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Abstract

We study the effects of an automation-augmenting shock in an economy with match-

ing frictions and endogenous job destruction. In the model, tasks can be produced

by workers or by machines but workers have a comparative advantage in producing

advanced tasks. Firms choose the input at the time of entry. And according to the

evolution of the workers’ comparative advantage, some firms using labor prefer to

fire the worker and automate the task. In our model, an automation-augmenting

shock reduces the labor share, increases job creation, and increases job destruc-

tion. The effects on employment depend on how rapidly workers may lose their

comparative advantage: an automation-augmenting shock increases employment

in slow-changing environments but reduces it (possibly catastrophically) in rapid-

changing ones.
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1 Introduction

In the last five decades, total hours worked and employment rose in developed coun-

tries, despite the ubiquitous fall in the labor share. This employment growth looks stag-

gering as it coexisted with the emergence of new technologies that automate produc-

tion and are supposed to displace labor. But the growing empirical literature suggests

that these new technologies – namely, automation – have actually favored employment

growth by creating more jobs than they have destroyed.1 In this paper, we ask: will au-

tomation always create more jobs than it destroys or can we expect a different future?

To answer this question, we build a theoretical model that satisfies two criteria.

First, in order to be consistent with the past, an automation-augmenting shock – a

shock that increases the productivity of all machines/robots – is able to reduce the labor

share and simultaneously increase employment. And, second, in order to be insightful

about how the future may differ from the past, the model is flexible enough to generate

different outcomes from the same sort of shocks. In the literature, among the mod-

els that explain the fall in the labor share, none offers a qualitatively flexible response

of employment. In these models, either employment always falls (Caballero and Ham-

mour, 1998; Zeira, 1998; Hornstein, Krusell and Violante, 2007; Acemoglu and Restrepo,

2018; Prettner and Strulik, 2019) or employment always increases (Guimarães and Gil,

2019).2 Our model borrows several features from these models to offer a framework

that is consistent with the past and insightful about potential future scenarios. In our

model, an automation-augmenting shock reduces the labor share but its effect on em-

ployment is ambiguous.

1See, e.g., Bessen (2016), Autor and Salomons (2018), and Gregory, Salomons and Zierahn (2018); see
also Bessen et al. (2020) for a review of this literature. A notable exception is Acemoglu and Restrepo

(2019b), who find that robot adoption depresses employment and wages at the commuting-zone level.
Yet, Acemoglu and Restrepo abstract from the indirect effects of robot adoption in one commuting zone
on the other commuting zones that may render a positive effect of robot adoption at the aggregate level.
Thus, Acemoglu and Restrepo abstract from the indirect positive effects of robot adoption on employment
found by other studies (e.g., Autor and Salomons and Gregory, Salomons and Zierahn), which more than
compensate for its job-displacing effects.

2These models do not propose the same mechanism or shock to explain the fall in the labor share. But

irrespective of the mechanism, they predict robust directions for employment after the shock that reduces
the labor share.
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The narrative and assumptions of our model broadly agree with those in Acemoglu

and Restrepo (2018). In our model, labor has a comparative advantage in producing

new and complex tasks and, thus, new firms tend to invest in, what we call, the manual

technology and produce using only labor. Machines, however, tend to catch up with la-

bor in producing tasks. Every period, some workers lose their comparative advantage,

motivating their employers to fire them and automate the production of the tasks. In

this case, firms move to, what we call, the automated technology and produce using

only machines/robots.3

Yet, to properly take into account the idiosyncrasies of the labor market, we funda-

mentally deviate from Acemoglu and Restrepo and build a model with matching fric-

tions based on the Diamond-Mortensen-Pissarides setup. This allows us to realistically

model the long-term firm-worker relationship and bring us closer to Hornstein, Krusell

and Violante (2007) and to our previous work in Guimarães and Gil (2019).4 We, how-

ever, depart from our previous work by assuming that jobs are endogenously destroyed

as firms continuously contrast their value using the manual technology and the option

to move to the automated technology. In this sense, our model is closer to Hornstein,

Krusell and Violante because they also endogenize job destruction.5 Yet, our model

and focus also differ from theirs in important aspects. Hornstein, Krusell and Violante

build a model with vintage capital to study capital-embodied technological change.

We, on the other hand, consider the dichotomy of manual and automated technolo-

gies to study automation-augmenting shocks.

3By allowing firms to choose whether to invest in the manual or in the automated technology, our
model relates to a long literature of technology choice that we review more extensively in Guimarães and
Gil (2019). In our model and in several contributions within this literature, the technology choice de-
pends explicitly on a firm-specific (or task-specific) exogenous feature (e.g., Zeira, 1998, 2010; Acemoglu

and Zilibotti, 2001; Acemoglu, 2003; Acemoglu and Restrepo, 2018; Alesina, Battisti and Zeira, 2018; and
Guimarães and Gil, 2019). This feature then determines, ceteris paribus, the firm’s overall productivity or
cost level using each technology.

4In this regard, our paper is also close to Cords and Prettner (2019) as they also build a model with
matching frictions but to study how an increase in the stock of robots affects low- and high-skill employ-
ment.

5To model endogenous job destruction, we particularly rely on Mortensen and Pissarides (1994).
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Our assumptions imply that automation-augmenting shocks affect employment by

changing both job creation and job destruction. This is an important deviation from

the literature that assumes flexible labor markets, which cannot offer insights regard-

ing how the flows in the labor market react to shocks and determine employment fluc-

tuations. And it is precisely this deviation from the literature that lends our model its

flexibility regarding the impact of automation-augmenting shocks on employment.

In all our calibrations, job creation and job destruction increase after an automation-

augmenting shock. Job destruction increases because the shock makes it more prof-

itable to invest in the automated technology and so more firms destroy jobs and au-

tomate production. Job creation increases because of one or a combination of two

mechanisms. First, as in Guimarães and Gil (2019), an automation-augmenting shock

increases job creation if firms can choose technology at the time of entry after paying

a sunk entry cost. In this scenario, an automation-augmenting shock gives rise to a

productivity effect in general-equilibrium: motivated by the increase in productivity of

the automated technology, firm entry surges, which ultimately rises employment. Sec-

ond, we present a mechanism (to our knowledge) new to the literature through which

automation-augmenting shocks promote job creation. Because firms are forward-looking

and new tasks tend to be produced by workers, firms have a higher incentive to hire a

worker upon entry in anticipation of the greater profits when they automate produc-

tion post-entry. A real-world example confirming the existence of this mechanism is

UBER.6

Even though both flows increase after an automation-augmenting shock, their ab-

solute and relative magnitudes crucially depend on the calibration of the model. In

some calibrations, job creation increases more than job destruction, thereby raising

employment. In other calibrations, the opposite occurs and employment falls. The

6UBER’s Initial Public Offering prospectus offers a good example of this channel. The prospectus as-
sumes that developing autonomous vehicles importantly contributes to the current valuation of the firm
by potentially allowing it to reduce their labor demand in the future. Thus, the possibility of automating
tasks in the future contributes to UBER’s investment and recruitment in the present.
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relative magnitudes of the changes in the flows depend crucially on one parameter,

which we interpret as a feature intrinsic to each task controlling for how rapidly work-

ers may lose their comparative advantage in producing it. In slow-changing environ-

ments, in which the comparative advantage of labor in producing each task is relatively

stable, job destruction barely shifts after the automation-augmenting shock. In these

conditions, job creation increases more than job destruction. Nonetheless, in rapid-

changing environments, an automation-augmenting shock leads to massive job de-

struction. This jump in job destruction is not followed by an equal jump in job creation

because the increase in labor market tightness makes it more costly to find the right

worker and allows workers to demand higher wages. In these scenarios, employment

catastrophically drops. These results show how our model can both agree and disagree

with the facts documented by the empirical literature on the effects of automation.

Thus, our paper conveys an important message: if current and future jobs are made

of tasks in which workers rapidly lose their comparative advantage, then automation-

augmenting shocks may have dramatically different consequences in the future. This

will likely be the case if artificial intelligence techniques allows machines and software

to rapidly adjust to new tasks.

Our result that technology affects both job creation and job destruction flows echoes

the analysis by Mortensen and Pissarides (1998), who study the relation between the

rate of technological progress and employment in a model with capital-embodied tech-

nological change and matching frictions.7 In Mortensen and Pissarides, a higher growth

rate increases job destruction as wages grow faster due to rapidly-improving outside

options for workers; the effects of the growth rate on job creation are ambiguous, de-

pending on the size of renovation costs (a cost that if paid allows firms to update their

capital stock without laying-off the worker). They conclude that there is a threshold

for the renovation cost above which employment falls with technological progress. In

our case, we study the effects of automation-augmenting shocks, i.e., the increase in

productivity refers to a technology that substitutes labor instead of complementing it

7Their paper is a precursor of Hornstein, Krusell and Violante (2007).



6 GUIMARÃES & GIL

as in Mortensen and Pissarides. But we also find a threshold (in our case for the pace at

which workers lose comparative advantage) above which employment drops with the

productivity of the automated technology because of its distinctive effects on the two

labor market flows.

Akin to Mortensen and Pissarides (1998), we find that the increase in wages after

the automation-augmenting shock plays a very important role in shaping the response

of employment.8 In tighter labor markets (as observed in our model after the shock),

workers demand higher wages for two reasons. One is that the outside option of man-

ual firms of looking for an alternative worker is more costly and another is that work-

ers can easily find other jobs. When we counterfactually assume that wages are or-

thogonal to labor market tightness (and to the productivity of the automated technol-

ogy), job creation is seriously magnified to the point that employment increases for a

much wider range of calibrations. Employment does, however, still fall in quite rapid-

changing environments because matching frictions also play their role. If job creation

increases, it becomes harder to find a worker suitable for the job, which increases costs

and discourages further job creation. Job destruction, on the other hand, is not much

affected by matching frictions and increases significantly in quite rapid-changing en-

vironments, leading to the net fall in employment.

