Escudero et al. 2010). The second trimming step (right panel) avoids classifying
incorrectly units in the intersection of the two fitted lines

number of misclassified units typically increases for angles departing from orthogo-
nality and larger component variances. The second trimming step (right panel) draws
these units out of the estimation and classification phases. In more general settings,
where data groups overlap, the effect of the second trimming step has not been studied
yet in the literature. This section presents findings based on a benchmark experiment,
for different data configurations and parameter settings.

The data are generated with MixSimReg from a mixture of G = 2 components
with average overlap ω̄ = 0.01. Table 1 reports the mean misclassification rate reduc-
tion (ΔCE) determined by the application of a second trimming step fixed at level
α2 = 12%, after a first trimming of α1 = 12% or α1 = 20% (column α1). The
mean classification errors obtained after both trimming steps are also reported (CE
columns); for each run the error is computed as the fraction of incorrectly assigned
units among those generated by the mixture model (therefore the contaminants are
not counted). This scheme is repeated for a small and a large restriction factor value
(columns cy = 5 and cy = 100); the same restriction factor value is used both to
generate the data and to apply TCLUST-REG. The rows of the table refer to different
positions of a 10% contamination added to the data ‘between’ or ‘below’ the two
component lines and with either large or small leverage, i.e. for independent variable
values ‘far away’ from, or ‘close’ to, those of the data mixture. More precisely, ‘far
away’ and ‘close’ mean that contamination is positioned respectively 200% and 20%
far from the maximum x value of the original (uncontaminated) mixture data. Note
that the contamination percentage (10% of the original data) is lower than the first
trimming level (α1 = 12%, 20%) set for TCLUST-REG in each simulation. The main
conclusions that can be drawn from Table 1 are that:

– In all simulation settings TCLUST-REG produces consistent results in terms of
final classification errors (the values of CE are comparable). This means that
TCLUST-REG, from a clustering perspective, is resilient to slight modifications
of function parameters, tuning constants and the two trimming levels.
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Table 2 Misclassification rate reduction ΔCE obtained by passing from (α1 = 20%, α2 = 0%) to (α1 =
12%, α2 = 12%)

Contamination position y Contamination position x ΔCE (cy = 100) (%) ΔCE (cy = 5) (%)

Below lines Close 21.36 20.23

Below lines Far away 20.49 21.40

Between lines Close 21.05 21.59

Between lines Far away 25.46 21.58

Classification errors are larger when trimming is polarized at the first step

– The classification error CE is systematically lower for α1 = 12% than for α1 =
20%. Given that the true contamination level is 10%, this implies that better results
are obtained using α1 close to the true one.

– The ΔCE values are all positive. This means that the second trimming step in
general improves the classification.

One could also wonder if the second trimming can be replaced by a generous
first trimming step. Table 2 shows, for some of the data settings of Table 1, that a
20% trimming polarized at the first step (α1 = 20%, α2 = 0%) is considerably less
effective than more balanced combinations of first and second trimming steps, such
as the (α1 = 12%, α2 = 12%) pair considered in Table 2.

Figure 5 shows the boxplots of the 1000 values of the classification error (left
panels) and regression slopes bias (right panels) obtained in the simulation, for two
data configurations of Table 1 (chosen because prototypical of the simulation study):
top panels refer to the configuration in row 5 of the table; bottom panels refer to the
configuration in row 6 of table. Each panel contains the boxplots for the two restriction
factors used. The bias is computed for each group. The distribution of the values is very
asymmetric. Remarkably, the larger restriction factor (cy = 100) produces more cases
of large classification errors and slope biases (TCLUST-REG failures) than the smaller
restriction factor (cy = 5). This is in line with the motivating example of Sect. 4.1
where it was shown that in some cases large values of cy produce degenerated model
estimates and classifications. For this reason, in the simulation experiments of the next
section we fix the restriction factor to 5.

