Identification, Estimation and Inference in High-Frequency Event Study Regressions
Casini AlessandroMcCloskey Adam
CEIS Research Paper
We consider identification, estimation and inference in high-frequency event study regressions, which have been used widely in the recent macroeconomics, financial economics and political economy literatures. The high-frequency event study method regresses changes in an outcome variable on a measure of unexpected changes in a policy variable in a narrow time window around an event or a policy announcement (e.g., a 30-minute window around an FOMC announcement). We show that, contrary to popular belief, the narrow size of the window is not sufficient for identification. Rather, the population regression coefficient identifies a causal estimand when (i) the effect of the policy shock on the outcome does not depend on the other variables (separability) and (ii) the surprise component of the news or event dominates all other variables that are present in the event window (relative exogeneity). Technically, the latter condition requires the ratio between the variance of the policy shock and that of the other variables to be infinite in the event window. Under these conditions, we establish the causal meaning of the event study estimand corresponding to the regression coefficient and super-consistency of the event study estimator with rate of convergence faster than the parametric rate. We show the asymptotic normality of the estimator and propose bias-corrected inference. We also provide bounds on the worst-case bias and use them to quantify its impact on the worst-case coverage properties of confidence intervals, as well as to construct a bias-aware critical value. Notably, this standard linear regression estimator is robust to general forms of nonlinearity. We apply our results to Nakamura and Steinsson’s (2018a) analysis of the real economic effects of monetary policy, providing a simple empirical procedure to analyze the extent to which the standard event study estimator adequately estimates causal effects of interest.
 
 
Number: 608
Keywords: Causal effects, Event study, High-frequency data, Identification
JEL codes: C32, C51
Volume: 23
Issue: 6
Date: Tuesday, July 29, 2025
Revision Date: Tuesday, July 29, 2025