We consider two other variants of our model to further dissect the mechanism. In

one variant, we deviate from the typical assumption in models with matching frictions

that workers must stay nonemployed for at least a period after losing their jobs. This

reduces the prevalence of matching frictions and increases the pool of available work-

ers for firms investing in the manual technology. We find that relaxing this assumption

does promote greater employment but we also find that it does not have much quanti-

tative impact.

8Importantly, the empirical literature also finds that an increase in robots leads to higher average
wages; see, e.g., Autor and Salomons (2018) and Graetz and Michaels (2018). Yet, despite higher average
wages after the automation-augmenting shock, workers performing tasks with less comparative advan-
tage continue to earn relatively lower wages in our model. This agrees with the findings in Arnoud (2018)
that workers in occupations with higher higher probability of automation earn lower wages.
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In another variant, we consider the implications of, what we call, human touch.

Even though both workers and machines can execute the same task, consumers may

deem tasks executed by humans and by machines differently due to the relevance of the

human touch. A simple case is the one of sellers and vending machines. Both broadly

sell (they perform the same task) but consumers do not necessarily find the same task

performed by one or the other perfect substitutes. In the scenario in which they are

imperfect substitutes, a widespread use of machines increases the price of the tasks

produced by workers relative to the price of the tasks produced by machines, which

largely reduces job destruction but barely changes job creation. Thus, if many of the

tasks produced in the economy are directed to consumers and they find the differenti-

ated human touch relevant, then an automation-augmenting shock is unlikely to catas-

trophically reduce employment.

Our paper also relates to Prettner and Strulik (2019), Basso and Jimeno (2018), Berg,

Buffie and Zanna (2018), and Caselli and Manning (2019) (and again with Acemoglu

and Restrepo, 2018) in that these papers also assess how automation-related shocks

may affect either wages or employment in the future. Prettner and Strulik build a life-

cycle model in which machines complement high-skill labor but substitute low-skill la-

bor. They conclude that innovation asymptotically increases automation and inequal-

ity. And in an extension, they show that innovation always reduces low-skill employ-

ment due to greater automation and the high costs of acquiring skills for some work-

ers. Basso and Jimeno assess the effect of demographical changes in a life-cycle model

in which R&D investment may be directed to innovation (new tasks) or automation

(of current tasks). They conclude that the demographic transition in the United States

and Europe promoted higher wages in the beginning of 2000’s but lower wages after-

wards. Berg, Buffie and Zanna build a model with a nested CES (constant-elasticity of

substitution) production function in which standard capital complements a compos-

ite of labor and robots; this composite assumes that labor and robots are substitutes.

They conclude that robot-augmenting shocks can only benefit labor in the very long
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run. Caselli and Manning study how innovation affects real wages in economies with

constant returns to scale, constant real interest rate, and multiple types of labor. They

conclude that average wages increase as long as the price of capital falls more than that

of consumption goods. Under this condition, they also conclude that all wages increase

if the supply of labor types is perfectly elastic. But their model, as well as the models

in Basso and Jimeno and Berg, Buffie and Zanna, abstracts from the impacts of shocks

on employment as labor supply is assumed inelastic. More generally, our model differs

from all these models because they assume perfectly competitive labor markets.

Our paper also naturally relates to our previous paper, Guimarães and Gil (2019),

and to Leduc and Liu (2019), as both papers include models with matching frictions

and automation. But there are important differences regarding the objects of study

and models used. In Guimarães and Gil, we do not try to understand how the future

may differ from the past but rather try to understand the past. In particular, we study

the evolution of the US economy from 1967 to 2007 and conclude that an acceleration

in automation-augmenting shocks was an important driver of the fall in the US labor

share after 1987. Leduc and Liu (2019), on the other hand, study the implications of au-

tomation for the business cycle and show that accounting for automation is important

to match business cycle fluctuations in key labor-market variables. In contrast with

the two, in this paper, we study the long run implications of automation-augmenting

shocks for the employment rate, studying the conditions in which these shocks lead to

higher and lower employment. Regarding the modeling strategy, our goal in Guimarães

and Gil is to build a very stylized version of a model with matching frictions and au-

tomation that agrees with empirical studies suggesting that automation has increased

employment in the past. Thus, and as mentioned above, we abstract from endogenous

fluctuations in the job destruction rate. Leduc and Liu (2019) also abstract from en-

dogenous changes in the job destruction rate, allowing only for exogenous fluctuations.

This is in stark contrast with our current paper, in which endogenous job destruction is

key for the ambiguity of the effects of automation-augmenting shocks on employment.
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The remainder of this paper is organized as follows. We start by detailing our model

in Section 2. In Section 3, we calibrate our model and study numerically the effects of

automation-augmenting shocks. In Section 4, we dissect the mechanisms underlying

our results, including the role of the human touch. In Section 5, we conclude.

2 The Model

In the model, the aggregate output is the sum of the production of a number of tasks,

which can be produced by one of two technologies: an automated technology and a

manual technology. At the time of entry, a firm must first create a task, which amounts

to an entry cost denoted by Ω. If the firm produces the task using the automated tech-

nology, it must pay an additional κK , which can be interpreted as a robot investment. If

the firm produces the task using the manual technology, it must pay an additional κL

µ(θ)

to match with a worker and it must bargain wages with the worker.9

Entering firms that choose the manual technology must search for workers in the

labor market. A Cobb-Douglas matching function determines the number of matches

between these firms and the workers that were nonemployed at the beginning of the

period.10 This matching function has constant returns to scale, has as argument labor

market tightness, θ, is scaled by matching efficiency, χ > 0, and has an elasticity with

respect to nonemployed workers of 0 < η < 1. Thus, we write the job-filling probability

and the job-finding probability as, respectively, µ(θ) ≡ χθ−η and f(θ) ≡ χθ1−η.

Each task has a stochastic idiosyncratic productivity, z, in the interval [zmin, z̄] ac-

cording to a probability distribution function G(z). Acemoglu and Restrepo (2018) as-

sume that workers have a comparative advantage in producing more productive (higher-

indexed) tasks. We borrow this assumption and assume that the manual technology

9Our setup thus assumes the extreme case of a technology that only uses labor and a technology that

only uses capital/robots. We share this convenient assumption with, e.g., Zeira (1998, Sec. 7; 2010), Ace-
moglu and Restrepo (2018), Alesina, Battisti and Zeira (2018), and Guimarães and Gil (2019).

10The workers that lose their jobs (either exogenously or endogenously) do not produce for at least a
period. This agrees with the evidence in Hall and Kudlyak (2019).
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produces zLz units of the task, while (as a normalization) the automated technology

produces zK units of the task. Thus, z represents the comparative advantage of work-

ers in producing the respective task, so that highly-productive tasks (high z) tend to

be produced by the manual technology and less-productive tasks with the automated

technology.

Firms’ technological choice depends on the task’s idiosyncratic productivity, z. In

Figure 1, we summarize the timeline of how z affects the distribution of firms between

the technologies. In Acemoglu and Restrepo (2018), labor has the highest compara-

tive advantage in producing new tasks because newly created tasks have the highest

index. We assume a more general environment. Of the number of new tasks created

each period, a proportion 1−λe has the highest productivity, z̄, and, thus, workers have

the maximum comparative advantage. In this case and in equilibrium, firms choose

the manual technology and produce zLz̄ units of the task. Conversely, a proportion λe

of new tasks have their productivity drawn from the distribution G(z) of productivity

levels over the interval [zmin, z̄] and firms choose technology according to the present-

discounted values of the technologies. Producing tasks with higher z is more profitable

if the firm uses the manual technology to take advantage of the higher workers’ com-

parative advantage. As a result, there is an idiosyncratic productivity cutoff, denoted by

z∗e , above which firms prefer the manual technology and below which firms prefer the

automated technology at the time of entry.11

Firms that start production using the manual technology can move to the auto-

mated technology in later periods. Their technological choice depends on how the

task’s idiosyncratic productivity, z, evolves over time. If it becomes too low, manual

firms prefer to destroy the job and automate the production of the task. This line of

events further echoes the setting in Acemoglu and Restrepo (2018). In their model,

11If λe > 0, entry in the model is, at least, partially undirected, which is our assumption in Guimarães
and Gil (2019). In that paper, we motivated this assumption by reviewing the literature on entrepreneur-
ship and venturing. This literature emphasizes a (costly) learning stage about the market and menu of
technologies prior to technology-choice and production; we capture this learning stage in our model as a
productivity draw, z, after the payment of the sunk entry cost, Ω.
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Figure 1: Timing of technological constrains and technology choice

tasks previously performed by labor can be automated as the tasks’ (relative) produc-

tivity falls due to the expansion of the technological frontier over time and the implied

gradual obsolescence of existing manual tasks. We also find a similar mechanism in the

model of Hornstein, Krusell and Violante (2007). They build a model in which a unit of

vintage capital is matched with a worker. As technology evolves, firms that use the old-

est vintage of capital prefer to scrap their capital and, as in our model, destroy the job.

Yet, in the models of both Acemoglu and Restrepo and Hornstein, Krusell and Violante,

the fall in the task’s idiosyncratic productivity (relative to the technology frontier) is de-

terministic while, in our model, we assume it to be stochastic.12 To model the evolution

of z, we build on Mortensen and Pissarides (1994). After production takes place, a pro-

portion 1− λn of manual firms sees no change in their tasks’ idiosyncratic productivity

and, thus, in their position relative to the technology frontier, z̄. But a proportion λn of

manual firms redraws the task’s idiosyncratic productivity from the same distribution

12We assume it to be stochastic for two reasons. One is that it is a convenient assumption that does
not demand us to keep track of how far or close a task is from being automated. The other, and more
important, is that tasks may differ on the speed at which they are automated; thus, we find it more realistic
to assume that the transition from manual to automated is random rather than deterministic.
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G(z) of productivity levels. If the new idiosyncratic productivity, z, is too low – below

the cutoff, which we denote by z∗ – the manual firm fires the worker and shifts from the

manual to the automated technology.13 As a result, λn controls for how rapidly workers

may lose their comparative advantage, which directly affects job destruction.

These assumptions imply that shocks to the economy can change the employment

rate by affecting both job creation and job destruction. Thus, this setting allows for a

rich environment to study how automation-augmenting (rise in zK) shocks affect the

employment rate.