5 Adaptive TCLUST-REG vs TCWRM

We have seen that in TCLST-REG the second trimming step in general has bene-
ficial effects on the classification. However, setting α2 requires to know with good
approximation the true data contamination, in particular the percentage of the high
leverage units to be trimmed. TheTCWRMapproach ofGarcía-Escudero et al. (2017a)
(Sect. 2) is a solution that moves the focus from prior knowledge on the contamination
percentages to prior knowledge on the distribution of the covariates. In the adaptive
TCLUST-REG approach that we propose in this work, instead of trimming a fixed per-
centage α2 of observations associated with the largest robust Mahalanobis distances
in the X space, we trim those lying outside a Bonferroni-corrected confidence band,
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Fig. 5 Boxplots of the classification errors (left panels) and group-wise slope biases (right panels) obtained
in the 1000 data configurations corresponding to lines 5 (top panels) and 6 (bottom panels) of Table 1

calculated at a confidence level specified by the user. The identification of the units
is done using either the Finite Sample Re-weighted MCD rule (Cerioli 2010) or the
Forward Search (Riani et al. 2009) for their good trade-off between robustness and
efficiency. TCLUST (García-Escudero et al. 2008), which in the univariate case is
equivalent to the MCD, can be also used.

In this section we want to illustrate the properties of the adaptive TCLUST-REG
approach in comparison with TCWRM. Our aim is not to establish the superiority of
a specific method under very general settings, which would require many simulation
exercises based on tables of relevant summary statistics across many values of the
model parameters, tuning constants and, for TCWRM, different model assumptions.
To be exhaustive, this would require a separate thorough study. We therefore discuss
the key properties of the methods and some crucial differences using results obtained
in:

– a series of five focused case studies, based on simulated data patterns of increasing
complexity and one real dataset;

– a classical simulation exercise, conceived to confirm and generalize the main con-
clusions of the case studies. In line with the objective of the paper, the focus is on
the capacity of the methods to treat leverage observations.
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5.1 Case studies setting

Four case studies are based on experiments of 100 replicates, using MixSimReg to
generate general data patterns (case studies 1 and 2) or mimicking known datasets
from the literature (case studies 3 and 4, used by García-Escudero et al. 2017a, to
demonstrate the good behavior of TCWRM). The fifth case study is based on real data
(case study 5). More precisely:

– Case studies 2 and 4 aremore complex variants of case studies 1 and 3, respectively.
In fact, case study 2 is designed with three components instead of two, and with a
higher level of overlap among the components.

– In case study 4, the distribution of the independent variable is χ2 distributed. This
is done to test the capacity of TCWRM to cope with deviations from the normality
assumed in the current implementation.

In the following we present in details the five case studies. In addition, Table 3 sum-
marizes their distinctive features and the main results.

Adaptive TCLUST-REG and TCWRM models are both run by optimizing the
classification likelihood function (mixt=0) using 300 random subsets (nsamp=300)
and 10 concentration steps (refsteps=10). In order to avoid potential confounding
effects, the number of groups and the restriction factor, which are common to both
models, are set to the true values, i.e., for case studies 1-4, those used by MixSimReg
for generating the data. In particular, the restriction factor is cy = 5. In case studies 1, 3
and 4 the first trimming level is equal to the contamination percentage; a larger value is
used in case study 2. The confidence level of the flexible second trimming step, specific
of the new adaptive TCLUST-REG, is set to alphaX = 0.99. The distribution of
the explanatory variable in TCWRM is set differently in each case study, while the
restriction imposed on the explanatory variable (which distinguishes TCWRM) is
set to cX = 5 (restrfact(2)=5). To evaluate the overall performances of the
methods in the case studies, we compute the Adjusted Rand Index (ARI) between
the true partition and the classifications produced by Adaptive TCLUST-REG and
TCWRM in the 100 replicates.

5.2 Case study 1

We start with a simple data configuration setting, where 100 datasets of 100 units
each are generated with MixSimReg from a 2-components mixture model with one
Uniformly distributed explanatory variable and a ω̄ = 0.01 average overlap.

Ten per cent of the data are contaminated, producing 10 outliers positioned at the
top right part of the xy-data range. The top panels of Fig. 6 show two of the 100 datasets
(titled A and B) generated in the simulation experiment, with the true classification of
the units. These datasets have been chosen for their representativeness of the overall
simulation study. The structure of dataset A (left panels) is well captured by TCWRM,
while Adaptive TCLUST-REG fails to trim the contaminants. With dataset B both
methods remove the contaminants and TCWRM produces a slightly better fit.