In writing the equations below, we omit the time subscripts as we are only inter-

ested in steady-states. Yet, within a period, there is an order of events that we must

further clarify before laying out the equations. 1) New firms pay Ω to create a task and

enter the market until a free-entry condition is satisfied. 2) A proportion λe of new

firms and a proportion λn of manual firms (re)draw the task’s idiosyncratic produc-

tivity, z. 3) Depending on the productivity draw, z, and anticipating wage bargaining,

firms decide which technology to use in the following period. If an incumbent man-

ual firm decides to automate the production of the task, it must fire the worker, pay

κK , and wait a period to resume production. 4) Matching between new manual firms

and workers occurs. 5) Production takes place and manual firms bargain wages with

their workers. 6) A proportion δL of the tasks produced by active (producing within the

period) manual firms and a proportion δK of the tasks produced by active automated

firms are exogenously destroyed.

2.1 Firms

An active firm using the manual technology to produce a task with idiosyncratic pro-

ductivity z has the following present-discounted value JL(z):

JL(z) = zLz − w(z) + β(1− δL)

{

(1− λn)JL(z) + λn

[

G(z∗)(βJK − κK) +

∫ z̄

z∗
JL(z)dG(z)

]}

, (1)

13Naturally, some firms also draw a higher z. We can interpret this as a form of technological catching
up of the task. In any case, the most relevant aspect for the mechanism of the model is that these firms
remain manual.
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where we assume a discount factor of β. This firm produces zLz units of the task (and,

thus, of the output) and pays the wage w(z) to its worker. There is a probability 1 − δL

that it will keep producing in the following period. And if it does produce, its value

remains unchanged with a probability 1 − λn and changes due to the redraw of the

idiosyncratic productivity, z, with a probability λn. Those that draw a productivity

below z∗ prefer to fire the worker and change to the automated technology; in this

case, because they already paid Ω and it takes one period to shift technologies, their

value equals the discounted value of the automated technology, βJK , reduced of the

technology-specific cost κK . If they draw a productivity above z∗, they choose to main-

tain the manual technology; in this case, their value equals the unconditional expected

value of the manual technology between z∗ and z̄. This intuitively implies that z∗ is

determined by the following indifference condition:

JL(z
∗) = βJK − κK . (2)

The present-discounted value of the automated technology, JK , is much simpler as

its productivity is constant:

JK = zK + β(1 − δK)JK . (3)

At the time of entry, all firms pay Ω to create a new task. A proportion λe of the new

firms draws the task’s idiosyncratic productivity; the other firms start with the manual

technology with idiosyncratic productivity z̄. Among the firms that draw idiosyncratic

productivity, a proportion G(z∗e ) chooses the automated technology and the remaining

firms choose the manual technology. These assumptions allow us to write the free-

entry condition in our model:

λe

[

G(z∗e ) (βJK − κK) +

∫ z̄

z∗e

(

βJL(z)−
κL

µ(θ)

)

dG(z)

]

+ (1− λe)

(

βJL(z̄)−
κL

µ(θ)

)

= Ω,

(4)

where the present-discounted values, JK and JL(z), are discounted by β because it

takes one period for firms to start production. New firms that draw productivity are
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only indifferent between either technology if their values net of the technology-specific

entry cost are equal. This occurs when the task’s idiosyncratic productivity equals z∗e :

βJL(z
∗

e )−
κL

µ(θ)
= βJK − κK . (5)

2.2 Workers

In our model, there is a unit measure of risk-neutral workers who are either employed

or nonemployed. The lifetime income of an employed worker is given by E(z):

E(z) = w(z) + β

{

(1− δL)

[

(1− λn)E(z) + λn

(

G(z∗)U +

∫ z̄

z∗
E(z)dG(z)

)]

+ δLU

}

.

(6)

E(z) increases with the wage w(z), which varies with the idiosyncratic productivity of

the task the worker is producing at the firm. E(z) falls with the probability that the job

is exogenously destroyed and the worker is back to nonemployment. In this case, the

lifetime income is given by U . E(z) also changes with the future productivity draw of

the firm: if the new productivity draw is low – below z∗ –, the firm fires the worker and

the lifetime income returns to U ; if the new productivity draw exceeds z∗, then wages

change, shifting the lifetime income of employment.

If nonemployed, a worker enjoys income b ≥ 0 and finds a job with a probability

f(θ). In equilibrium, nonemployed workers only match with new firms to produce new

tasks. But new tasks vary in idiosyncratic productivity. A proportion 1−λe of new tasks

start with idiosyncratic productivity z̄ and, thus, are produced by labor. On the other

hand, a proportion λe of new tasks have their idiosyncratic productivity drawn from

G(z) and the firms producing the tasks only hire a worker if the draw exceeds z∗e . As a

result, we write the lifetime income of a nonemployed worker as

U = b+ β

{

f(θ)

[

(1− λe)E(z̄) +
λe

1−G(z∗e )

∫ z̄

z∗e

E(z)dG(z)

]

+ (1− f(θ))U

}

. (7)
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2.3 Wage Bargaining

Workers and firms bargain over wages such that the bargained wage maximizes the

Nash product:

w(z) = argmax [E(z) − U ]φ
[

JL(z)−max

(

βJL(z)−
κL

µ(θ)
, βJK − κK

)]1−φ

, (8)

where the parameter 0 < φ < 1 measures the worker’s bargaining power. A firm that

employs a worker has two outside options. It may fire the worker and look for a new

one, which generates a value of βJL(z) −
κL

µ(θ) .14 Alternatively, it may fire the worker

and adopt the automated technology, which generates a value of βJK − κK . We infer

that there is an idiosyncratic productivity cutoff that makes the manual firm indifferent

between the two outside options, which turns out to be the same as the entry cutoff, z∗e ,

in Eq. (5). Thus, we summarize the solution to Nash bargaining as

E(z)− U =
φ

1− φ

[

JL(z)−

(

βJL(z) −
κL

µ(θ)

)]

if z̄ > z ≥ z∗e ; (9)

E(z)− U =
φ

1− φ
[JL(z)− (βJK − κK)] if zmin < z < z∗e . (10)

In both cases, workers retain a proportion φ of the surplus, which is an increasing func-

tion of the idiosyncratic productivity, z, only due to JL(z). As a result, wages increase

with z but less than proportionately. Eq. (9), for example, implies that wages increase in

proportion
φ(1−β)

φ(1−β)+1−φ
< 1 of zLz. This confirms our anticipation that greater idiosyn-

cratic productivity implies greater profits, guaranteeing that only the least productive

firms in using the manual technology prefer to use the automated technology.

Given Nash bargaining, job destruction only occurs when the surplus of the match

is negative; thus, both workers and firms deem it optimal to destroy the job. The sur-

plus of the match is only negative if it is less profitable for the firm to stay in the manual

technology than to move to the automated technology, which occurs when JL(z) <

14Importantly, since the productivity z is idiosyncratic, it implies that if firms decide to look for another
worker, they do not have to redraw productivity. This prevents workers from capturing a large share of the
surplus generated by greater productivity.
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βJK−κK . In other words, all firms that draw the task’s idiosyncratic productivity below

the cutoff z∗, fire the worker and move to the automated technology. Simultaneously,

when the task’s idiosyncratic productivity is too low, workers prefer to move to nonem-

ployment than to stay employed and earn a low wage because E(z) < U . Thus, the

cutoff z∗ satisfies E(z∗) = U or, equivalently, Eq. (2).

2.4 Equilibrium

The equilibrium of the model is defined at the aggregate level of the economy and is

characterized by the vector (θ, z∗, z∗e , w(z)), which satisfies the free-entry condition, Eq.

(4), and the two indifference conditions, Eqs. (2) and (5), and solves Nash bargaining.

2.4.1 Employment Rate and Number of Firms

We define employment as the number of workers employed at the time of production.

As usual, in equilibrium, employment is determined by the balance between the flows

from employment to nonemployment and the flows from nonemployment to employ-

ment. Using n to denote the employment rate, the flows from nonemployment to em-

ployment sum up to f(θ)(1−n): a proportion f(θ) of the nonemployed workers, (1−n),

find jobs every period. The flows from employment to nonemployment take two forms

because workers may lose their jobs exogenously and endogenously. There is a proba-

bility δL that employed workers lose their jobs for exogenous reasons. From those that

do not lose their jobs for exogenous reasons, there is a probability λn that the produc-

tivity of the task changes. And there is a probability G(z∗) that the new productivity is

below the cutoff z∗, leading the firm to move to the automated technology and fire the

worker. Thus, after some algebra, we get an equilibrium employment rate of

n =
f(θ)

f(θ) + δL + (1− δL)λnG(z∗)
. (11)

Because every manual firm employs one worker, n also represents the number of

manual firms. But the number of firms that use the automated technology is more in-

tricate: some firms immediately choose the automated technology; others start with
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the manual technology and then move to the automated technology. We start by mea-

suring the former. First, only a proportion λe of new firms can choose technologies.

Second, if the firms can choose technology, they only choose the automated technol-

ogy if the idiosyncratic productivity is below the cutoff z∗e ; this occurs with a probability

G(z∗e ). Third, the proportion of those that enter and choose the manual technology is

λe(1−G(z∗e )) + 1− λe, which corresponds to the number of firms choosing the manual

technology: f(θ)(1 − n). Thus, every period, there is
λeG(z∗e )

λe(1−G(z∗e ))+1−λe
f(θ)(1 − n) firms

that start production immediately using the automated technology.

Now we measure the other source of automated firms: those that start with the

manual technology and change technology. To measure this, we must determine the

number of firms that endogenously fire their workers every period. Given that there

are n manual firms, there is a probability δL that the job is exogenously destroyed,

there is a probability λn that the productivity of the task changes, and there is a prob-

ability G(z∗) that a firm that redraws productivity moves to the automated technol-

ogy, then the number of firms that automate the production of their respective tasks is

(1− δL)λnG(z∗)n.

Additionally, denoting nK as the stock of automated firms, there are δKnK auto-

mated firms destroyed every period. Thus, there are

nK =
(1− δL)λnG(z∗)

δK
n+

λeG(z∗e )
λe(1−G(z∗e ))+1−λe

δK
f(θ)(1− n) (12)

automated firms.

2.4.2 Output and the Labor Share

To quantify output, we only need to sum the output produced by manual and auto-

mated firms because we assume that tasks are perfect substitutes. The output of auto-

mated firms is zKnK as all these firms produce zK . But it is not as simple to determine

the output of manual firms because they are not distributed according to G(z) from z∗
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to z̄. To measure output, we need to distinguish between three groups of manual firms:

we need to calculate how many manual firms produce tasks with productivity (i) z̄ from

the moment they were created and have not redrawn productivity afterwards, (ii) above

z∗e (by means of draws or redraws of z), and (iii) between z∗ and z∗e (by means of redraws

of z). We denote the latter two as n∗

e and n∗, respectively. And we obtain the number of

firms producing tasks with productivity z̄ from inception as the residual: n− n∗

e − n∗.

There are two ways in which a manual firm may produce a task with idiosyncratic

productivity above z∗e and belong to n∗

e: either the productivity of the task was drawn

at the time of entry or it was later redrawn in the interval [z∗e , z̄]. The number of man-

ual firms that draw productivity at the time of entry is
λe(1−G(z∗e ))

λe(1−G(z∗e ))+1−λe
f(θ)(1− n). This

follows from two factors. First, every period, f(θ)(1− n) new manual firms are created.

Second, these firms split between those that do not draw productivity (in proportion

1 − λe of all new firms) and those that draw productivity and prefer the manual tech-

nology (in proportion λe(1−G(z∗e )) of all new firms). Furthermore, the number of man-

ual firms that redraw productivity and obtain z above z∗e is (1 − δL)λn(1 −G(z∗e )) given

that a proportion 1 − δL of manual firms survive exogenous shocks and a proportion

λn redraw productivity. But some of these firms were already included in n∗

e; thus, the

net inflow of firms by redrawing productivity into n∗

e is only (1−δL)λn(1−G(z∗e ))(n−n∗

e).

There are also two ways in which a manual firm leaves n∗

e: either the firm ends ex-

ogenously or it draws productivity below z∗e . These exit flows sum to δL+(1−δL)λnG(z∗e ).

Combining the flows into and out of n∗

e implies after a few derivations:

n∗

e =
(1− δL)λn(1−G(z∗e ))n

δL + (1− δL)λn
+

λe(1−G(z∗e ))f(θ)(1−n)
λe(1−G(z∗e ))+1−λe

δL + (1− δL)λn
. (13)

We can apply a similar logic to find the firms that produce tasks with idiosyncratic pro-

ductivity between z∗ and z∗e . Making the necessary adjustments and taking into ac-

count that no firm starts in the manual technology with productivity between z∗ and
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z∗e , we obtain

n∗ =
(1− δL)λn

δL + (1− δL)λn

(G(z∗e )−G(z∗))n. (14)

Having established the number of firms, we quantify output as

y = nKzK + (n− n∗
− n∗

e)zLz̄ + n∗

e

1

1−G(z∗e )

∫ z̄

z∗e

zdG(z) + n∗
1

G(z∗e )−G(z∗)

∫ z∗e

z∗
zdG(z),

(15)

in which we multiply the number of firms in each group by its respective average out-

put. The labor share then is ratio of the number of workers in each group of manual

firms (recall that every manual firm employs one worker) multiplied by its respective

average wage relative to output:

LS =
(n− n∗ − n∗

e)w(z̄) + n∗

e
1

1−G(z∗e )

∫ z̄

z∗e
w(z)dG(z) + n∗ 1

G(z∗e )−G(z∗)

∫ z∗e
z∗

w(z)dG(z)

y
.

(16)

3 Results

Looking into the last four decades, recent empirical studies on the effects of new tech-

nologies (automation, industrial robots, artificial intelligence, and routine-replacing

innovations) point to a net increase in employment (see, e.g., Bessen, 2016; Autor and

Salomons, 2018; Gregory, Salomons and Zierahn, 2018; and Bessen et al., 2020). These

studies suggest that the direct labor-displacing (job destruction) effect has been out-

weighed by indirect effects that ultimately lead to job creation. But do these results

hold under all circumstances? In other words, can the future be different?

Our goals are mainly conceptual: we want to assess (i) the conditions under which

an automation-augmenting shock –an increase in zK– increases and decreases employ-

ment and (ii) the conditions that magnify the response of employment to the shock.

Yet, because we are not able to obtain analytical results, our approach is to calibrate

the model and assess the effects of an automation-augmenting shock under various

calibrations. We conclude that our results essentially depend on one key parameter:
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λn, which determines the frequency at which the productivity of a task is redrawn and,

thus, indirectly controls for how rapidly a task can be automated.15 If it is low (about

0.02; meaning that the productivity of a task changes on average every four years), em-

ployment tends to increase; otherwise, it tends to fall. The remaining parameters either

magnify the response of employment (changing the λn threshold slightly) or have neg-

ligible effects.

3.1 Calibration

We calibrate the model to monthly US data and summarize our benchmark calibration

in Table 1. We set β = 0.996, which implies an annual discount rate of 4.91%. We follow

Petrongolo and Pissarides (2001) and set η = 0.5. We also set φ = 0.5. In our model,

firms draw the task’s idiosyncratic productivity from a uniform distribution, i.e., G(z) =

z−zmin

z̄−zmin
, in which z̄ = 0.25 and zmin = 0.15.16 To calibrate b, we assume it is 70% of the

productivity of the firm that draws z = zmin + z̄+zmin

2 . This is similar to what we find in

many studies in the literature (including Hall and Milgrom, 2008; Pissarides, 2009; and

Coles and Kelishomi, 2018) that assume that b ≈ 0.7zL in models with homogeneous

firms.

To calibrate the exogenous probability of manual firm destruction, δL, we impose

that the steady-state probability that a firm-worker match breaks equals the average

job destruction rate in the US from 1948 to 2010 (Shimer, 2012); thus JD ≡ δL + (1 −

δL)λnG(z∗) = 0.036. For the automated technology, we assume it is δK = 0.01. We do

not impose any particular value for λe and λn; instead we analyze how different values

of these two parameters change our results.

Finally, we normalize κK and κL to unity and set zL, zK , χ, and Ω such that our

steady-state matches four targets. We target the prime-age (aged 25-54) workers’ em-

15The per-period probability that a task is automated is given by (1− δL)λnG(z∗), which is the endoge-
nous component of the job destruction probability defined as JD ≡ δL + (1− δL)λnG(z∗). Higher levels
of λn imply a higher sensitivity of the job destruction probability to changes in z∗.

16This implies that the most productive manual firms are 67% more productive than the least productive
manual firms, which is slightly below the empirical estimates in, e.g, Syverson (2011) and OECD (2017) for
all firms in manufacturing. Yet, in our sensitivity analysis, we show that the distribution of productivity
draws affects the results quantitatively but does not change our main messages.
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Table 1: Benchmark Calibration

Discount factor: β = 0.996
Matching function elasticity: η = 0.5
Workers’ bargaining power: φ = 0.5
Minimum productivity draw: zmin = 0.15
Maximum productivity draw: z̄ = 0.25
Nonemployment income: b = 0.7zL

(

zmin + z̄+zmin

2

)

Rate of automated-firm destruction: δK = 0.01
Cost of Capital/Robot: κK = 1
Job-filling Cost: κL = 1

ployment rate and the labor share in the US from 1977 until 2018;17 this implies that

n = 0.78 and LS = 0.61. We also target G(z∗e ) = 0.5 such that half of the productivity

draws exceed the entry cutoff in our various experiments, but run sensitivity analysis

on this target.18 And, following Pissarides (2009), we target labor market tightness in

the US so that θ = 0.72.

3.2 Employment: Is the Future like the Past?

Figure 2 summarizes our main results. On the left, this figure plots how an increase

of 1% in the productivity of the automated technology, zK , changes employment, n,

when all firms draw productivity at the time of entry (λe = 1) and under different val-

ues of λn. Clearly, the probability that workers lose their comparative advantage and

are endogenously fired – controlled by λn – affects the response of employment to an

automation-augmenting shock (rise in zK). In the case of (very) low λn, manual firms

rarely automate the production of the tasks, and a rise in zK slightly increases employ-

ment.19 If, however, we assume larger values of λn, an automation-augmenting shock

may lead to sizable losses in employment: if λn = 0.15, manual firms are more likely to

automate the production of the tasks after the shock, and employment falls 2.5%, that

17We target the employment rate of prime-age workers because our model abstracts from demographic
changes.

18Our baseline calibration implies that the frequency at which a task is on average automated ranges
between eight and 20 years depending on λe and λn.

19In this case, our model in this paper is close to that in Guimarães and Gil (2019); thus, the results are
similar.
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Figure 2: The effect of higher zK under λe = 1 and different values of λn
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Note: This figure shows the effects of an automation-augmenting shock in the case in which all firms

draw the tasks’ productivity at the time of entry, λe = 1, and for different probabilities that this pro-
ductivity changes, λn. The left-panel shows the percentage change in employment, n. The right-
panel shows the percentage change in the job-finding rate, f(θ), and in the job-destruction rate,

JD ≡ δL + (1− δL)λnG(z∗). The shock to zK is of 1%.

is, two and a half times the magnitude of the shock to zK .20 Remarkably, this magnitude

is insensitive to changes in most parameters as shown in Section 3.3.

Shocks in the economy affect employment through changes in both job creation

and job destruction. Thus, to shed more light on the mechanisms in our model, we

decompose the two effects of an automation-augmenting shock of 1% on employment

on the right-hand side of Figure 2. In particular, we show how the job-finding prob-

ability, f(θ), (which indicates job creation) and the job-destruction probability, JD ≡

δL+(1−δL)λnG(z∗), react to the automation-augmenting shock (also as a function of λn

and in the case of λe = 1). To understand how a rise in zK affects employment, let’s first

consider the extreme case of λn = 0. This case implies that tasks that start as manual are

never automated: tasks have constant idiosyncratic productivity, z, meaning that work-

ers never lose their comparative advantage; thus, firms have no incentive to shift from

the manual to the automated technology in equilibrium. As a result, λn = 0 also implies

that job destruction is constant and unaffected by the automation-augmenting shock.