Figure 7 reports the boxplots of the ARI values (left panel) and the difference
between the ARI values obtained with TCWRM and Adaptive TCLUST-REG (right
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Fig. 6 Case study 1. TCWRM and Adaptive TCLUST-REG on two generic datasets (named A and B) used
in the simulation

panel). The distribution around the median of the differences (which is practically 0)
shows good symmetry, with only 11 values below −0.05 and 17 above 0.05. This is
an indication that the two approaches perform similarly. The median ARI values of
Adaptive TCLUST-REG and TCWRM are both very high, approximately equal to
0.93. As expected, they are considerably larger than the median ARI value obtained
for the standard version of TCLUST-REG, for which the boxplot is also displayed in
the left panel of Fig. 7 as a reference. The boxplot whiskers suggest a slightly smaller
variability of the TCWRM results, but the outlying (small) ARI values of TCWRMare
also more extreme. The conclusion in case study 1 is that the two approaches perform
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Fig. 7 Case study 1. Left panel: AdjustedRand Index values between the true partition and the classifications
given by fixed-trimming TCLUST-REG, TCWRM and Adaptive TCLUST-REG, for the 100 replicates of
the simulations experiment. Right panel: Adjusted Rand Index differences for TCWRM and Adaptive
TCLUST-REG

similarly, but TCWRMhas been slightly penalised by drawing the explanatory variable
values from a Uniform distribution.

5.3 Case study 2

Now we increase the complexity of the data structure by generating 100 datasets
of 200 units each from a 3-components mixture model, with a larger average overlap,
ω̄ = 10%. The explanatory variable values are now normally distributed, along the
TCWRM model assumptions. 15 outliers are added with option noiseunits of
function simdatasetreg. They are generated from the Uniform between the min-
imum and maximum value of the dependent and independent variables, in such a way
that the squared residual from each group is larger than the 1 − 0.999 quantile of the
χ2 distribution with 1 degree of freedom. The contamination level is therefore approx-
imately 7% (15/215). Two of the 100 simulated datasets are shown at the top of Fig. 8.
In this case study, the first trimming level is set slightly larger than the true contami-
nation, i.e. α1 = 10%. Again, there is no major differences between the two methods
in this specific example. On the other hand, the ARI values in the 100 replicates now
suggest for Adaptive TCLUST-REG an overall more stable response. In fact, the distri-
bution around themedian of the ARI values differences (right panel of Fig. 9), which is
about 0.02, is asymmetric and in favor of the Adaptive TCLUST-REG classifications.

The median ARI values in the boxplots of the left panel are respectively 0.62 for
the Adaptive TCLUST-REG and 0.6 for TCWRM. Besides, the overall variability is
smaller for the Adaptive TCLUST-REG. In spite of the fact that in this example we
have correctly guessed the distribution of the explanatory variable, TCWRMproduces
slightly worse classifications compared to adaptive TCLUST-REG.

5.4 Case study 3

In this case study the 100 simulated datasets mimic an example used by García-
Escudero et al. (2017a) (see Figure 3 in their paper) to illustrate the good performances
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Fig. 8 Case study 2. TCWRM and Adaptive TCLUST-REG on two generic datasets (named A and B) used
in the simulation

of TCWRM. An example is represented in the top-left panel of Fig. 10. The datasets
are generated from a 2-components mixture model with n = 180. A set of 20 outliers
is added above the top component. The contamination rate is therefore 10%. Note
that the values of the explanatory variable in the mixture model are generated from a
Normal distribution.

The boxplot of the Adjusted Rand Index values obtained in the 100 replicates of
the simulation (top-right panel of the same Figure) clearly shows that TCWRM now
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Fig. 9 Case study 2. Left panel: AdjustedRand Index values between the true partition and the classifications
given by TCWRM and Adaptive TCLUST-REG, for the 100 replicates of the simulations experiment. Right
panel: Adjusted Rand Index differences. Adaptive TCLUST-REG shows a larger median Adjusted Rand
Index value (0.6249 vs 0.5998 for TCWRM) and a smaller variability of the classification results

produces better classifications compared to adaptive TCLUST-REG. The main reason
for the improved performance of TCWRM with respect to case study 2 is that in the
present example not only the distribution of the explanatory variable is set correctly but
also the two mixture components show minor overlap, with good separation from the
concentrated outliers. In this “ideal” framework, robust modeling of the distribution
of X outperforms the traditional regression approach adopted by adaptive TCLUST-
REG, whose behaviour is instead comparable to that obtained in case study 2.