20λn = 0.15 implies that the tasks’ productivity is redrawn, on average, approximately every six months.
Our benchmark calibration then implies that a task is initially on average automated every 16 years; after
the shock, in our experiment, it is automated on average every 14 years.
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The same is not true for job creation. A rise in zK increases the value of the automated

technology, leading to a reallocation effect: some entering firms steer away from the

manual technology and invest instead in the automated technology (z∗e increases); for

a given number of entering firms, job creation shrinks. But an automation-augmenting

shock also increases the expected value of a firm, which incentivizes firm entry.21 The

free-entry condition, Eq. (4), is only satisfied if the value of the manual technology

drops, which occurs in our model through higher wages and, most importantly, greater

labor market tightness. A tighter labor market is synonym of greater job-finding prob-

ability and, necessarily, higher job creation. Therefore, if λe = 1, the aggregate effect

of greater firm entry exceeds the reallocation effect implied by the increase in z∗e and,

thus, an automation-augmenting shock increases job creation. This, together with the

constant job destruction (λn = 0), increases employment.

If λn > 0, a rise in zK affects both job-finding and job-destruction probabilities.22

As before, the job-finding probability increases because a rise in zK boosts entry more

than it boosts reallocation at the time of entry. Because firms are forward-looking, they

have an even higher incentive to create jobs and invest in the manual technology (when

λn > 0 than when λn = 0) in anticipation of the greater profits when they automate

production. But the job-destruction probability also increases: as machines are more

productive, firms that use the manual technology are motivated to shift to the auto-

mated one. This translates into a higher z∗, reducing the average time of a worker-firm

match. Because λn is the probability that the firm redraws the productivity of the task,

a higher λn increases the number of manual firms drawing low productivity (for a given

z∗), leading to even greater job destruction. If λn is large enough, then the increase in

job destruction surpasses the increase in job creation, implying less employment.23

21The expected value of a firm (prior to entry) surges because a higher zK directly increases the expected
value of the automated firms and, ceteris paribus, indirectly increases the expected value of manual firms.
The latter occurs because the productivity of the tasks produced with manual technology is heteroge-
neous and the firms drawing the least productive of these tasks prefer the automated technology when zK
increases (z∗e increases).

22In this case, our model differs substantially from our previous work in Guimarães and Gil (2019) by
endogenizing job destruction, which implies remarkably different results for the effects of automation-
augmenting shocks on employment under some calibrations.

23The increase in z∗ exacerbates the rise on the left-hand side of Eq. (4) as firms only destroy jobs if it is
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The rise in zK may lead to greater employment even if we mute the general-equilibrium

effect at the time of entry and set λe = 0. The bottom three lines of Table 2 show the

effects of higher zK on the employment, job-finding probability, and job-destruction

probability (besides the labor share) when λe = 0 and λn equals 0.01, 0.05, or 0.15. To

allow for a direct comparison, the top four lines of Table 2 show the same experiments

when λe = 1 (and we include the case of λn = 0 for completeness). If λe = 0, all tasks

demand labor when created, as in Acemoglu and Restrepo (2018), and firms may only

take advantage of the increased productivity if they automate the production of the

task. Thus, it is remarkable that an increase in zK – the productivity of a technology

that can only be used after a job is destroyed – is still capable of leading to greater em-

ployment under a slightly positive λn (see the line regarding λe = 0 and λn = 0.01 in

Table 2). Indeed, in the case of λe = 0, an increase in zK continues to affect both job

creation and job destruction. First, it continues to promote greater firm entry and job

creation because of the increase in the value of the automated technology, as an outside

option of the firms using the manual technology. But different from the case of λe > 0,

if λe = 0, workers only benefit from larger firm entry because all firms start as manual

and must hire a worker. Second, an automation-augmenting shock implies that firms

have a higher opportunity cost of employing the worker and, thus, prefer to shift ear-

lier to the automated technology (z∗ increases). This increases job destruction. If λn

is low, the job-creation effect dominates; but if λn is large, the job-destruction effect

dominates.24

more profitable for them (JL(z) increases for all z; see Eq. (1)). Thus, a higher increase in job destruction
must be accompanied by an even tighter labor market. But, as we will show in Section 4.1, λn affects job
destruction by more than job creation because the automation-augmenting shock increases wages and
the prevalence of matching frictions.

24It is not possible to pin down analytically why this result obtains in the case of λe = 0. But there
are two aspects that offer a hint on why it happens. First, when λn is low, the weight of endogenous job
destruction on total job destruction, JD, is very low: a change in z∗ barely alters JD if λn is low. Yet, λn

does not change the elasticity of f(θ) with respect to θ. Second, if we use Eqs. (1) and (6) both measured
at z̄ and z∗ together with the firing cutoff equation, Eq. (2), and free-entry condition, Eq. (4), we obtain

κL

βµ(θ)
= (1− φ)

[

βJK − κK +
zL(z̄ − z∗)

1− β(1− δL)(1− λn)

]

− Ω

(

1

β
− φ

)

.

To properly assess assess how z∗ and θ affect each other, we need another equation relating them. But
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Table 2: The effect of an increase of 1% in zK

λe λn ∆n ∆f(θ) ∆JD ∆LS

1 0 0.17 0.76 0.00 -0.52
1 0.01 0.12 0.76 0.19 -0.71
1 0.05 -0.20 0.82 1.74 -1.87
1 0.15 -2.51 1.25 13.08 -8.35

0 0.01 0.01 0.19 0.15 -0.06
0 0.05 -0.20 0.56 1.46 -0.58
0 0.15 -2.21 0.97 11.34 -4.37

Note: This table shows the effects of an automation-augmenting shock under various combinations of
the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that it is
redrawn afterwards, λn. The first two columns show the calibration of these two probabilities. The next
four columns show the percentage change in employment, job-finding probability, job-destruction

probability, and labor share. The shock to zK is of 1%.

Our results show how our model may both agree and disagree with the empirical

literature (Bessen, 2016; Autor and Salomons, 2018; Gregory, Salomons and Zierahn,

2018; and Bessen et al., 2020). Under some calibrations, job creation increases more

than job destruction, agreeing with their findings that employment increased after pro-

ductivity enhancements in the past; this increase in employment also coincided with

the fall in the labor share, which is in line with our results. Therefore, our model sug-

gests that λn has been about 0.02 or lower, implying that labor’s comparative advan-

tage in producing a task has been stable for at least four years on average. But under

other calibrations, job destruction increases more than job creation and employment

may significantly fall. Thus, this suggests that the future of employment may differ

from the past. Our model calls the attention specifically to λn, which we interpret as

a feature intrinsic to tasks that characterizes how rapidly workers may lose their com-

parative advantage. In an economy in which workers rapidly lose their comparative

advantage (rapid-changing environments; high λn) and with matching frictions, em-

the equation above shows that the labor market becomes tighter when the productivity of the automated
technology goes up (JK increases). This is a direct effect that takes into account that without a change
in z∗, the increase in zK directly increases the value of the firm in the cases in which the task is already
automated. This naturally increases the value of a job and, thus, job creation. This equation also shows
that a rise in z∗ reduces θ (because jobs last for less periods) and that the elasticity of θ with respect to
z∗ increases with λn (we confirm this numerically given that zL and δL are used to reach our steady-state
targets). Thus, for a given change in θ, if λn is low, z∗ cannot change much to satisfy this equation. Fur-
thermore, any change in z∗ has a minor effect on JD. But if λn is higher, z∗ has to fluctuate more to satisfy
this equation and has a larger impact on JD, shifting the ranking of the forces at play.
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ployment falls after an automation-augmenting shock. In this economy, jobs last for

less periods and the increase in labor market tightness makes it more costly to hire the

right worker for the task and allows workers to enjoy greater wages. These effects pre-

vent job creation from keeping pace with job destruction. Therefore, if the nature of the

new and current jobs is different from the past – particularly, if tasks feature a higher λn

in the future than in the past and, thus, tasks rapidly become liable to be automated –

the same productivity shock of the past may have dramatically different consequences

in the future. This may occur especially if technologies like Artificial Intelligence allow

software and robots to rapidly adapt to new tasks once enough data is gathered.

3.3 Sensitivity Analysis

In this section, we assess how different calibrations of our model change the outcomes

of an automation-augmenting shock of 1%. We consider seven experiments, and in

each experiment we recalibrate one parameter (or target) of the model. We conclude

that none of the experiments changes the qualitative predictions of our model. In all

cases, both job creation and job destruction increase after an automation-augmenting

shock (except in the case of λn = 0, in which case the job-destruction probability is con-

stant by assumption). And the change in the job-destruction probability is still more

sensitive to λn than the change in the job-finding probability. This implies a negative

relation between the change in employment after the rise in zK and λn: if λn is low, em-

ployment increases; on the contrary, if λn is high, employment falls.

Our experiments do, however, change the results quantitatively. And among our

seven experiments, two have particularly large quantitative effects that we show in Pan-

els B and C of Table 3. These two panels show how a rise in zK affects employment,

job-finding probability, and job-destruction probability in economies with z̄ = 0.225

(instead of z̄ = 0.25) and with a Pareto distribution of productivity draws (instead of a

uniform distribution), respectively. As in Table 2, we consider various combinations of

λn and λe. And to ease comparability with the results of our model using the baseline
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calibration (reported in Table 2), we reproduce those results in Panel A of Table 3.

Table 3: The effect of an increase of 1% in zK – Sensitivity Analysis

A: Baseline B: z̄ = 0.225 C: Pareto D: η = 0.4

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 0.19 0.87 0.00 0.30 1.40 0.00 0.21 0.95 0.00
1 0.01 0.12 0.76 0.19 0.13 0.85 0.25 0.21 1.20 0.24 0.17 0.95 0.19
1 0.05 -0.20 0.82 1.74 -0.30 0.93 2.30 -0.52 1.28 3.69 -0.16 1.04 1.80
1 0.15 -2.51 1.25 13.08 -3.25 1.51 17.00 -6.65 2.82 36.11 -2.51 1.58 13.45

0 0.01 0.01 0.19 0.15 0.03 0.34 0.21 -0.00 0.13 0.14 0.02 0.24 0.15
0 0.05 -0.20 0.56 1.46 -0.27 0.69 1.94 -0.35 0.73 2.34 -0.17 0.70 1.48
0 0.15 -2.21 0.97 11.34 -2.84 1.18 14.61 -5.09 2.05 26.93 -2.20 1.22 11.57

Note: This table shows the effects of an automation-augmenting shock under various combinations
of the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that
it is redrawn afterwards, λn. The first two columns show the calibration of these two probabilities.
The next columns show the percentage change in the employment, job-finding probability, and job-
destruction probability under a slightly different calibration in each panel. The shock to zK is of 1%.
Panel A presents the baseline results; Panel B presents the results assuming a lower maximum produc-
tivity draw; Panel C presents the results assuming a Pareto distribution of productivity draws; Panel D
presents the results assuming a lower elasticity of the matching function.

Economies with a tighter range of productivity draws (low z̄ or high zmin) experi-

ence larger changes in the flows after the rise in zK and also tend to experience larger

changes in employment than in our baseline economy. We also find a similar result in

the case of the Pareto distribution. If the cumulative distribution of productivity draws

is of the form G(z) = 1 −
(

zmin

z

)ξ
, a higher ξ (which concentrates productivity draws

near the minimum) increases the effects of the shock.25 The intuition is simple. If we

reduce z̄ or increase ξ, the distribution of productivity draws becomes more concen-

trated and, thus, the same change in z∗ and z∗e alters the optimal decision of a larger

proportion of firms. In these circumstances, the same rise in zK amplifies the required

change in labor market tightness, θ, to balance the free-entry condition, Eq. (4), and –

most importantly – motivates a much larger proportion of manual firms to destroy jobs

and automate the production of the tasks. Therefore, these experiments paint an even

bleaker picture than our baseline: depending on the calibration, the fall in employment

after the shock can be as catastrophic as 6.5-fold the magnitude of the shock.

25In Panel C of Table 3, we assume that ξ = 5. In all our experiments with the Pareto distribution, we
continue assuming that firms that do not draw productivity at the time of entry start with productivity z̄.
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In Panel D of Table 3, we consider the case of a smaller matching function elasticity,

η = 0.4 (instead of η = 0.5). We consider this case as it reduces the elasticity of the

hiring costs, κL

µ(θ) = κLθ
η

χ
, relative to labor market tightness, θ. As a result, we would

expect greater flows in the labor market, particularly for job creation, to balance the

free-entry condition, Eq. (4). We show that this does occur but the final impact of re-

ducing η on employment is whimsy because it also magnifies job destruction.26 Finally,

we consider the cases of a lower cost of capital, κK , lower workers’ bargaining power,

φ, lower proportion of firms that draw productivity below the entry cutoff, G(z∗e ), and

lower job-filling costs, κL. The results of these experiments are detailed in Tables A1

and A2, which we relegate to the Appendix A as they barely affect the results of our

model.

4 Dissecting the Mechanism

4.1 Ad hoc Function for Wages

Our baseline model shows that after an automation-augmenting shock, employment

increases if λn is low and falls if λn is large. We find that both job creation and job de-

struction increase after a rise in zK (unless λn = 0, in which case the job destruction

rate is fixed). But, the change in the job-destruction rate increases much more with λn

than the change in the job-finding rate. One factor that may explain this behavior is the

wage response. In all our calibrations, wages increase due to the rise in the job-finding

probability and in the value of the manual firm (which increases namely due to a better

outside option to move to the automated technology). Yet, the worker’s productivity

remains unchanged, implying that the rise in zK squeezes the operational profits in the

manual technology. The fall in employment is, to some extent, surprising because it co-

incides with an increase in wages. So we ask: if wages were only a function of the task’s

productivity, how would the job-creation and job-destruction margins react to an in-

crease in zK? In other words, if wages would not increase with automation-augmenting

26In Section 4.1, we explain that the good effects of a lower η on job creation also promote higher wages,
which motivate firms to destroy jobs and automate the production of the tasks.
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shocks, what would happen to employment?

To answer this question, we build a new version of the model in which we replace

Nash bargaining with an ad hoc functional form for wages: w(z) = (1 − φnb)b + φnbzLz

(0 < φnb < 1). Wages are the weighted sum of a constant term and the tasks’ produc-

tivity. In this case, the improvement in the worker’s and firm’s outside option have no

effect on the wage. Importantly, a rise in zK has no effect on wages.

Panel B of Table 4 shows how employment, job-finding probability (indicator of

job creation), and job-destruction probability change after an automation-augmenting

shock of 1% under various combinations of λe and λn.27 For convenience, Panel A of the

same table reproduces the results for the same experiments using our baseline model

of Section 2. The main takeaway from Panel B is that employment increases for all

the combinations we consider of λe and λn, which is in stark contrast with the results

reported in Panel A. Therefore, the rise in wages in our baseline model crucially influ-

ences the fall in employment. By further contrasting Panels A and B, we see that the

job-finding rate increases much more while the job-destruction rate increases less in

this version of the model than in the baseline one. Thus, if wages are orthogonal to zK

and θ, firms have a much greater incentive to hire a worker as their operational profits

remain unchanged. Furthermore, and by the same token, firms have less incentives to

fire the worker and move to the automated technology.

Panel B of Table 4 also shows that the change in the job-destruction rate contin-

ues to increase much more with λn than the change in the job-finding rate. The net

effect is that the change in employment tends to be negatively related with λn, which

suggests that for sufficiently high λn, employment may still drop after an automation-

augmenting shock. We confirm this in parallel experiments: employment falls if λe = 1

and λn ≥ 0.22, as well as if λe = 0 and λn ≥ 0.2, because job destruction increases more

27To calibrate the model with the ad hoc wage, we start by determining zL and b using our baseline
model under each calibration. Once determined zL and b, we obtain φnb together with zK , Ω, and δL to
reach our targets for the employment rate, labor share, job-destruction rate, and G(z∗e ).
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Table 4: The effect of an increase of 1% in zK – Model comparison

A: Baseline B: Ad hoc wage C: Low friction D: CES (ǫ = 5)

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 1.53 7.35 0.00 0.19 0.76 0.00 0.13 0.59 0.00
1 0.01 0.12 0.76 0.19 1.50 7.36 0.17 0.15 0.76 0.18 0.10 0.57 0.11
1 0.05 -0.20 0.82 1.74 1.35 7.93 1.40 -0.16 0.87 1.71 -0.04 0.54 0.72
1 0.15 -2.51 1.25 13.08 0.69 12.83 9.31 -2.30 1.50 12.55 -0.25 0.54 1.66

0 0.01 0.01 0.19 0.15 0.40 2.03 0.18 0.01 0.19 0.15 0.01 0.16 0.10
0 0.05 -0.20 0.56 1.46 1.04 6.46 1.47 -0.17 0.58 1.44 -0.08 0.44 0.78
0 0.15 -2.21 0.97 11.34 0.50 11.99 9.47 -2.06 1.17 10.99 -0.34 0.52 2.07

Note: This table shows the effects of an automation-augmenting shock under various combinations
of the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that
it is redrawn afterwards, λn. The first two columns show the calibration of these two probabilities.
The next columns, divided in four panels, show the percentage change in the employment, job-finding
probability, and job-destruction probability. In each panel, we use a different version of our model.
The shock to zK is of 1%.

than job creation after the rise in zK . It is natural that the job destruction rate increases

with λn as this rate becomes more sensitive to endogenous factors. Yet, at first sight, it

is unclear why the job-finding probability increases less than the job-destruction prob-

ability given that there are also greater incentives to create new tasks and jobs if λn is

high.

We conjecture that matching frictions are behind this pattern. As the labor market

tightness, θ, increases, the costs of a firm to match with a worker also increase, reduc-

ing incentives for job creation. We can test this conjecture by checking how our results

change with different calibrations of the matching function elasticity, η. If η is low, then

the costs of a firm to match with a worker are less sensitive to the labor market tight-

ness ( κL

µ(θ) = κLθ
η

χ
). Thus, matching frictions are less relevant for job creation and we

should observe greater job creation after an automation-augmenting shock. Using our

baseline model, in Section 3.3, we concluded that η barely affects how employment re-

acts to the increase in zK . Yet, Figure 3 shows a different result if we use our model

with the ad hoc wage equation; in fact, it confirms our conjecture that matching fric-

tions prevent a greater increase in employment. This figure plots how the job-finding

and job-destruction rates change after the automation-augmenting shock for a range

of values of λn and using our model with the ad hoc wage equation. On both panels,
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Figure 3: The effect of higher zK under λe = 1 and different values of λn and η
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Note: This figure shows the effects of an automation-augmenting shock using our model with the ad
hoc wage equation. In both panels, we assume that all firms draw the tasks’ productivity at the time of
entry, λe = 1, and different probabilities that this productivity is redrawn afterwards, λn. Both panels
show the percentage change in the job-finding probability and in the job-destruction probability. In
Panel A, η = 0.4; in panel B, η = 0.5. The shock to zK is of 1%.

λe = 1. The difference between the panels lies only in the value of η: the left-panel

assumes η = 0.4; the right-panel assumes η = 0.5. Confirming our conjecture, job cre-

ation increases much more after the rise in zK if η = 0.4 than if η = 0.5. Interestingly,

η barely affects the change in job destruction. Thus, employment reacts more after an

automation-augmenting shock if η = 0.4. But why are the results so different when

we use Nash bargaining and when we use our ad hoc equation? The reason seems to

lie in the outside option of workers, U . If the job-filling probability, µ(θ) = χθ−η, is

less sensitive to changes in labor market tightness, θ, then the job-finding probability,

f(θ) = χθ1−η, is more sensitive. Thus, given that U and f(θ) are positively related (see

Eq. 7), ceteris paribus a lower η increases the elasticity of U relative to θ, allowing all

workers to demand greater wages. Our ad hoc wage, however, prevents the operational

profit of manual firms to be affected by U , leading to the different results.