5.5 Case study 4

Case study 4 differs from the third one for the distribution used to generate the explana-
tory variable values. Here, two χ2 distributions with 1 degree of freedom are used to
concentrate the components data towards specific parts of the explanatory variable
domain. The contaminated units are in the range of the χ2 distributions. The deviation
from the normal model assumed in our implementation on the explanatory variable
produces a clear deterioration of the TCWRM results. In fact, the boxplot in the bot-
tom panel of Fig. 10 shows that the median of the Adjusted Rand Index values is now
much larger for Adaptive TCLUST-REG (65.26%) than for TCWRM (24.54%). In
addition, the spread in the plots clearly indicate that Adaptive TCLUST-REG is in
general much more stable, with only 4 bad (outlying) classifications.

Figure 11 illustrates two cases where TCWRM fails to capture the true set of
outliers, producing wrong fits and bad classifications. The reason of the failure is
clear: the explanatory variable values are χ2 distributed and the observations on the
right tail of the distribution are “seen” by TCWRM, which assumes normality, as
outliers and are therefore wrongly trimmed. Adaptive TCLUST-REG shows instead a
certain robustness to the distributional form of the explanatory variable. We also note,
its capacity to flexibly identify some units to trim at the second step, 7 in dataset A
and 5 in dataset B. Clearly these numbers depend on the confidence level of the outlier
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Fig. 10 Case studies 3 (top panels) and 4 (bottom panels). The two settings differentiate for the different
distributions used to generate the explanatory variable values: Normal in case study 3 and χ2 with 1 degree
of freedom in case study 4. The datasets generated for the simulations mimic Figure 3 of García-Escudero
et al. (2017a). The boxplots report the Adjusted Rand Index values between the true partition and the
classifications given by TCWRM and Adaptive TCLUST-REG, for the 100 replicates of the simulations
experiment. In case study 3, the median of the Adjusted Rand Index for TCWRM is 0.9631 and for Adaptive
TCLUST-REG is 0.6294. In case study 4, the median of the Adjusted Rand Index for TCWRM is 0.2454
and for Adaptive TCLUST-REG is 0.6526

detection methodology chosen for the adaptive trimming step; choosing a different
level may lead to slightly different, more or less conservative, results.

5.6 Case study 5: a real dataset from international trade

The dataset represented in Fig. 12 is a real dataset taken from the international trade.
It contains values in Euros (y axis) and quantities in Kg (x axis) of 196 declarations
made by an Austrian trader who imported from Israel, in a given period of time,
a specific product, coded in the international Combined Nomenclature as product
6212200000: “girdles and panty girdles”.

The scatterplot shows at least three linear components and, at the bottom right, a
group of outliers. By zooming in the scatterplot, it becomes clear that the top and
bottom components are more structured: in particular, there are two slightly separated
thin components at the top (central panel) and other two at the bottom (right panel).
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Fig. 11 Case study 4: Adaptive TCLUST-REG (top panels) and TCWRM (bottom panels) on two datasets
with χ2-distributed explanatory variable values

Fig. 12 Scatterplots of case study 5. Trade dataset formed by customs declarations made by an EU importer.
The axes report the declared values (y-axis) and quantities (x-axis). The left panel plots the data in the
original scale. The central and right panels zoom in the data to highlight the presence of components that
are difficult to notice in the original scale

Fig. 13 Case study 5. Dataset of Figure 12 analyzed with three components (G = 3) with, from left to
right, TCLUST-REG, Adaptive TCLUST-REG and TCWRM
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Fig. 14 Case study 5. Dataset of Figure 12 analyzed with five components (G = 5) with, from left to right,
TCLUST-REG, Adaptive TCLUST-REG and TCWRM

Those at the top are made by two separate groups of points, one closer to the origin
of the axes (black filled points) and another far from the origin (red filled points). The
two groups at the bottom are also highlighted with filled points in a similar way. It
is worth stressing that the lowest group corresponds to very low priced declarations,
which might be of interest for anti-fraud purposes (Cerioli and Perrotta 2014, have
treated this application domain also in the clusterwise regression framework).

We applied TCLUST-REG, adaptive TCLUST-REG and TCWRM to the dataset by
choosing a first trimming level α1 equal to 5%, which is the percentage of the extreme
outliers in the bottom right part of the scatterplot (probably due to recording errors)
and a number of groups G = 3 (Fig. 13) or G = 5 (Fig. 14). For G = 3 (Fig. 13)
TCLUST-REG andAdaptive TCLUST-REG identify very reasonable components and
the outliers. However Adaptive TCLUST-REG fits much better the lowest component,
which is the most important for the application. On the contrary TCWRM collapses
in the central part of the data, failing to detect the outliers and the relevant regression
structures. For G = 5 (Fig. 14), Adaptive TCLUST-REG identifies very well the five
components highlighted in Fig. 12 and the outliers. On the contrary, TCLUST-REG
and TCWRM fail to detect the data structure producing a spurious fit to the outliers.
Besides, the results produced by TCLUST-REG in different random starts turned out
to be very unstable.

This case study shows that, even with relatively simple real datasets, apparently
well structured around few linear components, the departure from the distributional
assumptions on the explanatory variable can penalize the performance of TCWRM.
Like in case study 4, in fact, the data distribution lacks symmetry and is much more
dense near the origin of the axes. For this reason, we plan extending the model to
more appropriate distributions for traded quantities (Tweedie and Tempered Linnik)
that were identified in Barabesi et al. (2016a, b). Instead, our adaptive version of
TCLUST-REG seems sufficiently flexible to cope with departures from the normal
assumption and results to be the best performing method, independently from the
number of groups chosen.

5.7 Simulation exercise

Our case studies indicate that TCLUST-REG attains better performances when the
second level trimming is adaptive and corroborate the expected superior properties of
TCWRMwhen themodel assumptions on the explanatory variables are respected. The
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simulation study of this section aims to check whether this conclusion is confirmed
under experimental settings that generalize the international trade domain of case study
5.

We consider two scenarios, with two and three mixture components respectively.
Each run is based on 1000 replicates where TCLUST-REG, its adaptive version and
TCWRM are applied to distinct datasets. As the accent of the paper is on the sec-
ond level trimming, the contamination is formed by a group of rather concentrated
normally distributed units with high leverage. The mixture data and the contaminants
were both generated withMixSimReg, to attain an average overlap (or expected miss-
classification error) of 1%. The good part of each dataset is formed by n = 200 units,
while the contaminants (generated with option noiseunits) are 30 (15% of n). The
parameters of the mixture components are generated (using option betadistrib)
from a Normal with mean 1.2 and standard deviation 2. A restriction factor cy = 5 is
imposed on regression residuals (option restrfactor).

We studied four cases, with explanatory variable values generated from the follow-
ing distributions and re-scaled to be roughly in the same interval:

– a Uniform in the range [−2, 10];
– a Normal with mean 3.2 and standard deviation 4.4;
– a χ2 with 1 degree of freedom;
– a Beta with both parameters equal to 0.2.

Note that the parameters of the Beta are chosen identical in order to obtain a “U”
shaped distribution, with lot of points concentrated at the extremes of the data interval
and few at the center: a case opposed to the Normal.

TCLUST-REG, adaptive TCLUST-REG and TCWRM are then run with:

– nsamp = 300 (number of subsets);
– restrfact(1) = 5 (restriction factor for regression residuals, cy);
– restrfact(2) = 5 (restriction factor for covariance matrix of explanatory
variables, cX , TCWRM only);

– alphaLik = 0.15 (trimming level α1); this corresponds to the actual contami-
nation percentage;

– alphaX = 0.05 (second level trimming α2, TCLUST-REG only)
– alphaX = 0.9 (90% Bonferronized confidence level, adaptive TCLUST-REG
only);

– alphaX = 1 (used to choose the constrained weighted model TCWRM).