Our experiments with the model assuming the ad hoc equation work as counterfac-

tuals to understand the dynamics in our original model. But these experiments do not

seem to be a good account of how an automation-augmenting shock is likely to unfold

in the future. Unless the historical positive relationship between labor market tight-
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ness and wage increments definitely breaks in the future, the automation-augmenting

shock will increase wages, which may promote the sizable negative employment effects

that we obtain using our baseline model.

4.2 Lower Frictions

Our baseline model suggests that, as λn increases, it becomes easier to fire a worker

than to hire a worker due to matching frictions, because the latter increase wages and

the costs to find a suitable worker. Matching frictions in our model come from the

matching function but also come from our assumption that workers who lose jobs stay

unemployed for at least a period (month). Although this is a typical assumption in

models with matching frictions and finds support in the evidence (Hall and Kudlyak,

2019), we can argue that in an economy that experiences a surge in labor market flows,

this assumption may be too restrictive. In such an economy, it is likely that workers

find jobs even within a month from losing them and start production immediately.28

Relaxing this assumption may be important in our model: in an economy that experi-

ences a surge in job destruction, the pool of available workers to match with firms may

become too narrow, raising the relevance of matching frictions. Thus, we ask: what are

the predictions of our model if workers can look for jobs and start production immedi-

ately after losing their jobs?

Panel C of Table 4 answers this question and, by contrasting the results in this panel

with those in Panel A, confirms our prediction. In an economy that experiences an

automation-augmenting shock and in which workers who lose jobs can look for other

jobs and restart production immediately, matching frictions become less relevant and

the job-finding probability increases more with λn. The implication of this is that em-

ployment becomes less negatively correlated with λn; yet, and even though this model

also generates a smaller increase in the job destruction rate than the baseline, the change

28Christiano, Eichenbaum and Trabandt (2016) make a similar assumption. They build a model with
matching frictions but calibrate each period as a quarter, whereas tipically these models are calibrated
with monthly data. Because in US data many workers find jobs and start production within a quarter, it
would be too restrictive to assume that workers who lose jobs need to wait for the quarter to end to restart
production. In our case, the probability to find jobs may increase so much that it can be equally restrictive.
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in employment continues to fall significantly with λn.

The lack of firepower of this experiment is not completely surprising. First, our sen-

sitivity analysis with η in Section 3.3 shows that our results are not much sensitive to

the calibration of the matching function. This suggests that the degree of matching

frictions are not much quantitatively relevant in our model.29 Second, the change in

the pool of nonemployed workers imposed by the rise in the job-destruction rate is not

so great. Even in the case of λe = 1 and λn = 0.15, the rise in the job-destruction rate

displaces only an additional 0.0037 proportion of the workforce per period. Given our

steady-state target of nonemployment of 1 − n = 0.22, the number of workers looking

for jobs is not much affected.

4.3 CES Aggregator

In our baseline model, we assume that the tasks produced by workers and by machines

are perfect substitutes. In this section, we instead build a model assuming that – from

the perspective of consumers – they are imperfect substitutes. Our motivation for this

setup is to take into account that consumers may deem differently a task produced

by a machine or by a worker, a factor that we call human touch. For example, both a

vending machine and a seller sell goods and, thus, they broadly perform the same task.

Nonetheless, consumers may value the task differently on the basis of who is perform-

ing it. The worker (seller) can offer a more personal (human touch) to the task whereas

the machine (vending machine) offers an impersonal service. This naturally renders

machine and worker imperfect substitutes, from the perspective of the consumer. An

ubiquitous use of the automated technology may, then, change the relative price of

the tasks produced by machines and workers as consumers look for the differentiated

offer of the manual technology. Our goal, then, is to assess how the presence of the hu-

man touch (imperfect substitutability) affects the wrestle between the job-finding and

job-destruction margins in determining how an automation-augmenting shock affects

29This follows from the fact that the wage increases with the automation-augmenting shock (see the
discussion in Section 4.1) and the remaining parameters adjust to balance the steady-state of our model
and reach our steady-state targets.
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employment. In particular, can this setup reverse our prediction that economies with

high λn experience lower employment after an automation-augmenting shock? Or are

there any relevant quantitative implications?

We implement this model by assuming a CES aggregator of the outputs of the tasks

produced by automated and manual technologies, where y is an index of final con-

sumption (i.e., a bundle of goods and services demanded by consumers). In this setup,

the elasticity of substitution is ǫ, and this model nests our baseline model if ǫ = ∞. In

particular, the CES takes the following form:

y =

[

y
ǫ−1

ǫ

K + y
ǫ−1

ǫ

L

]
ǫ

ǫ−1

, (17)

where yK and yL are the sum of the outputs produced using each type of technology:

yK = zKnK ,

yL = zL

[

(n− n∗
− n∗

e)z̄ + n∗

e

1

1−G(z∗e )

∫ z̄

z∗e

zdG(z) + n∗
1

G(z∗e )−G(z∗)

∫ z∗e

z∗
zdG(z).

]

Assuming competitive markets in the intermediate goods yK and yL and a profit-maximizing

final-good producer, we get:

pK = y
−

1

ǫ

K y
1

ǫ , (18)

pL = y
−

1

ǫ

L y
1

ǫ . (19)

Thus, a rise in zK leads to an increase in yK , which reduces the price of the tasks pro-

duced using the automated technology. Furthermore, it also leads to a rise in y, which

converts into a higher price of the tasks produced using the manual technology. These

two effects clearly affect the motivation to create jobs as well as to fire workers and au-

tomate the production of tasks (destroy jobs).
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Panel D of Table 4 shows the effects of an automation-augmenting shock in the

model with the CES assuming ǫ = 5 and under the various combinations of λe and

λn. Assuming that the outputs of the two technologies are imperfect substitutes does

not change our results qualitatively. In economies with high λn, employment still falls.

Yet, our setup with a CES affects the results quantitatively: it reduces the elasticities in

the model because the total impact of the shock, pKzK , is lower reflecting the fall in the

price of the automated good, pK , after the rise in zK .

One interesting outcome reported in Panel D of Table 4 is that our setup with the

CES constrains job destruction much more than job creation. To shed light on this, on

the left panel of Figure 4, we plot how the job-destruction probability, JD, and job-

finding probability, f(θ), change with the elasticity of substitution, ǫ, under the case of

λe = 1 and λn = 0.15. On the right-hand side of the same figure, we plot the prices

of the tasks produced by each type of technology also as a function of ǫ. The shock is,

as usual, an automation-augmenting shock of 1%. Undoubtedly, the job-destruction

margin is much more affected by the elasticity of substitution to the point that the shift

of the two margins almost converges if ǫ = 2. (Recall that in the baseline, ǫ = ∞, the

job-finding probability increases 1.25% and the job-destruction probability increases

13%). There are two aspects that can explain this. First, an automation-augmenting

shock reduces pK and, thus, curbs down the increase in machines’ productivity, pKzK .

This naturally reduces the incentives to destroy jobs and automate tasks after the rise

in zK . It also reduces the incentives to create jobs as the shock has a lower impact on

the value of firms. Yet, the same automation-augmenting shock increases pL and, thus,

increases workers’ productivity, pLzLz. This balances the effect (of lower pKzK) on job

creation but further reduces the motivation to destroy jobs and automate tasks. As we

increase ǫ, the fall in pK and the rise in pL become smaller; thus, the incentives to au-

tomate and destroy jobs increase significantly while job creation changes much less as

the effects of the two prices tend to almost balance out.

These mechanisms help explain why in calibrations with high λn (keeping ǫ fixed),
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Figure 4: The effect of higher zK under λe = 1, λn = 0.15, and different values of ǫ
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Note: This figure shows the effects of an automation-augmenting shock using our model with the CES

aggregator. To produce these results, we assume that all firms draw the tasks’ productivity at the time
of entry, λe = 1, and that on average about every six months this productivity is redrawn afterwards,
λn = 0.15. The left-panel shows the percentage change in the job-finding probability and in the job-

destruction probability. The right-panel shows the percentage change in the price of tasks produced
using the manual technology and in the price of the tasks produced using the automated technology.
The shock to zK is of 1%.

the assumption of imperfect-substitutability between the two outputs, yK and yL, (re-

sults reported in Panel D of Table 4) affects job-destruction much more than job cre-

ation. Economies with high λn experience greater reallocation from the manual to the

automated technology after an automation-augmenting shock. Greater reallocation

then implies a greater rise in the number of firms using the automated technology, nK ,

and, thus, in the output produced using the automated technology, yK . In this setup

with the CES, the greater rise in yK further drops pK and further increases pL, leading

to lower incentives to fire workers and, thus, a greater drop in job destruction when

contrasted with the baseline results. The two effects of pK and pL tend to balance the

change in job creation, leading to the smaller relative drop in job creation when com-

pared with the baseline.

These experiments with the CES aggregator show that consumers have an impor-

tant role in determining the effects of automation-augmenting shocks on employment.

If a large proportion of the tasks are directed to consumers, their preference for the hu-

man touch may severely reduce the negative effects of automation-augmenting shocks
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on employment.

5 Concluding Remarks

In this paper, we build a model to assess how an automation-augmenting shock – a

generalized increase in the productivity of machines/robots – affects employment. This

model relies on multiple previous contributions (Mortensen and Pissarides, 1994; Horn-

stein, Krusell and Violante, 2007; Acemoglu and Restrepo, 2018; and Guimarães and Gil,

2019) to satisfy two criteria. First, it is consistent with the past documented by the em-

pirical literature (e.g., Bessen, 2016; Autor and Salomons, 2018; Gregory, Salomons and

Zierahn, 2018; and Bessen et al., 2020): an automation-augmenting shock can simulta-

neously reduce the labor share and increase employment. Second, our model is flexible

enough to offer insights on how the future may differ from the past: depending on the

calibration, an automation-augmenting shock may increase or decrease employment.