Table 4 reports the Adjusted Rand Index obtained on mixtures ofG = 2 andG = 3
groups. The robust linear grouping methods used are in the rows and the distributions
used to generate the data for the explanatory variables are in the columns. It is very clear
that, as expected, TCWRM has superior performances when the explanatory variable
values are generated from a Normal distribution, the only one currently implemented
in FSDA. Not surprisingly, the same happens with uniformly distributed data. On
the contrary, distributions radically departing from normality (very asymmetric as the
χ2, or “U” shaped as the Beta) deteriorate considerably the classification capacity
of TCWRM. Our adaptive version of TCLUST-REG confirms the good properties
discussed in the case studies. However, data with “U” shaped explanatory variable
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Table 4 Adjusted Rand Index obtained in a simulation exercise designed to assess the performances of the
three robust linear grouping methods for different distributions of the explanatory variable values, when the
mixture components are two (top panel) or three (bottom panel)

N (3.2, 4.42) U (−2, 10) χ2(1) Beta(0.2, 0.2)

G = 2

TCLUST-REG 0.4189 0.4270 0.4612 0.5314

Adaptive TCLUST-REG 0.4995 0.4758 0.4892 0.4768

TCWRM 0.7685 0.6210 0.2726 0.2659

G = 3

TCLUST-REG 0.4815 0.4670 0.5546 0.6089

Adaptive TCLUST-REG 0.5445 0.5213 0.5412 0.5958

TCWRM 0.5868 0.5647 0.4648 0.4880

Each simulation is based on 1000 replicates. The MixSimReg parameters used to generate the data and the
contamination and scheme, together with the options used to run the clustering methods are detailed in the
text

values are fit better by the standard TCLUST-REG with fixed second level trimming.
A logical explanation is that with this distribution the contamination falls just after the
good units concentrated at the right (or left) side of the Beta. This creates a bi-modal
set of values which cannot be fit properly by the robust method (Forward Search or
re-weighted MCD) applied to identify the proper number of units to trim.

6 Conclusions

Although robust clustering tools for regression data might be useful in several applica-
tion domains, like international trade (Cerioli and Perrotta 2014), very little is known
about their performance under different data configurations. Our work attempts to
clarify this point by comparing two methodologies that use trimming and restrictions
on group scatters as their main ingredients. Our assessment is based on simulation
experiments run under a variety of alternative conditions and we have given partic-
ular care to the data generation process. We have thus developed, and described in
the paper, a flexible simulation tool for mixtures of regressions, where the user can
have a precise control of the degree of overlap between the regression hyperplanes
defining the different components, as well as the choice among different options for
the distributional features of the grouped data and for the contamination process.

Our first finding concerns the usefulness of the second-level trimming required by
TCLUST-REG on the values of the explanatory variables. Although we have seen that
this step indeed provides beneficial consequences in some situations, it is also clear
that excessive trimming of non-harmful observations, or even of good leverage points,
can deteriorate both the classification performance of the method and the estimates
of the underlying model parameters. We have thus proposed an improvement of the
methodology where the degree of trimming exerted on the explanatory variables is not
fixed in advance, but is allowed to vary according to the specific data configuration.

We have then compared our flexible and adaptive version of TCLUST-REG with
TCWRM, which provides an important and powerful extension of the robust cluster-
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wise regression methodology. Our overall conclusion is that the two methods perform
comparably, but with some notable differences due to the inherent degree of model-
ing implied by them. Since TCWRM exploits the full distributional structure of the
explanatory variables, its notable advantage is not surprising when this structure is
correctly specified and, moreover, is far from that of the contaminant distribution. On
the other hand, Adaptive TCLUST-REG turns out to be less sensitive to how data are
distributed in the explanatory variables, when instead TCWRM can have poor per-
formance. After all, what we have seen is just another instance of the longstanding
antinomy between robustness and efficiency: it is clearly less dangerous to make only
a few mistakes in the outlier detection step, thanks to our flexible trimming approach,
than to incorrectly specify the covariate part of the model. However, the availability
of prior information on the data generating mechanism, or at least a good guess of it,
considerably improves the results also in a clustering framework.
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