In our model, an automation-augmenting shock increases the dynamism in the

economy, which enlarges labor market flows. On the one hand, the shock increases job

destruction because of the higher probability of automating production. On the other

hand, due to either a sort of complementarity at the time of entry (as in Guimarães

and Gil, 2019) or because hiring a worker is a crucial first step in starting the produc-

tion of a task (as in Acemoglu and Restrepo, 2018), firm entry and job creation also

increase. Yet, this robust increase in labor market flows predicted by our model con-

trasts with US data showing a downward trend in flows for the last decades (Davis and

Haltiwanger, 2014). This documented trend is even more relevant given that the fall

in labor market flows occurred in a period of increased automation and investment in

robots (Prettner and Strulik, 2019; Acemoglu and Restrepo, 2019a, Guimarães and Gil,

2019). [novo] Yet, the downward trend in labor market fluidity seems mostly driven

by composition effects that our model abstracts from. Hyatt and Spletzer (2017)

document that about half of the decline in hires and separations is accounted for

by a significant drop of the prevalence of jobs that start and end in the same quar-
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ter; and Molloy et al. (2016) document that after controlling for demographics and

education, there is no apparent downward trend in job separation and job finding

rates.30 Furthermore, even though aggregate labor market flows fell in all sectors,

they fell unevenly across them. Particularly, Decker et al. (2014) document that la-

bor market flows fell much more in retail and services sectors than in finance and

manufacturing sectors – the sectors that arguably were more susceptible to automa-

tion. Finally, the calibrations implying a rise in employment as observed in the past

coincide with a relatively low elasticity of job separation and job finding rates with

respect to automation-augmenting shocks. Thus, the effect of automation on labor

market fluidity was likely small in the past.

[old; apagar] But a closer look into the changes in labor market flows across US sec-

tors reveals that, even though labor market flows fell in all sectors, they fell unevenly

across them. Particularly, Decker et al. (2014) document that labor market flows fell

much more in retail and services sectors than in finance and manufacturing sectors –

the sectors that arguably were more susceptible to automation. We can interpret these

patterns in light of two trends: a general trend reducing labor market flows in all sectors

(e.g., demographics as argued by Engbom ) and a trend increasing labor market flows

in some sectors (with greater pervasiveness of automation). Our model abstracts from

the general trend and only takes into account the positive contribution of automation-

augmenting shocks to labor market flows. Furthermore, the calibrations implying a rise

in employment as observed in the past imply tiny changes to labor market flows. These

changes are likely too small to clearly affect aggregate dynamics.

Using our model, we sort the cases in which employment increases after an automation-

augmenting shock and those in which it falls. In environments in which the compar-

ative advantage of workers in producing a task is relatively stable – slow-changing en-

vironments – the increase in job creation dominates the increase in job destruction.

30Looking at their Figure 5, we can see that job finding rates dropped in the final years in their data
(2008-14) but that drop was most likely caused by the Great Recession.
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Therefore, in slow-changing environments, employment increases. On the contrary,

in environments in which the comparative advantage of workers changes frequently

– rapid-changing environments – an automation-augmenting shock leads to massive

job destruction that clearly offsets the increase in job creation. In these environments,

employment can catastrophically fall.

We also find that the fall in employment in rapid-changing environments crucially

depends on the relevance and prevalence of what we call human touch. Human touch

refers to a consumers’ preference for diversity in the producer/provider of the task it-

self: in a world with widespread usage of machines to offer multiple services to con-

sumers, they may value the differentiated service of a human. If that is the case, an

automation-augmenting shock (and ensuing spread of usage of machines/robots) in-

creases the price of the tasks produced by workers relative to those produced by the

machines/robots. This curtails job destruction, reducing the fall in employment.

Our paper then clarifies how the future may differ from the past. If the comparative

advantage of workers in producing new tasks starts to vanish more rapidly than in the

past, then automation-augmenting shocks will curb down employment rather than in-

crease it. In this respect, Artificial Intelligence can change the paradigm as these tech-

nologies allow software and robots to rapidly adapt in order to perform new tasks once

enough data is gathered. Thus, tasks can more rapidly be automated than in the past,

increasing the pace at which workers lose their comparative advantage in producing

each task. In such a scenario, employment would drop with increases in the produc-

tivity of the automated technology. The extent of this fall will also naturally depend on

demand and, particularly, consumers’ preferences. If many of the tasks produced in

an economy are sold directly to consumers and they have a preference for the human

touch, then the fall in employment will unlikely be catastrophic. But if most of the tasks

are part of a vast value chain to produce a final good or if consumers have no preference

for the human touch, then the fall in employment in the future may be catastrophic.
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Guimarães, Luı́s, and Pedro Gil. 2019. “Explaining the Labor Share: Automation vs La-

bor Market Institutions.” University Library of Munich, Germany MPRA Paper 94236.

Hall, Robert E, and Marianna Kudlyak. 2019. “Job-Finding and Job-Losing: A Com-

prehensive Model of Heterogeneous Individual Labor-Market Dynamics.” National

Bureau of Economic Research Working Paper 25625.

Hall, Robert E., and Paul R. Milgrom. 2008. “The Limited Influence of Unemployment

on the Wage Bargain.” American Economic Review, 98(4): 1653–1674.

Hornstein, Andreas, Per Krusell, and Giovanni L. Violante. 2007. “Technology-

Policy Interaction in Frictional Labour-Markets.” The Review of Economic Studies,

74(4): 1089–1124.

Hyatt, Henry R., and James R. Spletzer. 2017. “The Recent Decline of Single Quarter

Jobs.” Labour Economics, 46: 166 – 176.

Leduc, Sylvain, and Zheng Liu. 2019. “Robots or Workers? A Macro Analysis of Automa-

tion and Labor Markets.”

Molloy, Raven, Riccardo Trezzi, Christopher L Smith, and Abigail Wozniak. 2016. “Un-

derstanding Declining Fluidity in the US Labor Market.” Brookings Papers on Eco-

nomic Activity, 2016(1): 183–259.

Mortensen, Dale T., and Christopher A. Pissarides. 1998. “Technological Progress, Job

Creation, and Job Destruction.” Review of Economic Dynamics, 1(4): 733 – 753.

Mortensen, Dale T., and Christopher Pissarides. 1994. “Job Creation and Job Destruc-

tion in the Theory of Unemployment.” Review of Economic Studies, 61(0): 397–415.

OECD. 2017. Entrepreneurship at a Glance 2017.



AUTOMATION & MATCHING FRICTIONS 43

Petrongolo, Barbara, and Christopher A. Pissarides. 2001. “Looking into the Black

Box: A Survey of the Matching Function.” Journal of Economic Literature, 39(2): 390–

431.

Pissarides, Christopher A. 2009. “The Unemployment Volatility Puzzle: Is Wage Sticki-

ness the Answer?” Econometrica.

Prettner, Klaus, and Holger Strulik. 2019. “Innovation, automation, and inequality:

Policy challenges in the race against the machine.” Journal of Monetary Economics.

Shimer, Robert. 2012. “Reassessing the Ins and Outs of Unemployment.” Review of Eco-

nomic Dynamics, 15(2): 127–148.

Syverson, Chad. 2011. “What determines Productivity?” Journal of Economic literature,

49(2): 326–365.

Zeira, Joseph. 1998. “Workers, Machines and Economic Growth.” Quarterly Journal of

Economics, 113: 1091–1113.

Zeira, Joseph. 2010. “Machines as Engines of Growth.” mimeo.



44 GUIMARÃES & GIL

A Further robustness checks

Table A1: The effect of an increase of 1% in zK – Sensitivity Analysis

A: Baseline B: φ = 0.4 C: G(z∗e ) = 0.4

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 0.16 0.71 0.00 0.22 1.02 0.00
1 0.01 0.12 0.76 0.19 0.12 0.72 0.18 0.17 0.95 0.18
1 0.05 -0.20 0.82 1.74 -0.19 0.81 1.67 -0.17 0.94 1.71
1 0.15 -2.51 1.25 13.08 -2.41 1.31 12.66 -2.41 1.42 12.81

0 0.01 0.01 0.19 0.15 0.01 0.17 0.15 0.00 0.15 0.13
0 0.05 -0.20 0.56 1.46 -0.20 0.53 1.42 -0.18 0.59 1.42
0 0.15 -2.21 0.97 11.34 -2.15 0.99 11.07 -2.16 1.11 11.27

Note: This table shows the effects of an automation-augmenting shock under various combinations
of the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that
it is redrawn afterwards, λn. The first two columns show the calibration of these two probabilities.
The next columns show the percentage change in the employment, job-finding probability, and job-
destruction probability under a slightly different calibration in each panel. The shock to zK is of 1%.
Panel A presents the baseline results; Panel B presents the results assuming a lower workers’ bargaining

power; Panel C presents the results assuming a lower proportion of productivity draws below the entry
cutoff.

Table A2: The effect of an increase of 1% in zK – Sensitivity Analysis

A: Baseline B: κK = 0.5 C: κL = 0.5

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 0.17 0.76 0.00 0.17 0.76 0.00
1 0.01 0.12 0.76 0.19 0.12 0.76 0.19 0.12 0.76 0.19
1 0.05 -0.20 0.82 1.74 -0.20 0.82 1.73 -0.21 0.82 1.77
1 0.15 -2.51 1.25 13.08 -2.49 1.25 13.00 -2.54 1.26 13.24

0 0.01 0.01 0.19 0.15 0.01 0.19 0.15 0.01 0.19 0.15
0 0.05 -0.20 0.56 1.46 -0.20 0.55 1.45 -0.20 0.56 1.47
0 0.15 -2.21 0.97 11.34 -2.20 0.97 11.30 -2.22 0.97 11.41

Note: This table shows the effects of an automation-augmenting shock under various combinations of

the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that it is
redrawn afterwards, λn. The first two columns show the calibration of these two probabilities. The next
columns show the percentage change in the employment, job-finding probability, and job-destruction
probability under a slightly different calibration in each panel. The shock to zK is of 1%. Panel A
presents the baseline results; Panel B presents the results assuming a lower cost of capital/robot; Panel
C presents the results assuming lower job-filling costs.


